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Abstract. The data acquisition devices of distributed
photovoltaic power stations often lack proper
maintenance, leading to frequent output data loss. This
paper proposes a data recovery method that leverages the
output information of correlated stations. First, the
correlation between PV stations within the same region
is calculated based on historical output data, and highl

Corresponding author's email: mrbao5161@163.com

y
correlated station datasets are selected. Then, the
complete data from these stations and the missing data
from the target station are integrated and input into
neural network models for recovery. Experimental results
on the Desert Knowledge Solar Centre dataset show that
incorporating correlated station data significantly
improves accuracy. The TCN model achieves a 71.50%
improvement, and the GRU model achieves 55.82%,
outperforming other models due to their ability to
capture temporal dependencies. This study's novelty lies
in utilizing correlated station output instead of
meteorological data, making it more practical for
real-world PV data recovery.
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Nomenclature
X Output data of a PV station
Y Output data of a PV station
M Mask matrix that indicates missing data

positions
t Time step index
,i j Indices for PV stations i and j
r Pearson correlation coefficient
W Weight matrix in the NN models
b Bias term in the NN models
 Sigmoid activation function
h Hidden state of the NN models
ŷ Predicted value for missing data

 f X Function used to transform input data X

ijr Correlation value between output data

1. Introduction

In recent years, distributed photovoltaic (PV) systems
have seen rapid growth due to national policy support
and technological advancements. However, compared to
centralized PV power stations, distributed PV stations are
primarily installed on the user side, typically with
smaller capacities, fewer data acquisition devices, and
insufficient maintenance. These limitations make them
more prone to data loss, which can severely impact the
accuracy of grid scheduling, output forecasting [1,2], and
fault diagnosis tasks. Consequently, missing data
presents a significant challenge for distributed PV
systems.

Handling missing data in distributed PV systems can be
approached in two main ways: direct deletion and
imputation. Direct deletion is appropriate when the
missing data constitutes a small proportion of the total
dataset and does not disrupt the overall integrity of the
data. However, for distributed PV output data, direct
deletion disrupts the temporal periodicity of the data, and
considering the limited data collection due to cost
constraints, deletion further exacerbates data scarcity.
This highlights the importance of imputation methods,
which estimate missing values based on available data.

Imputation methods can be broadly classified into two
categories: statistical-based methods and machine
learning-based methods. Statistical-based methods, such
as mean imputation, median imputation, linear
interpolation, and spline interpolation, focus on the
statistical properties of the data and generally require
high smoothness. These methods, however, are
unsuitable for recovering distributed PV output data due
to the temporal fluctuations and variability in PV output
that cannot be captured by simple statistical models [3].
In contrast, machine learning-based algorithms, such as
K-nearest neighbors (KNN) [4], support vector machines
(SVM) [5], random forests [6], and backpropagation (BP)
neural networks [7,8], have gained widespread attention
for their ability to capture complex patterns in data. For
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example, bidirectional recurrent interpolation networks
have been applied to model distributed PV clusters using
grid-based models, incorporating meteorological data to
achieve high-precision missing data recovery [9]. In [10],
a modified Generative Adversarial Network (GAN),
known as SolarGAN, was proposed for PV output
recovery, outperforming traditional GAN models [11-16].
Additionally, numerical weather prediction (NWP)
techniques have been used to restore missing PV data
[17], while a time-multimodal variational autoencoder
model integrated sky images, meteorological data, and
PV output to enable recovery under varying missing data
rates [18].

Despite these advances, practical challenges persist.
Many distributed PV stations lack access to
meteorological data acquisition systems or sky imaging
technologies. As a result, data recovery methods are
often forced to rely solely on historical output data.
Satellite cloud images and numerical weather forecasts,
when available, often fail to provide the necessary
spatiotemporal resolution to effectively aid in data
recovery. Furthermore, distributed PV stations are
typically located closer together compared to centralized
systems, which means that neighboring stations often
experience similar environmental conditions. Given that
PV output is highly correlated with meteorological
factors, the output of neighboring PV stations also shows
a strong correlation [19]. However, traditional methods
for missing data imputation rarely consider the potential
value of utilizing the output data from these neighboring
stations.

This paper addresses this gap by exploring the role of
correlation between adjacent distributed PV stations in
improving the accuracy of missing data recovery. By
calculating the historical output correlation between
neighboring PV stations, the proposed approach selects a
set of complete data from correlated stations that are
highly related to the station with missing data. The
output data from these correlated stations are then used
to estimate the missing values, demonstrating a
significant improvement in imputation accuracy.

The main contributions of this paper are as follows:

1. A novel data imputation strategy for distributed PV
systems that incorporates the output data from correlated
stations for missing data recovery.

2. A detailed analysis of how correlated station data can
significantly enhance the accuracy of missing data
recovery across multiple neural network models.

3. The validation of the proposed method using
real-world PV datasets, confirming its practical
effectiveness.

2. Correlation Analysis and Model Introduction

A. Distributed PV Correlation Analysis

The fundamental principle of PV power generation lies
in the conversion of solar energy into electrical energy
through the PV effect. As a result, the output of PV
stations exhibits a strong positive correlation with solar
irradiance, as illustrated in Figure 1. In addition to
irradiance, the power output of PV modules is also
influenced by various factors, including temperature,
humidity, and wind speed. In general, the output of a PV
station demonstrates a significant correlation with the
prevailing meteorological conditions, underscoring the
critical role of meteorological information in the analysis
of PV data.

Figure 1. Correlation between Photovoltaic Output and Global
Horizontal Irradiance (GHI)

However, most distributed PV systems are located on the
user side and, due to cost constraints, generally lack
meteorological data collection devices. As a result, only
historical output data is available for analysis. As
illustrated in Figure 2, adjacent PV stations, due to their
similar environmental conditions, exhibit comparable
patterns of output fluctuations. Therefore, when
performing missing data imputation for distributed PV
stations, the output data from neighboring, fully
operational stations can provide valuable and reliable
information to support the recovery of missing data at the
target station.
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Figure 2. Output Curves of Adjacent Photovoltaic Stations

B. Model Introduction

To validate the role of neighboring stations in enhancing
the accuracy of missing data imputation for distributed
PV systems, this study conducts tests on several
commonly used neural network models. The following
sections provide a detailed introduction to these models.

1) Long Short-Term Memory Network

Long Short-Term Memory (LSTM) networks are a
specialized type of Recurrent Neural Networks (RNNs)
designed to address the vanishing and exploding gradient
problems encountered by standard RNNs when
processing long sequence data [20-22]. LSTM networks
incorporate gating mechanisms that allow them to
effectively learn and retain long-term dependencies in
data.

The core idea of LSTM is to introduce memory cells and
three gates (forget gate, input gate, and output gate) to
regulate the flow of information, enabling it to pass
through the network without being easily lost. The
memory cell is the central component of LSTM,
transmitting information across time steps. By selectively
updating information, LSTM can retain and propagate
useful memories at each time step, thus overcoming the
gradient vanishing problem that traditional RNNs face
when dealing with long sequences. The forget gate
controls which information should be discarded from the
memory cell, the input gate determines how much of the
new information at the current time step should be stored,
and the output gate controls how much the current
memory state influences the output.

The operational process of LSTM can be divided into the
following steps:

Forget Gate: Determines which information to discard. It
takes the previous hidden state 1th  and the current
input tx , and through the Sigmoid activation function,

computes the proportion of information to forget, as
shown below:

  1,t f t t ff W h x b    (1)

Where tf represents the output of the forget gate,  is
the Sigmoid activation function, fW denotes the weights,
and fb is the bias.

Input Gate: The input gate determines which new
information should be stored in the memory cell,
comprising two parts: deciding the values to be updated
and generating the new candidate memory, as shown
below:

  1,t i t t ii W h x b    (2)

  1,t c t t cC W h x b    (3)

Where ti represents the output of the input gate,
indicating the proportion of new information to be stored
in the memory cell at the current time step,
and tC represents the candidate memory value, which is
the new information that may potentially be added to the
memory cell.

Updating the Memory Cell: The memory cell state is
updated based on the outputs of the forget gate and the
input gate, as follows:

1t t t t tC f C i C     (4)

Where tC represents the current state of the memory cell,
and 1tC  represents the state of the memory cell at the
previous time step.
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Output Gate: The output gate determines the amount of
information to be output from the memory cell:

  1,t o t t oo W h x b    (5)

 tant t th o h C  (6)

Where to represents the output of the output gate,
and th denotes the current hidden state, which will be
passed to the next LSTM unit at the subsequent time
step.

2) Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a variant of the Long
Short-Term Memory (LSTM) network [23-26], which
simplifies the LSTM structure by utilizing fewer gating
mechanisms to enhance computational efficiency, while
still retaining the ability to capture long-term
dependencies. Unlike LSTM, GRU employs two primary
gates: the update gate and the reset gate.

The update gate determines which parts of the current
state should be inherited from the previous state and
which parts should be updated by the current input
information. Through the update gate, GRU is able to
achieve long-term memory capabilities similar to those
of LSTM, while avoiding the computational complexity
associated with LSTM's multiple gates. The reset gate,
on the other hand, determines the extent to which the
current input influences the network's current state. It
aids the network in "forgetting" irrelevant information,
thus preventing the influence of outdated information on
the current computation.

The computational process of the GRU is as follows:

Reset Gate: The reset gate determines how much of the
old memory should be forgotten. It takes the previous
hidden state 1th  and the current input tx , as shown below:

  1,t r t t rr W h x b    (7)

Where tr represents the output of the reset gate,
 denotes the Sigmoid activation function, rW represents
the weights, and rb denotes the bias.

Update Gate: The update gate determines the extent to
which the current state is influenced by the previous state
and the current input:

  1,t z t t zz W h x b    (8)

Where tz represents the output of the update gate.

Candidate Activation: The candidate activation is
controlled by the reset gate, determining the state of the
candidate activation at the current time step:

  1,t h t t t hh W r h x b     (9)

Where th represents the candidate activation.

Output: The updated state at the current time step is
synthesized by weighting the previous time step's state
and the current time step's candidate activation according
to the update gate's weight:

  11t t t t th z h z h      (10)

3) Temporal Convolutional Network

Temporal Convolutional Network (TCN) is a time-series
data modeling method based on Convolutional Neural
Networks (CNNs) [27-29], specifically designed for
processing sequential data. Unlike traditional Recurrent
Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks, TCN replaces the recurrent structure
with convolutional layers, allowing for parallel
processing of time-series data and mitigating the gradient
vanishing or explosion issues that RNNs and LSTMs
may encounter in long sequences.

The core idea of TCN is to model the dependencies
within time-series data through causal convolutions and
dilated convolutions. Causal convolution ensures that the
output only depends on the current and past input data,
preventing future information from leaking. Dilated
convolution increases the receptive field by inserting
gaps (i.e., dilation rate) into the convolutional kernel,
enabling the model to capture longer-range dependencies
with fewer convolutional layers. By increasing the
dilation rate, convolution operations can cover a broader
time-series range without the need to add more
convolutional layers.

The basic building block of TCN, as illustrated in Figure
3, consists of dilated convolution layers, weight
normalization layers, ReLU activation function layers,
and Dropout layers. Residual connections are employed
between the input and output of each basic unit, a design
choice that helps alleviate gradient vanishing or
explosion issues often encountered in deep networks.
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Figure 3. Basic Unit of TCN

4) Transformer

The Transformer model was introduced by Vaswani et al.
in 2017 [30-33]. It is a model based on the self-attention
mechanism, which discards the traditional Recurrent
Neural Networks (RNNs) and Convolutional Neural
Networks (CNNs), enabling more efficient processing of
sequential data.

The core idea of the Transformer is to use the
self-attention mechanism to capture contextual
information within sequence data without relying on
recurrent or convolutional operations. Its structure can be
divided into an encoder and a decoder, with each part
consisting of multiple stacked sub-layers, as shown in
Figure 4. These sub-layers mainly include the
self-attention layer and the feed-forward neural network
layer. Unlike RNNs, Transformers do not have sequential
dependencies, allowing for parallel processing of all
positions in the input sequence, greatly improving
computational efficiency. Through the self-attention
mechanism, the Transformer can effectively capture
long-term dependencies, unlike RNNs, which are limited
by sequence length. Since it does not rely on recurrent or
convolutional operations, the Transformer offers greater
flexibility in handling different types of sequential data.

Figure 4. Basic Unit of Transformer

The Transformer was originally designed for natural
language processing, requiring both an encoder and a
decoder. However, in this study, the encoder part is
utilized for PV data imputation, with the output layer
replacing the decoder using a fully connected layer.

3. Case Study

A. Dataset Description

The dataset used in this study is the Desert Knowledge
Solar Centre dataset from Australia, covering the period
from 2015-01-01 00:00:00 to 2015-12-31 23:55:00, with
a time resolution of 5 minutes. It contains data from 27
distributed PV stations. The original dataset includes
meteorological information such as irradiance,
temperature, and humidity. However, considering the
practical lack of meteorological data, this study focuses
solely on the historical output data of the stations. The
dataset is divided into training and testing sets in an 8:2
ratio. During the model training and testing process, data
missing from only one station is considered.

B. Construction of Complete-Missing Data Pairs

Data imputation is an unsupervised problem, meaning
that there is no corresponding complete data for the
missing data, which poses challenges for model training.
To validate the proposed method, this study adopts a
manual approach to construct complete-missing data
pairs, as shown in Equation (11), where missD represents
the missing data, completeD represents the complete data,

 denotes the Hadamard product, andM represents the
mask matrix. In the mask matrix, 1 indicates that the data
is known, and 0 indicates that the data is unknown. Each
sample has a time span of one day, consisting of 288 data
points. When constructing the mask matrix M , the
missing positions are randomly determined, and the
missing rate is set to 50%, meaning that 144 data points
are missing in each sample.

miss completeD D M  (11)

C. Correlation Measurement of Distributed PV
Stations

There are various metrics available to measure the
correlation between distributed PV stations, such as
mutual information, covariance, Euclidean distance, and
Spearman's rank correlation coefficient [34,35]. In this
study, the Pearson correlation coefficient is used to
quantify the correlation between distributed PV stations.
The calculation formula is as follows:

 
,

cov ,
x y

X Y

X Y


 
 (12)
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where  cov ,X Y is the covariance
between X and Y , X and Y are the standard deviations
of X and Y , respectively. Figure 5 illustrates the

correlation among 26 distributed photovoltaic sites. As
can be seen from the Figure 5, most of the sites exhibit
strong correlations, which is beneficial for data
restoration.

Figure 5. Station Correlation Heatmap

Figure 6. Imputation Process
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D. Imputation Process and Evaluation Metrics

The imputation process proposed in this study is shown
in Figure 6. First, the Pearson correlation coefficient is
calculated based on the complete historical output data to
obtain the correlation matrix. Second, according to the
correlation matrix, several complete PV stations that are
most correlated with the station with missing data are
selected. In this study, two correlated stations are chosen.
Finally, the complete data relatedD from the correlated
stations and the missing data missD from the station with
missing values are jointly used as input to the neural
network to obtain the imputed data repairedD . The final

imputation result repairedD̂ is obtained as shown in (13):

 repaired repaired miss
ˆ 1D D M D   (13)

To assess the imputation accuracy, we utilize Root Mean
Squared Error ( RMSE ), Mean Absolute Error ( MAE ),
and Mean Squared Error ( MSE ) as evaluation metrics.
The overall percentage improvement in accuracy is then
obtained by considering all evaluation metrics. The
calculation formulas are as follows:

 2repaired complete
1

1 ˆ
i i

n

i
RMSE D D

n 

  (14)

repaired complete
1

1 ˆ
i i

n

i
MAE D D

n 

  (15)

 2repaired complete
1

1 ˆ


  i i

n

i
MSE D D

n
(16)

related related relatedratio 1 100RMSE MAE MSE
RMSE MAE MSE

        
(17)

E. Comparison of Results

Figure 7 illustrates the results of data imputation using
the GRU model. It can be observed that the imputation
performance, when both the output data from the
correlated stations and the missing data from the target
station are input into the model, is superior to the
imputation accuracy obtained without incorporating the
data from the correlated stations.

Figure 7. Imputation Results using GRU

Table 1: Imputation Performance of Different Models

Model RMSE MAE MSE ratio
GRU/GRU_NO 0.0460/0.1037 0.0199/0.0417 0.0026/0.0116 55.82%
LSTM/LSTM_NO 0.0544/0.0739 0.0218/0.0292 0.0034/0.0068 27.53%
TCN/TCN_NO 0.0442/0.1521 0.0198/0.0569 0.0024/ 0.0239 71.50%
Transformer/Transformer_NO 0.0722/0.0825 0.0401/0.0325 0.0062/0.0096 4.90%

The quantitative comparison of imputation accuracy is
shown in Table 1. "Model_NO" represents the model
where no data from correlated stations is used as input.
As can be observed, the evaluation metrics for GRU,

LSTM, and TCN all indicate that incorporating data from
correlated stations significantly improves the imputation
accuracy, with a notable increase. The imputation
accuracy for GRU and TCN models improves by more
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than 50%.

It is noteworthy that Transformer did not exhibit
significant improvement, and in comparison to other
models, its imputation accuracy was even lower. We
hypothesize that this is due to the fact that the attention
mechanism in Transformer is more suited for modeling
global information, whereas PV data imputation requires
a more focused consideration of local temporal
dependencies. Furthermore, compared to the other three
models, Transformer has a larger number of parameters,
which requires more training data to adequately capture
features. Given that the dataset used in this study is
relatively small, Transformer was unable to fully learn
the underlying data characteristics.

4. Conclusion

This paper focuses on data imputation using only
historical output data from distributed PV stations. Due
to the strong correlation between PV output and
meteorological conditions, neighboring stations often
experience similar environmental factors, leading to
comparable output fluctuations. This study demonstrates
that leveraging correlated station data can effectively
support missing data imputation.

Experimental results show that incorporating output data
from correlated stations significantly improves
imputation accuracy across multiple neural network
models. Notably, the GRU and TCN models exhibit over
50% accuracy improvement, confirming the
effectiveness of this approach.

5. Future Work

Despite its advantages, the proposed method has
limitations. In cases where extreme weather conditions
cause widespread data loss across multiple PV stations in
a region, correlated station data may also be unavailable,
reducing the effectiveness of this approach. Future
research should explore alternative strategies, such as
hybrid imputation methods integrating external
meteorological forecasts, probabilistic models, or GANs
to enhance robustness under extreme conditions.
Additionally, expanding the dataset and testing on a
broader range of PV systems could further validate the
generalizability of this method.
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