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Abstract. In this paper, a decentralized optimization
method based on projection is proposed for multi-are
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a
interconnected electricity systems to enhance
computational efficiency and privacy preservation. To
address the challenges posed by photovoltaic (PV)
uncertainty, a PV uncertainty model is proposed and
translated into a certainty centralized operation model.
The certainty centralized operation model decomposed
into subproblems for each area. To preserve privacy, the
proposed projection method transforms the operational
constraints of each subproblem into a projection space
that retains all essential information from the original
space. This transformation conceals private variables of
each area, preserving the privacy of local systems. The
projection space of each subproblem constitutes the
reformulated convex hull of the system, enabling the
derivation of coupling variable solutions for the
interconnected system. By solving the reformulated
optimization problem, the coupling variables are
obtained and used to decompose the problem into
subproblems for each area. Each subproblem is then
solved independently, avoiding iterations. This method
addresses several drawbacks of traditional iterative
decentralized methods, such as excessive iterations, long
computation times, and potential non-convergence.
Additionally, inter-area power transfer facilitates and
enhances the absorption of PV generation, achieving 0
MW solar curtailment, lowering operating costs, and
alleviating the impact of PV uncertainty. The
effectiveness of the proposed method is verified through
case studies on a 6-6 bused system and a 118-145 buses
system. Results demonstrate the proposed method’s
ability to achieve lower computational costs, higher
accuracy, and better privacy preservation compared to
conventional methods. The computational time of the
proposed projection method in 118-145 buses system is
0.1046 s, significantly shorter than the 0.2130 s required
by the conventional centralized operational method. The
findings confirm that the proposed method is a practical
and efficient solution for optimizing multi-area
interconnected electricity systems under PV uncertainty.

Key words. Multi-Area Electricity System, Decentralized
Optimal Power Flow, PV Output Uncertainty, Projection
Method, Non-Iterative Method.

Nomenclature
Indices and Sets

v, i, j Indices of PV generator, coal-fired
generators, and electric loads

b, l Indices of electric buses and
transmission lines

a Indices of areas
ls , le The start and end bus, respectively

n The amount of area in multi-area
electricity system

Parameters
B The cost per unit of load shedding

The cost per unit of curtailing PV output

0, ,a ib , 1, ,a ib ,

2, ,a ib

The quadratic function coefficient of the
operational cost of conventional
generators

min
,a iPG ,
max
,a iPG

The minimum and maximum electricity
output of conventional generator i in
area a, respectively

max
,a lPL The maximum electricity flow in

electric line l in area a

, ,a v tPV The forecast output of PV generator v at
period t in area a

, ,a j tPB The electric load j at period t in area a

,a iRU , ,a iRD
Upward and downward ramp rates of
conventional generator i in area a,
respectively

aA The parameter vectors in the objective

1B , 2B ,

3B , …, 2nB The corresponding parameter matrices

1C , 2C , …,

2nC The parameter vectors in constraints

136

Renewable Energy and Power Quality Journal 
https://repqj.com/index.php/repqj/index 
RE&PQJ, Vol. 23, No. 1, 2025



, ,a v tPV
The output deviation of PV generator v
from the forecast value at period t in
area a

,a iKG
The balance factor of conventional
generator i in area a, which is a constant
related to the capacity of the
conventional generator

aPV
Vector of the output deviation of PV
generator from the forecast value in area
a

max
aPV ,
min
aPV

Vectors of the maximum and minimum
of the output deviation of PV generator
from the forecast value in area a,
respectively

max
ay

The value customed by the actual
situation, which is to avoid unbounded
operation space after rewriting

Variables

, ,
B
a j tLS The load shedding of electric load j at

period t in area a

, ,
V
a v tLS The solar curtailment of PV generators v

at period t in area a

, ,a i tPG Electricity output of conventional
generators i at period t in area a

, ,a l tPL The electricity flow of electric line l at
period t in area a

aα Private variables' vector in area a
The public variables' vector between
different areas

, ,a i tPG

The deviation electric output of
conventional generator i at period t in
area a owing to the PV output deviation
from forecast value

, ,
B
a j tLS

The deviation load shedding of load j at
period t in area a owing to the PV
output deviation from forecast value

, ,
V
a v tLS

The deviation solar curtailment of PV
generator v at period t in area a owing to
the PV output deviation from forecast
value

, a
a
s rV

The vertex matrix that constitutes the
boundary face s of the convex hull in
the ar -th iteration

, a
a
s rλ

The outward normal vector of the
boundary face s of the convex hull in
the ar -th iteration

1. Introduction

Energy is the driving force behind economic and social
development, and its exploration and utilization have
significantly advanced social productivity and human
civilization [1-3]. However, the traditional energy
system, heavily dependent on fossil fuels, has led to
global energy resource shortages [4,5]. At the same time,
large-scale greenhouse gas emissions have exacerbated
global warming, causing frequent extreme weather
events [6]. To alleviate the increasing environmental
pressures, there is an urgent need to develop new energy
technologies characterized by green, low-carbon
solutions, promoting the transition of energy towards

cleaner and more sustainable forms [7]. The
development of renewable energy generation
technologies, particularly solar power, is one of the key
strategies for replacing traditional coal-fired power
generation [8-10]. In recent years, with the maturation of
new energy technologies, the integration capacity of
renewable energy has rapidly increased due to its diverse
operation modes and relatively low generation costs [11].
According to the National Energy Administration of
China, in 2023, the newly installed solar power capacity
reached 609.49 million kW, a 55.2% increase year-on-
year [12]. Relying on renewable energy for power
generation is an effective solution to mitigate energy
shortages. However, renewable energy generation faces
significant uncertainties [13]. For example, solar power
generation is strongly correlated with solar irradiance,
which fluctuates, and the current prediction accuracy for
photovoltaic (PV) generation is only around 85% [14].
These uncertainties significantly impact the scheduling
of electricity systems.

With the acceleration of economic globalization and
urbanization, traditional single-area electricity systems
have increasingly exposed issues such as supply-demand
imbalances and energy security risks [15]. As pointed
out in the Case Study of [16], the generator may not
supply all the load due to the transmission capacity
limits and load shedding thus occurs when a single-area
electricity system operates independently, resulting in
energy security risks. The multi-area interconnected
electricity system is defined as an electricity system
managed by multiple different operators. In addition,
The topological grid area managed by the same operator
is defined as a single area. Interconnection of cross-area
electricity systems helps fully utilize area resources and
achieve supply-demand balance [17]. Therefore, the
multi-area interconnected electricity systems emerged.
Through cross-area electricity exchanges, surplus power
from resource-rich areas can be transported to areas with
high demand, ensuring effective resource allocation and
utilization [18].

Therefore, this paper models and solves the optimal
power flow problem in multi-area interconnected
electricity systems considering the uncertainty in PV
generation. The PV uncertainty is determined by the
prediction accuracy, and it is still impossible to predict
completely accurately [19,20]. There has been much
research on the multi-area electricity system and the PV
uncertainty. [21-23] explored the coordinated scheduling
problem of multi-area electricity system, and proposed
decentralized optimization method to enhance
operational flexibility in multi-area electricity system
further. Reddy, et al. [24] established the electricity
system considering PV uncertainty, assuming the
uncertainty in solar irradiance to follow a lognormal
distribution. Wang, et al. [25] used stochastic dynamic
programming to consider PV uncertainty in DC-powered
renewable energy sources. Iris, et al. [26] assumed that
uncertainty is represented by a set of scenarios and each
scenario includes a different PV generation for each
period. We consider PV uncertainty by a robust
optimization method in this paper, as in [27].
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Due to technical limitations (such as the high
computational demands of large-scale joint solving) and
regulatory concerns (such as management independence
and privacy), centralized optimization methods that
require global information to compute the optimal power
flow in multi-area interconnected systems are
impractical [28]. Therefore, decentralized optimization
methods are necessary. To date, a considerable number
of decentralized optimization methods have been
proposed. [29-31] used the alternating direction method
of multipliers (ADMM) to solve the optimal power flow
problem. They introduced differentially private
consensus, machine-learning approach, and single-loop
structure, to improve ADMM performance. [32-34]
exploited the benders-decomposition approach to
enhance the mathematical tractability of the problem,
enabling robust planning of renewable energy systems.
Huang et al. [35] used the optimality conditioned
composition (OCD) algorithm to solve the coordinated
scheduling problem of integrated energy system.
Previous study [36-38] introduced a two-stage
programming on the basis of resilience oriented model to
reinforce the resilience of power system against severe
events.

However, the above-decentralized optimization method
requires iterative solving, which may result in excessive
iterations, long computation time, and non-iteration.
Therefore, it is necessary to improve the problems
caused by the iteration of decentralized optimization
methods. Pan, et al. [39] proposed learning-based nearly
non-iterative stochastic dynamic transactive energy
control of networked microgrids, and avoid iterative.
However, it does not consider privacy-preserving and
limits scalability. Chen, et al. [40] proposed non-iterative
multi-area coordinated energy for hybrid AC/DC power
systems. However, it still needs to solve large-scale joint
optimization problems.

In conclusion, among the extant methods, the centralized
optimization methods exhibit flaws in privacy-
preserving. The conventional decentralized optimization
methods address the issue of privacy-preserving.
However, they are beset with problems arising from
iterations. And the non-iterative methods demand large-
scale joint solution. Therefore, we proposed projection-
based decentralized optimization method for multi-area
electricity system. The proposed projection method
addresses several drawbacks of traditional iterative
decentralized methods, provides privacy-preserving, and
avoid the problem of large-scale joint solution. The
major contributions of this paper are shown as follows:

1) A novel projection-based decentralized optimization
method is introduced to multi-area electricity system.
The proposed method conceals the private variables,
thus preserving the privacy of each subarea.

2) The proposed projection method reduces the variables
and mitigates the complexity of the model of multi-area
electricity system considering PV uncertainty.

3) The proposed projection method achieves high
accuracy. Additionally, it avoids iterative and possible
problems of iteration are solved, such as excessive
iterations, long computation time, and non-iteration.
Additionally, section II introduces the centralized
operation model considering the uncertainty of PV
output. Section III introduces the procedure of projection
method. Section IV designs case studies to verify the
advantages of the proposed projection method. Section
V concludes the paper.

2. Multi-Area Electricity System Model

A. Deterministic Operation Model

In this section, a deterministic model of the centralized
operation model for multi-area electricity system is
proposed.
The objective of the deterministic operation model is to
minimize conventional generators' operational costs,
load shedding costs, and solar curtailment costs. The
objective function can be formulated as follows:

, , , , , , 
 
  
 
 
  B B V V

a i t a j t a v t
a t i a t j a t v

min C LS LS
(1)

The cost of a single conventional generator can be
formulated as follows:

2
, , 0, , 1, , , , 2, , , ,( ) , ,   a i t a i a i a i t a i a i tC = b b PG + b PG a i t (2)

The electricity output of the conventional generators is
constrained by:

, , , , , ,    min max
a i a i t a iPG PG PG a i t (3)

The electricity flow in electric lines is constrained by:

, , , , , ,     max max
a l a l t a lPL PL PL a l t (4)

The electricity balance at buses is as follows:

   , , , , , , , , , , , , , , , ,
    

            
l l

V B
a i t a v t a v t a j t a j t a l t a l t

i b w b j b l|s b l|e b

PG PV LS PB LS PL PL a b t 
(5)

The ramping limit is as follows:

, , , 1 , , , , ,        a i a i t a i t a iRD Δt PG PG RU t a i t (6)

The coupling constraint is as follows:

   , , , , ,   
l ls l t e l tPL PL l t (7)

where,    denotes the owning area of the bus.

The above deterministic operation model can be
rewritten as:
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1



   
   

   


1 1 2 1

3 2 4 2

2 -1 2

n

a a
a

n

min



n n n

A α

B α B χ C
B α B χ C

B α B χ C

(8)

B. Centralized Operation Model Considering the
Uncertainty of PV Output

In this section, we introduce uncertainty information into
the model proposed in the previous section. The
objective function of the centralized operation model
will be rewritten as follows while considering the PV
output:

 

 
, ,

0, , 1, , , , , ,
2

2, , , ,

, , , ,

, , , ,

, , , ,

( )

( )

,







      
  

        
 
 

  
  
     






a v t

a i a i a i t a i t

a i a,i,t a i ta t i

B B B
a j t a j t

PV
a t j

V V V
a v t a v t

a t v

a v t a v a v

b b PG PG

b PG + PG

max min LS LS

LS LS

PV PV PVmin max

(9)

The deviation electric output of conventional generators
is as follows:

, , , , , , ,      a i t a i a v t
v

PG KG PV a i t (10)

Replace the , ,a v tPV and , ,a i tPG in constraints (2)-(7) as

, , , ,( ) a v t a v tPV PV and , , , ,( ) a i t a i tPG PG ,
respectively. In addition, other variables are also
replaced with their corresponding deviation values, such
as , ,a l tPL replaced by , , , ,( ) a l t a l tPL PL , etc.

Refer to equation (8), the centralized operation model
considering the uncertainty of PV output can be
rewritten as:

1 1

1 1 2 2 1 1 1

3 2 4 2 2 2 2

2 1 2 3

,




 







  

     
     

    

     

 
n n

n n n a a
a a

a a a

max

min max

min



PV

n

n

n n n n n n

A α A PV

B α B χ B PV C
B α B χ B PV C

B α B χ +B PV C

PV PV PV

(11)

where, 2 1 1  nB PV , 2 2 2  nB PV , …, and 3  n nB PV
denote the deviation of other variables owing to the PV
output deviation from forecast value.

3. Optimal Power Flow Based on Projection

A. Reformulation of the Operation Model

In this section, we reformulate the operation model to
use the projection method later in the paper. Transform
model (11) equivalent to (12):

1 1

1 1 2 1 2 1 1 2 1 1

3 2 4 2 2 2 2 2 2 2

2 -1 2 3 3


 

 
 

 
 

 

  

       

       

       

 
n n

a a n a a
a a

A min

max min

max min

max min

min

n n

n n

n n n n n n n n

A α PV

B α B χ C B PV B PV

B α B χ C B PV B PV
L

B α B χ C B PV B PV

(12)

The variables satisfy:

   
   

   

2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2

3 3 3 3

,0 , ,0

,0 , ,0

,0 , ,0

 
   

 
   

 

 

 

 

B

B

max min

max min

max min



n n n n

n n n n

n n n n

B B B

B B B

B B B B

(13)

At this stage, uncertainty model (11) is transformed into
deterministic model (13), which contains the uncertainty
information of PV output.

B. The Procedure of Projection Method

In this section, we introduce the procedure of projection
method, including decomposition of the centralized
operation model, initialization of the vertices set,
searching of more vertices, reformulation of the convex
hull (the convex hull of a set of points is defined as the
smallest convex set containing all points), reformulation
of the optimization problem, and solution of the
reformulated optimization problem, as shown in Figure 1.
All areas do not directly communicate with each other.
The operator of each sub-area provides public
information to the centralized operator. If the relevant
agency has specific transparency requirements for
certain parameters, this parameter can be defined as a
public variable and passed to the centralized operator,
while other privacy variables remain unchanged. The
centralized operator makes a unified calculation and then
delivers the calculation results separately. In this
procedure, the private variables are concealed, the model
complexity is greatly reduced, and the projection space
(the projection space is defined as the low-dimensional
subspace onto which the original high-dimensional
optimization problem is mapped) is completely
equivalent to the operation space of the original
optimization problem, ensuring the accuracy of the
solution. The proof of equivalence is presented in
Appendix A.

Figure 1. The procedure of projection method
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1) Decomposition of the Centralized Operation Model

The centralized operational model (12) needs to be
decomposed into the decentralized operation model of
each subarea. Taking Area 1 as an example, the
decentralized operation model is expressed as:

   

1 1 1 1

1 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1,0 , ,0


 

 
 

   

  

       

 

min

max min

min

max min

n

n n

n n n n

A α A PV

B α B χ C B PV B PV

B B B B

(14)

To hide the private variable in the objective function,
define a new public variable and rewrite the
decentralized operation model of Area 1 as follows:

   

1

1 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

1 1 1 1 1

1 1

,0 , ,0

 
 

 
   



       

 

   



y

y

y y

max min

min

max

min 

max min
n n

n n n n

n

B α B χ C B PV B PV

B B B B

A α A PV

(15)

2) Initialization of the Vertex Set

a) The projection space is determined by the
interconnection of each subarea and the need for
privacy-preserving:

In order to preserve privacy, it is necessary to hide
private variables of each subarea. Taking Area 1 as an
example, the public variables χ and 1y are selected to
build the projection space, the same applies to other
subareas.

b) Set 
init
a as empty.

c) Select a public variable(e.g., ay ).

d) Assign appropriate initial values initχ to variables χ
other than the variable mentioned in c), these initial
values must lie within their respective feasible domains.

e) In conjunction with the conditions of d), determine the
maximum and minimum values of the selected variables
in c), which can be formulated as the following problem
(taking subarea 1 as an example):

   

1

1 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

1 1 1 1 1

1 1

( )

,0 , ,0


 
 

 
   



       

 

   



init

y

y

y y

max min

min

max

max min

max min
n n

n n n n

n

B α B χ C B PV B PV

B B B B

A α A PV

(16)

Solve problem (16), get the result 1ymax and 1ymin .

Define two vertices as 1 ,( ) 
 

initymax Tχ and 1 ,( ) 
 

initymin Tχ ,

and add them to the initial vertex set 
init
a .

f) Repeat c)-e) for other public variables, such as
variables in vector χ , to obtain the complete initial
vertex set of Area a. The amount of vertices in the initial
vertex set is denoted as 0N .

g) The coordinate origin is shifted to the interior of the
convex hull formed by the initial vertex set, in order to
facilitate the subsequent computation of outward normal
vectors at the boundaries:

0

0

0 1

1, ,

1



a
i



   

 

a a a
i i avg

N
a
avg

i

i N

N

v v v

v v
(17)

3) Searching for More Vertices

a) Set 0ar , and set 
ver
a to 

init
a .

b) 1 a ar r .

c) Solve to obtain the convex hull constituted by the

vertex set 
ver
a .

d) Individually compute the outward normal vector
corresponding to each boundary face of the convex hull
in c):

, , 1
a a

a a
s r s rV λ (18)

When the coordinate origin is located inside the convex
hull, the outward normal vector can be solved using (18).

e) For each boundary face s, search outward along its
outward normal vector , a

a
s rλ to find the farthest vertex

by solving (19) under the constraints of model (15).

  *
, , ,

[ , ]

   
a a aa

a
a

a a a a a
s r s r avg s r

v

y

v argmax I v v λ

Tv χ
(19)

Denote the *
, a

a
s rI value corresponding to *

, a

a
s rv as *

, a

a
s rI

f) *
, a

a
s rI satisfying (20) indicates a new vertex has been

found, and add the corresponding vertex *
, a

a
s rv to vertex

set 
ver

a .

*
, , 11   

a a

a a
s r s rer I (20)

Where, 1 is a small positive constant.

g) Repeat b)-f). No new vertices outside the required
precision range remain when (21) is satisfied, and the
loop terminates.
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, 2a

a
s r

s
 ermax (21)

Where, 2 denotes the remaining residual.

4) Reformulation of the Convex Hull

a) Solve to obtain the convex hull constituted by the
vertex set 

ver

a .

b) Individually compute the outward normal vector
corresponding to each boundary face of the convex hull
in a):

1a a
s sV λ (22)

where, a
sV is the vertex matrix that constitutes the

boundary face s of the convex hull. a
sλ denotes the

outward normal vector of the boundary face s of the
convex hull.

c) The constraints of the projected operation space for
the subproblem are as follows:

 
[ ]

1


   

a
a

a a a
avg s

y ,

s

Tv χ

v v λ
(23)

At this point, private variables have been hidden, and the
constraints in the projected operation space only contain
the public variables, privacy of each area is effectively
protected.

d) Each subarea provides the information obtained in c)
to the centralized operator.

5) Reformulation of the Optimization Problem

The centralized operator combines the projected
constraints of each subproblem into the reconstructed
convex hull (25), and derives the reconstructed
optimization problem (24)-(25).

 a
a

ymin (24)

 
[ ]

1


 

 

    

a
a

a a a
avg s

y , a

s a

Tv χ

v v λ
(25)

The reconstructed optimization problem (24)-(25)
obtained by the centralized operator contains only public
variables, effectively preserving the privacy of each
subarea. Furthermore, the reconstructed optimization
problem (24)-(26) is fully equivalent to model (12). It
retains the optimality information of the original model.
By solving the reconstructed optimization problem (24)-
(25), the centralized operators can obtain the values of
the public variables ay and χ , denoted as *

a
y and *χ .

6) Solution of the Reformulated Optimization Problem

The centralized operator returns the obtained *χ to each

subarea operator. Each subarea operator substitutes *χ
into their respective subproblems (14) to form the
reconstructed subproblem. After substitution, each
subproblem can be solved independently. Each subarea
operator can obtain the optimal power flow for their area.

4. Case Study

We illustrated the validity of the projection method
through the demonstration of two multi-area electricity
system, namely the 6-6 buses system and the 118-145
buses system.

All of the experiments were performed on a personal
computer using a MATLAB R2024b platform in Gurobi
11.0.3 with Intel(R) Core(TM) i7-14700F CPU(2.10
GHz) and 32 GB of memory.

A. 6-6 Buses System

6-6 buses system consists of 2 areas. It is an improved
version of standard models. Area 1 has 6 buses, 4
conventional generators, 1 PV generator, 7 transmission
lines, and 2 loads. Area 2 has 6 buses, 3 conventional
generators, 1 PV generator, 11 transmission lines, and 2
loads. Bus 5 in Area 1 is connected to Bus 3 in Area 2
via a tie line, as shown in Figure 2. Two systems are
designed to illustrate the advantages of the multi-area
interconnected electricity system:

MAS-I: Each area operates independently, with no
energy flow between areas.

MAS-II: Multi-area electricity system operate
interconnectedly, energy is translated between areas
through transmission lines.
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Figure 2. The topology of the 6-6 buses system

Table 1 compares two cases. Where, the total cost is the
objective function (1). In MAS-I, a solar curtailment of
3.3338 MW occurs in Area 1 to maintain electricity
balance. Additionally, total cost including cost of
conventional generators and solar curtailment is
3.6607*104 $. In MAS-II, with multi-area electricity
system operating interconnectedly, the PV output in
Area 1 is absorbed by Area 2, resulting in 0 MW solar

curtailment in both areas and a tie-line flow of 46.2439
MW. Additionally, the total cost of MAS-II is lower
than MAS-I. Conventional generation costs in MAS-II
are also lower, as the solar curtailment in MAS-I forces
the conventional generators to increase output, raising
their operational costs. Thus, interconnection improves
PV absorption and reduces system operation costs.

Table 1. Comparison of different system

Case
Total solar
curtailment (MW) Tie-line flow at t=1(Area 1

to Area 2, MW)
Cost of conventional
generators ($)

Cost of solar
curtailment ($)

Total cost
($)

Area 1 Area 2
MAS-I 3.3338 0 0 3.3273*104 3.3338*103 3.6607*104

MAS-II 0 0 46.2439 3.2324*104 0 3.2324*104

Two cases are designed to verify the validity of
projection method.

Case A: Solved the multi-area electricity system by
centralized operational method.

Case B: Solved the multi-area electricity system by
projection method.

We compare the results of Case A and B in 6-6 buses
system, as shown in Table 2-Table 4. The convex hull
after projection is exactly equivalent to the operation
space of the original optimization problem in the
projection method procedure (when 2 0  as shown in
(21)). Therefore, the two methods should also be the

same. When the remaining residual 2 is set to 0.1,
although the public variables obtained by the two
methods are slightly different (as shown in Table 4), the
optimal cost and optimal conventional generator output
solved through both methods are almost consistent (as
shown in Table 2-Table 3). The calculation error formula
is defined as the deviation in total cost results between
the projection method and the centralized operational
method: 0 0( ) e F F F . Where, F denotes the total
cost results calculated by the projection method. F0
denotes the total cost results calculated by the
centralized operational method. The calculation error of
the projection method in MAS-II is 0.09%. The accuracy
of projection in Case B has been effectively verified.

Table 2. Comparison of the cost calculated in 6-6 buses system of different cases

Case
Cost ($)

Area 1 Area 2 Total cost

A 2.0480*104 1.1844*104 3.2324*104

B 2.0459*104 1.1869*105 3.2327*104
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Table 3. Comparison of conventional generator output calculated in 6-6 buses system of different cases

Case
Output of conventional generator (MW)

t=1 t=2 t=3 t=4

A G3 24.6468 21.1972 17.7542 21.6207

G4 20.4408 22.4113 24.3901 25.8307

B G3 24.6468 21.1972 17.7542 21.6207

G4 20.4408 22.4113 24.3901 25.8307

Table 4. Comparison of tie-line flow calculated in 6-6 buses system of different cases

Case
Tie-line flow (MW)

t=1 t=2 t=3 t=4

A 46.2375 26.3157 5.1797 27.2091

B 42.3942 24.7516 4.3934 31.4074

B. 118-145 Buses System

118-145 buses system consists of 2 areas. It is an
improved version of standard models. Area 1 has 118
buses, 54 conventional generators, 18 PV generators,
186 transmission lines, and 99 loads. Area 2 has 145
buses, 50 conventional generators, 14 PV generators,
453 transmission lines, and 60 loads. Bus 3 in Area 1 is
connected to Bus 1 in Area 2 via a tie line.

The PV forecasting error is defined as the maximum
possible ratio of deviation from the forecasted output of
PV generators. We adjusted the PV forecasting error
values and obtained the evolution of total cost with
respect to the forecasting error, as shown in Figure 3. As
the PV forecasting error increases, the total cost under
forecasted output also increases. When the actual PV
output deviates significantly from the forecasted value,
conventional generators need to balance the system
while maintaining sufficient margin. It leads to operation
at suboptimal cost levels relative to the forecasted output.
Therefore, the total cost increases. The larger the PV
forecasting error the higher total costs.

We compare the number of variables of variables and
constraints, computational time, and the solved total cost
in 118-145 buses system of different cases to verify the
advantages of projection method, as shown in Table 5.
Projection method only adopts public variables rather
than all public and private variables to solve the multi-
area electricity system. Therefore, the number of
variables in Case B is significantly reduced compared
with that in Case A. The privacy of each area is

preserved and the complexity of the model is reduced.
Additionally, the number of constraints in Case B is
increased compared with that in Case A, which leads to
a tight operation space and thus reduces the
computational time. Meanwhile, the total cost of the two
cases is equivalent. The reduced variable count stems
directly from the dimensionality reduction process. The
increased constraints are an inherent consequence of
equivalently representing the original high-dimensional
problem in the low-dimensional space. The privacy
preservation, low complexity, fast calculation, and high
accuracy of projection method are verified.

Figure 3. Evolution of the total cost as a function of the PV
power forecasting error in 118-145 buses system

Table 5. Comparison of the number of variables and constraints, computational time, and the solved total cost in 118-145 buses
system of different cases

Case Number of variables Number of constraints Computational time (s) Total cost ($)

A 16260 84 0.2130 2.0104*105

B 5 422 0.1046 2.0104*105
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5. Conclusion

This paper is to propose a projection method for non-
iterative decentralized optimal power flow for multi-area
electricity system considering the uncertainty of PV
power. The proposed projection method includes the
following procedure: decomposition of the centralized
operation model, initialization of the vertices set,
searching of more vertices, reformulation of the convex
hull, reformulation of the optimization problem, and
solution of the reformulated optimization problem. The
private variables of each subarea are concealed in this
procedure. The centralized operator uses only public
variables to solve the optimal power flow problem of
multi-area electricity system. Therefore, the projection
method preserves the privacy of each subarea.
Additionally, the projection method has the advantages
of low complexity, fast calculation, and high accuracy.
We verify those advantages in 6-6 buses electricity
system and 118-145 buses electricity system in the case
study. Moreover, we design several cases to introduce
the advantage of multi-area electricity system operating
interconnectedly, and the impact of PV output
uncertainty on system cost.

When the proposed projection method is applied to large
systems with thousands of buses, it may increase the
number of public variables if the interconnected area
increases. Therefore, the dimensions of the projected
convex hull increase accordingly. It will increase the
searching time of the vertex set. We plan to explore
more efficient convex hull vertex search methods in
future research to solve this problem.

The projection method is designed for optimization-
based scheduling problems. Thus, evolving PV
forecasting techniques directly leads to more optimal
scheduling solutions. Additionally, the proposed
projection method can be adapted to other renewable
energy sources like wind or hybrid systems, and to other
types of renewable energy uncertainties. It only requires
modifying the original mathematical model and applying
the same projection method as presented in this work.
While current experiments focus on simulations, we plan
to pursue real-world testing given future deployment
opportunities. In practical applications, the proposed
projection method can also be integrated with machine
learning-based uncertainty forecasting.
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Appendix A

Renumber the formula (15) as (26), which is the
subproblem of area 1:
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Rewrite the operation space of optimization problem (26)
into a more precise mathematical form:
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By merely employing 1y and χ to represent the
operation space in (27), (27) can be equivalently
expressed as (28):

    1 1
1 1 1 1, , . . , ,   proj y χ s t y α χα (28)

The operation space represented by set 1proj is
fundamentally the intersection of multiple half-spaces.
Therefore, the operation space represented by set 1proj

can be re-expressed using linear constraints again:

1
1 1 1 Λ

y

s.t.
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V H
(29)

Combined with the actual calculation in the manuscript,
(29) can be specifically written as (30):
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(30)

Extended it to all area yields (24)-(25) in the manuscript.
Based on the above derivation, the projected operation
space is completely equivalent to the original operation
space.
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