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Abstract. Traditional Dijkstra and A* algorithms cannot
quickly adapt to the dynamic changes in the
transportation of power materials. In the face of traffic
jams, bad weather, and equipment failures, they lead to
low computational efficiency and difficulty in meeting
real-time requirements. This paper applies a path
optimization method based on Graph Neural Network
(GNN) to improve the accuracy of path prediction and
real-time adjustment capabilities by learning dynamic
information. First, the transportation problem is modeled
as a directed graph, and each edge is attached with
dynamic features including traffic time, cost, and road
conditions. Through GNN, these dynamic features are
used as input, and the graph convolutional network
(GCN) model is used to dynamically update the graph
structure  through the information propagation
mechanism to learn the features of nodes and edges. To
deal with multi-objective optimization problems, the
model sets multiple objective functions and uses a
multi-task learning framework to automatically adjust
the weights between the objectives. At the same time,
based on real-time traffic flow, weather conditions, and
other data, the model has the ability to adjust the path in
real-time. Whenever the environment changes, the
network automatically adjusts the path planning to
ensure transportation efficiency and timeliness.
Experiments show that the standard deviation of path
consistency in emergencies is within 7.8-12.6 meters,
and the computational time is lower than that of Dijkstra
and A* algorithms, which is sufficient for efficient power
material transportation.
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1. Introduction

As an important part of the operation of the power
system, the transportation of power materials is directly
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related to the stability of power production and supply.
The power material transportation network usually
covers a large area, including multiple warehouses,
terminal stations, power stations, etc. With the growth of
demand in the power industry, the scale of the power
material transportation network has gradually expanded,
and the transportation task has become more complicated.
However, the existing traditional path optimization
methods usually assume that the cost, time, distance, and
other factors of the transportation network are static and
unchanged. This simplified assumption does not hold
true in reality [1-3]. The transportation of power
materials is often affected by a variety of dynamic
factors during the execution process, such as traffic flow
fluctuations, weather changes, equipment failures, etc.
These factors may cause changes in the cost, time, and
efficiency of the path [4,5]. GNN, as an emerging deep
learning method, has demonstrated powerful capabilities
in processing graph structured data and learning dynamic
features [6-8]. Although traditional path optimization
algorithms (Dijkstra, A*, etc.) give the optimal path in a
static environment, they are usually unable to adapt
quickly when faced with dynamic environments and
emergencies, and the efficiency and accuracy of path
optimization are also affected. In addition, since
traditional methods cannot effectively handle large-scale
complex networks and real-time data, their
computational efficiency and timeliness are greatly
limited in the practical application of power material
transportation [9,10]. Therefore, how to quickly adjust
the path in a dynamically changing transportation
network to achieve efficient power material
transportation has become an important issue that needs
to be solved urgently.

There have been many studies in academia and industry
on the problem of optimizing the path of power material
transportation. Early studies mainly focused on using
graph theory and heuristic algorithms to optimize path
selection. Researchers used classic graph algorithms such
as the Dijkstra algorithm and the A* algorithm to find the



shortest path or the optimal path. In recent years, with
the increasing complexity of optimization problems,
more and more researchers have tried to use more
advanced  algorithms to solve  multi-objective
optimization problems in power material transportation.
Some scholars used cutting-edge algorithms to deal with
multi-objective path optimization problems, taking into
account multiple factors such as time, cost, and path
stability, and achieved certain results in power material
transportation [11-13]. Ojstersek R et al. [14] focused on
reviewing multi-objective  optimization production
scheduling methods, and then introduced the
classification of power transportation algorithms for
production scheduling and optimization of power
transportation paths. Cappart Q [15] studied the
combinatorial optimization and reasoning problems of
graph neural networks, and used graph neural networks
as the key building blocks of combined tasks to optimize
paths. In general, although existing studies provide
effective solutions for path optimization, they are weak
in coping with dynamic environments, especially in
terms of the real-time performance of path selection and
adjustment. Therefore, the limitations of traditional path
optimization methods have given rise to the need for
more adaptive optimization algorithms.

In recent years, scholars in related fields have applied
GCN-based methods for traffic flow prediction. By
capturing the complex dependencies in traffic flow,
dynamic prediction and optimization of traffic networks
have been achieved [16-18]. Graph Attention Network
(GAT) optimizes path selection in logistics transportation
and solves the balance problem between multiple
objectives in a dynamic environment. The application of
GNN in transportation, logistics, and other fields shows
that graph-based neural network models -effectively
handle path optimization problems in dynamic networks
and have strong real-time response capabilities and
adaptability [19-21]. However, existing research is
mostly focused on the fields of transportation or logistics,
and there are few studies on the specific scenario of
power material transportation. In particular, in power
material transportation, combining dynamic features
such as real-time traffic, weather, and equipment failures,
using graph neural networks for path optimization is still
a research gap that is rarely touched [22,23]. Recent
work [24,25] improve the performance of heterogeneous
graphs by automatically selecting meta-paths. This
method further integrates dynamic features based on this.
This paper applies graph neural networks to power
material transportation path optimization, fully utilizing
its advantages in dynamic network optimization, and
applies a new method for real-time optimization of
power material transportation paths, making up for the
lack of application of existing methods in the power
industry.

The research of this paper aims to improve the real-time,

181

accuracy, and adaptability of power material
transportation path optimization through GNN. To this
end, the power material transportation problem is first
modeled as a graph structure, with nodes representing
transportation  stations and edges representing
transportation paths, and real-time data (traffic flow,
weather conditions, equipment status, etc.) are applied as
dynamic attributes of edges . Then, this paper uses GCN
and GAT in graph neural networks to dynamically learn
and optimize the path to solve multi-objective path
optimization problems (time, cost, path stability, etc.)
[26,27]. Through the input of real-time data and online
learning mechanism, the method applied in this paper
automatically adjusts the path according to
environmental changes during the transportation of
power materials and optimizes the path selection. The
research results of this paper have been verified by
simulation experiments. The results show that the path
optimization performance of this method in a dynamic
environment is better than that of traditional path
optimization algorithms, effectively improving the
efficiency and accuracy of power material transportation.
Through these innovative methods, this paper not only
provides a new solution for the optimization of power
material transportation paths, but also provides a useful
reference for the research of other dynamic logistics
optimization problems.

2. Application of Graph Neural Network in Power
Material Transportation Path

A. Construction of Graph Model of Power Material
Transportation Network

To construct the graph model of power material
transportation network, the node set V and edge set E are
first defined. Among them, the node V represents each
site in the transportation network, including warehouses,
distribution points, power stations, etc. Each node has
some specific characteristics, such as demand,
transportation capacity, etc. The edge E represents the
transportation path between sites, indicating the
transportation path from one node to another. Each edge
has multiple attributes, such as transportation time,
transportation cost, traffic flow, etc. These attributes are
the key factors to be considered in the optimization of
power material transportation. Specifically, the power
material transportation network is usually a directed
graph, and the direction of the edge represents the flow
direction of the material. There are different
transportation directions such as from warehouse to
distribution point and from power station to warehouse.
To solve the path optimization problem in large-scale
transportation networks, the scale of the graph may be
very large [28,29]. The method proposed in this paper is
a dynamic perception model, updating the edge feature
matrix A through real-time data (such as traffic flow and
weather) to achieve dynamic optimization of the path.



Data Collection

Traffic/Weather/Equipment

Data Preprocessing | | Sensors/Meteorological Stations/Monitoring Systems

\

| Graph Model Construction l\l Cleaning/Normalization |

/

I

| Graph Neural Network Training |

| Nodes: Warehouses/Stations |

| Edges: Transport Paths |

N

| Path Optimization | | GCN/GAT Training |

N

| Path Evaluation | | Multi-Objective Optimization |

| Cost/Time/Stability |

Figure 1. Optimization process of power material transportation routes

Figure 1 shows the process of optimizing power material
transportation routes. First, traffic, weather, and
equipment data are collected through sensors, weather
stations, and monitoring systems. Then, data cleaning
and normalization are performed to build a graph model
containing warehouses, site nodes, and transportation
path edges. Next, the graph convolutional network (GCN)
and graph attention network (GAT) are used to train the
model and optimize the transportation path. Finally,
multi-objective optimization is performed to evaluate the
cost, time, and stability of the path.

In the graph model, the characteristics of the edge are
crucial for path optimization. In addition to the basic
transportation distance and time, the attributes of each
edge also include factors such as traffic flow, road
congestion, and weather conditions. These attributes
change dynamically with time and environment.
Therefore, it is very important to establish the edge
feature matrix A to dynamically reflect these features.

First, for each edge, multiple dynamic features are
defined. The travel time is calculated by traffic flow and
road conditions; the transportation cost is dynamically
adjusted by economic factors such as oil prices and fuel
consumption; the road congestion level is evaluated by
real-time traffic data. The value of each edge feature is
updated in real-time during the actual transportation
process to ensure that the optimization model reflects the
changes in the current environment. During the
calculation process, these feature matrices are updated by
data fusion technology using real-time data sources such
assensors and traffic monitoring systems. The dimension
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of the edge feature matrix A is |E|><k , where |E| is

the number of edges, and & is the number of features of
each edge. Each row represents multiple attributes of an
edge, such as travel time, transportation cost, road
conditions, etc., forming a multidimensional feature
vector. This matrix is used for information transmission
and dissemination during the training process of the
graph neural network.

In addition to the characteristics of the edges, the
characteristics of the nodes are also crucial to path
optimization. In the power material transportation
network, each site has unique needs and capacity. The
storage capacity of the warchouse, the demand of the
distribution point, the load capacity of the power station,
etc., may affect the transportation decision. Therefore,
the node feature matrix X needs to be defined
according to the specific situation of each node. The

dimension of the node feature matrix X is |V|><m ,

where |V| is the number of nodes, and m is the number

of features of each node. Node features include location
type (warehouse, distribution point, etc.), demand,
capacity, priority, etc. In actual operation, node features
are adjusted according to different transportation needs
to ensure that path planning meets the specific needs of
each node [30,31]. The construction of the node feature
matrix forms a complete node feature representation by
integrating existing transportation data, real-time
information, and historical transportation data. During
the training process of the graph neural network, these
features are used as input to help the network understand
the needs of different sites and optimize path selection
and transportation strategies.
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Figure 2. Edge feature and node feature matrix of the power material transportation network

Figure 2 shows the edge feature and node feature matrix
of the power material transportation network. The edge
feature matrix shows the transportation time, cost, and
road conditions. The transportation time from the
warehouse to the distribution point 1 is 18 minutes; the
cost is 132 yuan; the road condition is 0.83, indicating
that the path efficiency is relatively high. The
transportation cost from distribution point 2 to power
station 2 is high (318 yuan), and the road condition is
poor (0.58). The node feature matrix shows the demand
and capacity of each node. The demand of the warehouse
is 1052 units, and the capacity is 936 units, indicating its
large storage demand; the demand of distribution point 1
is 445 units, and the capacity is 837 units, with relatively
small demand. Through these feature data, an effective
reference can be provided for path optimization.

Through the above steps, the graph model of the power
material transportation network is constructed, and the
feature matrix of the edges and nodes reflects the
changes in the network status in real-time, providing a
sufficient information basis for subsequent path
optimization. Based on this graph structure, the graph
neural network is trained to learn the relationship and
dynamic changes between nodes, thereby providing a
more precise solution for path optimization.

B. Fusion and Learning of Dynamic Features

1

Collection of Real-time Data and Construction of
Dynamic Features

To achieve dynamic path optimization, it is necessary to
first collect various dynamic features that affect the
transportation path in real-time. The path of power
material transportation is affected by many external
factors, mainly including traffic flow, weather conditions,
equipment failures, etc. Traffic flow data reflects the
real-time traffic capacity of the road section; weather
data affects road conditions and traffic speed; equipment
status (availability of transportation vehicles, failure rate
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of transportation equipment, etc.) is directly related to
the feasibility and timeliness of transportation.

In the data collection process, traffic flow information is
first obtained through sensors, GPS (Global Positioning
System) equipment, intelligent transportation systems,
and other channels to monitor road traffic conditions in
real-time. Weather data is collected through
meteorological stations and meteorological forecasting
systems, covering factors such as rainfall, wind speed,
and temperature that affect the transportation process
[32-34]. In addition, equipment status data is collected in
real-time through the monitoring system in the power
material transportation system to monitor the equipment
operation status and failure conditions.

These dynamic feature data need to be cleaned and
preprocessed to ensure their quality and availability. The
preprocessing process includes operations such as
removing outliers, filling missing data, and data
normalization. The processed data is used as the edge
feature input of the graph model to provide timely
environment update information for the graph neural
network.

2) Input of Dynamic Features and Construction of
Graph Neural Network Model

In the implementation of graph neural network, dynamic
features are input into the input layer of the network as
the attributes of the edge. By taking the real-time
collected features such as traffic flow, weather conditions,
equipment failures, etc., as the features of the edge, a
dynamic feature matrix is constructed and embedded into
the structure of the graph. Each edge contains not only
static transportation path information, but also dynamic
data that changes over time. These dynamic features
affect the evaluation and selection of the path, prompting
the graph neural network to adjust the path according to
real-time data.



In the process of model construction, GCN and GAT are
used as the basic architecture. GCN propagates
information to nodes in the graph through the adjacency
matrix and uses graph convolution operations to
propagate the feature information of the edge to adjacent
nodes, thereby adjusting the weight of the path [35,36].
GAT uses the self-attention mechanism to dynamically
assign different weights according to the importance of
adjacent nodes, thereby more precisely capturing the
complex correlation in the graph.

Graph neural network effectively learns the relationship
between edge features and node features through the
propagation mechanism, so that the optimization of the
path not only depends on static data, but also can reflect
the changes in the dynamic environment in real-time.
When traffic volume suddenly increases, the graph
neural network updates the cost of the path in time and
dynamically adjusts the transportation path to avoid
delays caused by congestion. Similarly, changes in
weather conditions also affect the choice of path by
dynamically updating the features of the edges.

The input layer of GCN receives the node feature matrix
X (including site demand, capacity, etc.) and the edge
feature matrix A4 (dynamic attributes such as traffic
volume, weather), aggregates neighborhood information
through multi-layer convolution, and finally outputs the

updated node features h(f) for calculating the path

weight w, .
3) Information Propagation and Feature Update

Graph neural networks use information propagation
mechanisms to achieve dynamic updates and feature
learning of graph structures. Under the framework of
GCN and GAT, the feature information of the edge is
propagated through multiple layers of graph convolution
or graph attention, gradually affecting the node features
and edge features of the entire graph structure. Each
layer of information propagation contains features
transmitted from adjacent nodes, which are used to
update the states of nodes and edges after nonlinear
transformation.

During the propagation process, GCN updates the
features of nodes by calculating the average of the
weighted neighbor node features of each node. This
weighted method incorporates the dynamic features of
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the edge (traffic volume and weather conditions) into the
decision of the node, affecting the choice of path. GAT
dynamically evaluates the importance of each adjacent
node through the self-attention mechanism and assigns
different weights according to the features of the adjacent
nodes, making information propagation more refined and
accurate in responding to changes in dynamic
environments.

Specifically, the dynamic features of the edge are
continuously updated and affect the evaluation of the
path during the propagation process of each layer of the
graph neural network. If the traffic flow of a section of a
transportation path increases, the graph neural network
adjusts the evaluation value of the path according to the
change of dynamic features to avoid selecting this path
for material transportation. In this way, the graph neural
network optimizes the transportation path in real-time so
that the path selection always meets the changing needs
of the current environment.

The key advantage of this information propagation
mechanism lies in its end-to-end learning ability, which
adaptively adjusts the path according to real-time data,
thereby maintaining efficient path optimization in a
dynamic environment. Compared with traditional static
path optimization methods, graph neural networks have
stronger adaptability and real-time performance and
provide more precise path planning solutions in complex
dynamic environments. The process is shown in Figure
3.

The model is trained by minimizing the total path cost
and the time-weighted loss function
L=AL  +A4L;. ., and the GCN/GAT weights are

updated using the Adam optimizer. The output layer
generates the path selection probability through Softmax
to ensure path coherence.

The improved GCN layer formula is Formula 1:

(™) = O-(ZueN(v)Lw(l)hl(ll)] (1)
c

v

In the formula, ¢, is the dynamic weight of edge
(v,u) , which is calculated based on traffic volume,

weather, and other characteristics.
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Figure 3. Information propagation and feature update process

Through the propagation mechanism of real-time data
input, graph convolution, and graph attention, the path
optimization model of this paper continuously learns and
adjusts the path selection to cope with dynamic changes
in the transportation of power materials. This process not
only improves the efficiency of path optimization, but
also enhances the model’s ability to cope with sudden
changes, providing strong support for real-time path
adjustment of power material transportation.

C. Multi-objective Optimization and Constraint
Processing
1) Setting and Optimization of Multi-objective

Functions

In the optimization of power material transportation
routes, there are multiple objectives that need to be
optimized, such as the shortest path, minimum cost, and
time window limit. In different situations, the priority of
these objectives may be different. For example, in an
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emergency, the priority is to minimize the transportation
time, while in cost-sensitive situations, the priority is to
reduce the cost. To adapt to these changing needs, this
paper sets multiple objective functions in the graph
neural network and assigns weight coefficients to each
objective for comprehensive optimization. Specifically,
the objectives such as path cost, transportation time, and
path length are expressed in mathematical form, and the
weighted optimization is performed. Assuming that the

transportation cost of each edge e is cost(e) , the

objective function of minimizing the transportation cost
is expressed as Formula 2:

minimize C = ZeeEcost (e)-xe 2)

Among them, x, is a binary variable, indicating
whether edge e is selected, and E is the set of all
edges in the graph. Assuming that the transportation time

of each edge e is time(e) , the objective function of

minimizing the transportation time is Formula 3:



minimize T = Z%Etime (e)-xe 3)

Similarly, x

e

is a binary variable, indicating whether

edge e is selected. Assuming that the transportation

time of each edge e is time(e) , which needs to meet

the time window limit time then the constraint

window >

condition is Formula 4:

time(e) < time VecE (4)

window ?

In summary, the comprehensive objective function and
constraint conditions can constitute the following
optimization problem, expressed by Formula 5:

minimizeZzmeZcost(e)'xe+wmm Ztime(e)oce ecE (5)

and w

Among them, the weight coefficients w, {ime

cost
are dynamically adjusted according to actual needs. The
network is optimized according to the priority of
different objectives. To ensure that each objective is
effectively considered at the same time, the weight
parameters in the objective function are dynamically
learned during the training process and adjusted
according to real-time needs.

The pseudo code of the multi-task learning framework is
as follows:

for epoch in epochs:

for batch in data loader:

h = GCN(features)

loss_cost = MSE(pred_cost, true_cost)
loss_time = MAE(pred_time, true_time)

total loss =a * loss_cost + B * loss_time
optimizer.zero_grad()

total loss.backward()

optimizer.step()

a, B =update_weights(a, )

and  Constraint

2) Weight Adaptive

Processing

Learning

The advantage of graph neural networks is that they
automatically adjust the weights between different
objectives, which is achieved through feature learning of
nodes and edges in the network. Traditional path
optimization methods usually require users to manually
adjust  weights, while graph neural networks
automatically learn weights based on historical data and
real-time data, making the balance between objectives
more flexible and precise. By learning the relative
importance of each objective function, graph neural
networks dynamically adjust the priorities between
objectives to achieve comprehensive optimization of
multiple objectives.

Multitask Learning Framework for Comprehensive Optimization during Training
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Figure 4 shows the training process of power material
transportation path optimization under the multi-task
learning framework. The upper figure of Figure 4 shows
that as the number of iterations increases, the time loss
and cost loss gradually decrease, and the time loss
decreases faster, indicating that the model prioritizes the
optimization of the time target. The lower figure shows
that the time weight and cost weight are dynamically
adjusted from 0 to 1, and the cost weight is slightly
higher than the time weight under adjustment, meeting
the needs of power material transportation.

In the optimization process, constraints (time window,
capacity limit, maximum load, etc.) need to be fully
considered. To this end, in addition to optimizing the
objective function during training, the graph neural
network also needs to deal with a series of constraints.
For each transportation path, it is necessary to ensure that
the transportation time does not exceed the specified
time window, and it is necessary to ensure that the
transportation volume of each path does not exceed the
load limit of the transportation tool. To achieve the
processing of these constraints, the graph neural network
applies hard constraint and soft constraint mechanisms.

Hard constraints refer to those conditions that must be
strictly met, load limits, and time windows. During the
training process of the network, hard constraints are
forced into the optimization process through the design
of constraints. If the transportation time of a certain path
exceeds the predetermined time window, the graph
neural network automatically adjusts the path selection
through the information propagation mechanism to avoid
the path being selected [37,38]. Soft constraints are soft
restrictions on the target, such as minimizing the
transportation cost, but tolerating a certain cost excess
within a certain range. The processing of soft constraints
is achieved through the penalty term in the loss function,
and the constraints of different targets are balanced by
optimizing the loss function during the training process.
Hard constraints (such as time windows) are enforced to
exclude timed-out paths through an encoding mechanism;
soft constraints (such as cost) are implemented through
the penalty term y -max(0,C—C _max) in the loss

function.

D. Real-time Path Adjustment and Prediction

D

Construction of Real-time Path Prediction
Framework Based on Graph Neural Network

To achieve real-time path adjustment, this paper first
constructs a real-time path prediction framework based
on graph neural network. The core of this framework is
to continuously update the path based on graph neural
network using real-time dynamic data. Different from the
traditional batch computing method, this framework
automatically adjusts the network structure and path
planning every time the environment changes through an
online learning mechanism.
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In this framework, all transportation paths are regarded
as edges of the graph, and the nodes represent
transportation stations. The edges in the graph contain
multiple real-time data features, such as traffic flow, road
conditions, weather conditions, etc. These data are input
into the graph neural network for update. Every time new
dynamic data enters, the model adjusts the edge features
in real-time, thus affecting the node and path weights in
the graph [39,40]. Unlike static models, graph neural
networks dynamically update path selection schemes
based on changing input data.

The graph neural network in the framework continuously
integrates new real-time data through a hierarchical
propagation mechanism to ensure that the evaluation of
each path reflects the current transportation conditions.
In the event of a traffic accident, traffic flow and road
conditions affect the evaluation value of the path. The
model recalculates the cost of all paths in real-time and
selects the optimal alternative path for material
transportation.

2) Application of Graph Convolutional Network and
Graph Attention Network in Dynamic Information
Propagation

In this study, the transportation paths of electric power
materials are optimized using graph convolutional
networks (GCNs) and graph attention networks (GATs).
First, the electric power material transportation network
is modeled as a directed graph, where nodes represent
transportation  stations, and  edges  represent
transportation paths, containing dynamic attributes such
as traffic time, cost, and road conditions. GCN updates
node features by propagating feature information of
adjacent nodes through graph convolution operations,
thereby dynamically adjusting the cost and time of the
path. GAT introduces a self-attention mechanism to
dynamically assign different weights according to the
current environment, giving priority to safer and more
efficient paths. Although this model significantly
improves the accuracy and real-time performance of path
selection, it should be noted that no algorithm can
guarantee 100% selection of the optimal path in all cases.
Experimental results show that compared with traditional
Dijkstra and A* algorithms, methods based on GCN and
GAT have higher adaptability and flexibility in dealing
with dynamic environmental changes.

GCN propagates the feature information of nodes and
edges in the graph through graph convolution operations,
while GAT assigns different weights to each adjacent
node through the self-attention mechanism, which has a
more precise impact on the optimization of the path.

In real-time path adjustment, GCN calculates the
weighted average of each node by using the features of
adjacent nodes and updates the features of the node. In
the path optimization problem, the features of the node
not only include the information of the station, but also
the traffic conditions, costs, and other data of its



connecting paths. Through multiple graph convolution
operations, GCN gradually adjusts the evaluation value
of the path according to the adjacency relationship of
each node. If the traffic flow of a certain path increases,
GCN automatically adjusts the weight of the path
through the feature update mechanism of the adjacent
nodes, so that its transportation cost and time are
reflected in real-time. GAT enhances GCN by
incorporating a self-attention mechanism, which
automatically assigns different weights to adjacent nodes
based on their importance. This allows the model to
adapt more flexibly to changing environments. For
instance, when traffic on a path increases, GAT assigns
higher weight to alternative paths, avoiding congestion.
This mechanism is crucial for dynamic path optimization
in power material transportation, as path selection
depends not only on node features but also on the
interactions between nodes and edges in the graph. The
relationship between nodes is captured more precisely
using this weighted approach, as shown in Formula 6.

(k+1) _ (k)
hV _O-(ZuEN(V)aWWh” ) (6)

(k+1)

v

Among them: h
at the k+1 -th layer. o

between node v and adjacent node u , indicating the
importance of node u ’s influence on node v.

is the updated feature of node v

is the attention coefficient

Vi

3) Path Recalculation and Automatic Update under

Environmental Changes

The real-time path adjustment capability of graph neural
networks depends on their powerful information

Initial Path

Y Axis

L2

X Axis

propagation mechanism and dynamic feature update.
Whenever an environmental change occurs, the model
automatically recalculates the path based on the new
input data. The path update process caused by
environmental changes is automated and does not require
human intervention. In the model's training phase,
dynamic data is used as the feature input of the edge, and
the graph neural network quickly recognizes and
responds to these changes in the actual environment
through multiple iterations of learning.

When a traffic accident occurs, traffic flow data changes
immediately. The graph neural network updates the
evaluation function of the traffic path in real-time
through the feature propagation mechanism of nodes and
edges, and reselects the optimal path based on the latest
traffic information. Similarly, in the case of equipment
failure, the status information of the equipment is also
updated to the node features of the graph, affecting the
choice of path. In this way, the graph neural network
flexibly adapts to various emergencies and avoids the
negative impact of path selection on environmental
changes.

In addition, this paper also designs an incremental update
mechanism to improve the model's real-time
responsiveness. When new dynamic data is input, the
graph neural network not only adjusts the path, but also
ensures the efficiency of the model in the calculation
process through the incremental learning mechanism.
After each environmental change, the network only
updates the affected part of the nodes and edges,
avoiding the high cost of recalculating the entire graph.
This enables the graph neural network to perform path
optimization efficiently and in real-time in large-scale
power material transportation networks.

Updated Path After Environmental Changes

Y Axis

L2

X Axis

Figure 5. Weight adjustment process of graph neural network in power material transportation. Figure 5 (a) Initial path; Figure 5 (b)
Path adjustment after environmental changes.
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Figure 5 shows the path adjustment process of graph
neural network in power material transportation. The left
figure is the initial path, and the number on the path
represents the weight of this path. The right figure shows
the path adjustment after the environment changes. For
example, the time cost of path I-G increases due to a
traffic accident, and the weight increases from 20 to 30.
The weight of path A-B increases from 20 to 50 due to
equipment failure, and the transportation chooses a new
path. Through these adjustments, the total path cost and
transportation efficiency are optimized, demonstrating
the adaptive adjustment ability of graph neural network
in a dynamic environment.

3. Evaluation of Path Optimization Effect

The experimental data in this paper comes from the
Guangxi Electric Power Transportation Monitoring
System (January-June 2023) and the public urban traffic
dataset.

A. Path Cost Evaluation

Total path cost is a key evaluation metric in optimizing

Compa:i.‘sonn of Path Costs for Power Material Transportation
T

power material transportation. It considers factors like
time, economic cost, and transportation load. The goal is
to minimize these costs by evaluating different path
combinations. This paper's path optimization algorithm
uses GNN to assess and select the optimal path. To
evaluate the total cost, its components are first
considered: time cost, which includes both vehicle
driving time and dynamic factors such as traffic and
weather. Economic cost refers to the direct costs incurred
during the transportation process, including fuel costs,
driver wages, etc. In addition, the load of the path needs
to be considered. Excessive load may increase additional
costs. Therefore, the total cost of the path includes not
only time and economic costs, but may also be affected
by other dynamic factors on the path (road conditions,
equipment failures, etc.).

During the evaluation process, the total cost of each
candidate path is first calculated and compared with the
optimal path. By comparing the total cost of the paths of
different algorithms, the performance of the optimization
algorithm under different conditions can be understood.
Minimizing the total cost of the path often means lower
transportation costs and shorter transportation time,
which is crucial for the transportation of power materials.
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Figure 6. Cost of 10 power material transportation paths

The bar chart in Figure 6 shows the time cost, economic
cost, and load cost of 10 power material transportation
paths, as well as the total cost of each path. The total cost
is calculated based on the weights of the three different
costs. Among them, the total cost of path 4 is the lowest
(805 yuan), while the total cost of path 3 is the highest
(1175 yuan), with load cost and economic cost
accounting for a large proportion. These data show that
path selection is not only affected by time cost, but
economic and load costs are also critical, and path
optimization needs to consider multiple factors

189

comprehensively.
B.  Path Computational Time Evaluation

Path computational time is an important indicator to
measure the real-time performance of path optimization
algorithms. In practical applications, the transportation of
power materials faces dynamic environmental changes,
so it is necessary to be able to quickly calculate new
optimal paths. In this process, the shorter the path



computational time, the faster the algorithm responds to
environmental changes and can better meet the real-time
requirements.

When evaluating the path computational time, this paper
mainly measures the time required for the algorithm to
receive input data and output the optimized path. The
real-time performance of the algorithm depends not only

on the computational complexity, but also on the
frequency and size of data input, the design of the
network architecture, and other factors. To evaluate the
computational efficiency of different algorithms, this
paper compares the computational time difference
between the traditional path optimization method based
on Dijkstra and A* algorithms and the GNN-based
method.

Computational Time Evaluation for Path Optimization
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Figure 7. The impact of the number of paths and nodes on the computational time. Figure 7 (a) The impact of the path on the
calculation time; Figure 7 (b) The impact of the number of nodes on the calculation time.

Figure 7 shows the impact of the number of paths and
nodes on the computational time. As the number of paths
increases, the computational time of the Dijkstra
algorithm gradually increases to 53.2 seconds; the A*
algorithm finally reaches 52.3 seconds; the GNN
algorithm maintains a low computational time of only
40.2 seconds, showing higher efficiency. For the number
of nodes, the computational time of the Dijkstra
algorithm increases from 22.5 seconds to 62.2 seconds;
the A* algorithm increases from 23.7 seconds to 60.9
seconds; the GNN algorithm increases more slowly and
has a shorter computational time of 49.4 seconds. This
shows that GNN is significantly more efficient than
traditional algorithms when dealing with large-scale
problems.

C.  Path Stability Evaluation

Path stability refers to the consistency of the
optimization algorithm in multiple experiments,
especially the adaptability of the algorithm in the face of
environmental changes. The main purpose of stability
evaluation is to test whether the path optimization

algorithm can maintain a good optimization effect under

different input conditions and changing scenarios.
Especially in the actual transportation of power materials,
environmental changes such as traffic, weather,
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equipment status, and other factors are inevitable.

To evaluate the path stability, this paper conducts
multiple experiments to simulate sudden traffic accidents,
weather changes, equipment failures, etc., and uses the
same starting point and end point for path calculation in
each experiment. By statistically analyzing the
consistency of path selection in each experiment, a
quantitative evaluation index of path stability is obtained.
The standard deviation of path selection or the range of
variation of total path cost can be used as an indicator of
stability evaluation.

The importance of path stability evaluation lies in that it
can reflect the adaptability of the optimization algorithm.
Traditional path optimization algorithms usually perform
poorly in the face of emergencies and often require
manual adjustment of weights or recalculation of paths.
The path optimization algorithm based on GNN, by
learning historical data and real-time data, can quickly
adapt to changing environments and dynamically adjust
path selection, thereby maintaining a high path stability.
By comparing the stability of different algorithms under
the same experimental conditions, the effect of graph
neural network methods in dynamic environments is
further verified. This study aims to evaluate the
performance of different algorithms (Dijkstra, A*, and



GNN) in path optimization under sudden environmental
changes. By simulating scenarios such as no change,
traffic accidents, bad weather, and equipment failure, the
path consistency standard deviation and total cost
variation range of each algorithm are evaluated. These
evaluation indicators help understand the ability of each
algorithm to cope with unexpected events in a dynamic
environment.

Table 1 shows the path stability evaluation results of
Dijkstra, A*, and GNN algorithms under different
sudden environmental changes. Key data shows that the
path consistency standard deviation of GNN in the face
of traffic accidents is 9.1 meters, which is significantly
better than Dijkstra’s 18.6 meters and A*’s 15.4 meters,

showing its higher stability. In addition, in the case of
equipment failure, the path cost variation range of GNN
is 243 yuan, which is lower than Dijkstra’s 288 yuan and
A*’s 267 yuan, indicating that GNN can better adapt to
dynamic changes and maintain the stability of the
optimized path. These results verify the advantages of
graph neural networks in dynamic environments. To
verify the effectiveness of the GNN algorithm in
practical applications, this paper conducts multiple
simulation experiments. In one simulated traffic accident
scenario, the GNN algorithm is able to quickly adjust the
route after the accident to ensure that the materials arrive
at the destination on time. The experimental results show
that the GNN algorithm not only has advantages in
theory, but can also effectively respond to emergencies in
actual operations.

Table 1. Path stability evaluation results of Dijkstra, A*, and GNN algorithms under different sudden environmental changes

Environmental Change Type | Algorithm Path. . Cons.istency Standard | Path Tota.J Cost Variation
Deviation (Units: meters) Range (Units: CNY)

No Change Dijkstra 12.5 150
A* 10.2 135
GNN 7.8 120
Traffic Accident Dijkstra 18.6 220
A* 15.4 200
GNN 9.1 180
Severe Weather Dijkstra 20.4 250
A* 17.3 230
GNN 10.8 210
Equipment Failure Dijkstra 22.3 288
A* 19.5 267
GNN 12.6 243

D. Energy Consumption and  Environmental selection on the environment. Reducing energy

Assessment consumption and carbon emissions is an important

In the power material transportation, path optimization
not only considers cost and time, but also needs to
consider how to reduce energy consumption and
environmental pollution by selecting appropriate paths.
This indicator involves factors such as fuel consumption
and carbon emissions of transport vehicles in different
path selections. To evaluate the environmental
performance of the algorithm, the total energy
consumption and carbon emissions of each path are
calculated to evaluate the impact of the optimized path

direction for future intelligent transportation systems.
Therefore, it can be considered that this indicator can
improve the optimization algorithm's comprehensive
value. Table 2 shows the energy consumption and carbon
emission data of the four routes before and after
optimization. The pre-route is the result of preliminary
planning based on existing traffic flow, weather
conditions, equipment status, and other data. The
optimized route takes into account a variety of dynamic
factors, such as real-time traffic information, weather
forecasts, and equipment status updates, thereby
achieving more efficient route selection.

Table 2. Energy consumption and carbon emission data of the four paths before and after optimization

Path Fuel Pre-Optimization Post-Optimization Pre-Optimization | Post-Optimization
Path ID | Length | Consumption Total Energy | Total Energy | Carbon Emission | Carbon  Emission
(km) @) Consumption (kWh) | Consumption (kWh) (kg CO») (kg CO2)
Path | 100 15 120 100 55 45
Path 2 80 12 95 75 40 29
Path 3 150 22 150 130 70 53
Path 4 120 18 110 95 50 40
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Table 2 shows the energy consumption and carbon
emission data of the four paths before and after
optimization. Before optimization, the total energy
consumption (150 kWh) and carbon emissions (70 kg
CO2) of path 3 are the highest, while after optimization,
they drop to 130 kWh and 53 kg CO., respectively,
showing a good optimization effect. The optimization
effect of the shorter path 2 is also good, with energy
consumption dropping from 95 kWh to 75 kWh and
carbon emissions dropping from 40 kg CO: to 29 kg COx,
indicating that the optimization algorithm has advantages
in energy conservation and emission reduction. Overall,
the energy consumption and carbon emissions of the
paths have decreased, indicating that the path
optimization method effectively improves transportation
efficiency and reduces environmental impact. By
comparing the data in Table 2, it can be seen that after all
paths are optimized, both fuel consumption and total
energy consumption have dropped significantly, and
carbon emissions have also been reduced. For example,
the total energy consumption of Path 1 dropps from
120kWh to 100kWh, and carbon emissions are reduced
from 55kg CO: to 45kg CO.. In addition, the optimized
paths also shorten transportation time and reduce
transportation costs. These improvements not only
improve transportation efficiency, but also reduce
environmental impact, demonstrating the advantages of
our optimization method in many aspects.

To further verify the effectiveness of the path
optimization method in this paper, it is tested in a larger
complex network. The results show that under extreme
weather conditions, the GNN algorithm can still maintain
high path consistency and low cost variation range. In
addition, this paper also collects some user feedback in
actual operations to verify the reliability and
effectiveness of the model in practical applications.
These additional experimental results further prove the
superiority of the GNN algorithm in dynamic path
optimization.

4. Conclusions

This paper applies an innovative method for optimizing
the transportation path of power materials based on
graph neural networks. Through dynamic feature fusion,
real-time  path  adjustment, and multi-objective
optimization, more efficient and flexible transportation
path planning is achieved. First, a graph model of the
power material transportation network is constructed,
which effectively combines the characteristics of nodes
and edges, and dynamically adjusts factors such as time
and cost of the transportation path. Secondly, through the
graph convolutional network, the processing of real-time
data and the dynamic update of the path are realized, so
that the path planning can quickly respond to
emergencies (traffic accidents, equipment failures, etc.).
Finally, a multi-task learning framework is adopted to
optimize multiple objectives in the same model at the
same time to meet various constraints in transportation.
Although the model applied in this paper has achieved
good results in path optimization, it still faces problems
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such as data noise and computational efficiency. Future
research can further optimize the algorithm, improve the
real-time data processing capability, and combine
technologies such as reinforcement learning to improve
the model’s adaptability and real-time performance
large-scale complex networks, thereby providing a more
intelligent solution for power material transportation. In
the future, this model can be deployed on edge
computing nodes and combined with smart city [oT data
to achieve minute-level path updates, and explore
integration with reinforcement learning to cope with
ultra-large-scale networks.
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