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Abstract. When dealing with large-scale EV groups,
existing Electric Vehicle (EV) integrated power systems
mostly collect, transmit, and calculate all charging
demands and power constraints through a central
computing unit, which consumes a lot of computing
resources and is difficult to accurately respond to
dynamic charging demands and grid load fluctuations.
This paper focuses on the problem of system flexible
scheduling and combines a decentralized optimization
scheduling method to improve the system's scheduling
efficiency, reduce charging costs, and achieve load
balance and SOC (State of Charge) constraints. First,
based on ADMM (Alternating Direction Method of
Multipliers), the complex global optimization problem is
decomposed into several small local sub-problems, and
auxiliary variables are combined with Lagrange
multipliers to achieve parallel solution of each
sub-problem on multiple nodes. Then, the ADMM
algorithm can be optimized through multi-level
decomposition, and the clustering algorithm is used to
classify and locally optimize EVs according to similarity.
Finally, the adaptive step size mechanism is introduced
into the iterative algorithm to achieve fast iteration based
on gradient. The simulation results show that compared
with centralized optimization, the average SOC error
decreases by 35.63% and the total charging cost
decreases by about 13.39%. The conclusion shows that
decentralized optimization helps to improve the
computational complexity and accurate response
capability in system scheduling, and provides new
perspectives and support for large-scale EV access in the
future.
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1. Introduction

With the global energy transformation and the focus on

environmental protection, EVs are developing rapidly as
a means of transportation represented by clean energy
[1,2]. At the same time, the integration of a large number
of EVs into the existing power system has also brought
new challenges to grid management [3,4]. In the
large-scale, distributed, and dynamic EV charging
scenario, the centralized dispatching method has
prominent problems such as low response accuracy and
high computational complexity, which seriously restricts
the deep integration of EVs and smart grids. As an
important means to solve the optimization problems of
large-scale complex systems, decentralized optimization
has received increasing attention in recent years [5,6]. It
can effectively reduce the amount of computation and
communication burden by configuring the optimization
tasks under local nodes. Based on decentralized
optimization, EV charging stations and nodes in the
power grid are used as local optimization units, and local
scheduling and information interaction are used as means
to achieve global coordination and efficient response to
EV charging needs. This method is of great significance
for reducing communication load and improving the
balance and stability of the access process.

Existing research focuses on solving the problem of
charging and discharging scheduling costs [7]. Kamboj
Vikram Kumar explained how to use the Chaos Zebra
Optimization Algorithm to reduce an integrated energy
system's (IES) total operational costs when wind and
plug-in EVs are included. According on empirical
findings, the suggested approach can lower the overall
cost of electricity generation by 0.84% [8]. To address
the uncertainty of renewable energy and the regional IES
of EVs, Wu Gongping developed a robust optimization
model with polyhedral uncertainty sets and suggested a
multi-objective optimization technique. The case study
confirmed that the suggested approach may improve the
resilience to uncertainty while attaining system economy
and optimal operation after he converted the
multi-objective into a single-objective solution [9]. Jia
Shiduo developed a hierarchical stochastic optimization



scheduling model for electric thermal hydrogen IES
taking into account the EV vehicle-grid mechanism to
minimize the variance of the load curve. A
multi-objective sandcat swarm optimization technique
was used to tackle the problem. According to the
simulation findings, the suggested approach's operating
costs were 16.55% lower than those of the disorderly
charging and discharging technique [10]. Li Yang created
a two-level optimization dispatch model of community
IES with EV charging stations in a multi-stakeholder
scenario to manage flexible demand response and the
unpredictability of numerous renewable energy sources.
The suggested approach effectively balanced the interests
of community IES and EV charging stations by
coordinating, according to the simulation findings of a
genuine community IES in North China [11]. To address
the issue of coordinated scheduling, Li Yuanzheng
suggested a multi-objective optimization technique based
on parameter adaptive differential evolution. The
suggested scheduling model showed the link between
certain EV integration goals and enhanced wind power
absorption and system cost-effectiveness, according to
simulation findings based on the upgraded Midwestern
power system in the United States [12]. To achieve
multi-energy coupling and meet the needs of various
types of loads, Zhang Cheng proposed a two-layer
optimization configuration method for multi-energy
coupling IES low-carbon economic operation under
different EV charging modes. He used the CPLEX solver
to solve the two-layer model, and through mutual
iteration, he was able to determine the best configuration
scheme and scheduling outcomes. Lastly, he included
simulated examples to show how the suggested approach
might greatly lower carbon emissions and raise the
system's running costs [13]. Existing research has made
certain contributions to improving the economic
performance of scheduling, but most of them adopt
centralized optimization methods. However, EV charging
load has time-varying and uncertain characteristics.
Centralized optimization suffers from issues including
high connection cost, poor real-time performance, and a
lot of computation in real-world applications.

Distributed optimization can achieve efficient parallel
computing [14-16]. This provides more possibilities for
improving  scheduling flexibility and real-time
performance. A decentralized fault-tolerant method for
EV charging optimization was put out by Aravena
Ignacio. The algorithm reformulated the optimum EV
charging issue in a fully decentralized way and was
based on the alternating direction multiplier approach.
Tests demonstrated that the suggested method can
resolve the EV charging issue fast enough to include EV
charging with the real-time power market, even when
there are errors present [17]. Cheng Shan suggested a
decentralized optimization and time-of-use electricity
price strategy-based EV optimal scheduling technique to
increase the computing efficiency of large-scale cluster
EV  optimum scheduling. The old centralized
optimization model was broken down into smaller issues
by proposing a decentralized optimization model and its
solution using the Lagrangian relaxation approach [18].
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Kapoor Aastha proposed a new iterative EV day-ahead
optimization scheduling pricing scheme for decentralized
models. While achieving the goals of multiple
participants, the aggregated load served by the
distribution transformers was dispatched, effectively
solving the problems of load valley filling and rebound
peaks. The results showed that the decentralized model
had more critical advantages than the centralized
architecture [19]. Boglou Vasileios developed a
decentralized energy management system based on a
multi-agent system for efficient EV charging. The results
showed that the proposed system reduced the peak load
and load variance by approximately 17% and 29%,
respectively, without changing or delaying EV charging
[20]. The current research improves the flexibility and
efficiency of the system from the perspective of
decentralized optimization, but it still has limitations in
accurately responding to dynamic charging demands and
grid load fluctuations.

The innovation of this article lies in the distributed
optimization algorithm based on ADMM, which
decomposes complex global optimization problems into
several small-scale local subproblems, allowing them to
be solved in parallel on each node, effectively reducing
the cost of computing resources and enhancing the
responsiveness to power system loads. On this basis,
based on multi-level decomposition and K-means
clustering methods, personalized charging management
is carried out for electric vehicles to ensure that different
types of vehicles with different characteristics can obtain
the optimal charging solution. An adaptive step size
strategy is adopted to accelerate the algorithm’s iteration
speed while reducing the system’s overall power
consumption and improving the system’s average SOC
error, thereby achieving effective load balancing and
SOC limit constraints. New ideas and technical support
are provided for the integration of large-scale electric
vehicles into the power grid to improve their flexibility
and robustness.

The organizational structure of this article is as follows:
in Chapter 2, the improvement of flexible scheduling
capability of EV integrated power system under
decentralized optimization is studied; in Chapter 3, a
simulation environment is constructed to simulate and
analyze its flexible scheduling through case studies; in
Chapter 4, the research results, contributions, and
conclusions of this article are summarized.

2. Flexible Scheduling Capabilities of EV Integrated
Power Systems under Decentralized Optimization

Based on decentralized optimization, this paper reduces
the system computing and communication loads by
optimizing multiple charging station nodes locally while
ensuring the load balance and stability of the power grid.
The key is to reasonably allocate the EV charging tasks
to each charging station and ensure their accurate and
real-time scheduling.



A. Model Assumptions and Parameter Settings

1) Assumptions on EV Charging and Discharging
Behavior

It is assumed that the charging and discharging power of
each EV changes over time. The charging power
Pl
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() and discharging power Rhscharge( )of the ith

EV meet the constraints:
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is the maximum charge and

discharge power of the i th vehicle, and T represents
the scheduling time period.

2)  Battery State and Capacity Constraints

During the charging process of EV, the SOC also
changes with time. Assuming that the SOC of each EV at

SOC! | the

relationship between the SOC and the charging power
change at time ¢ is:

the initial time ¢, is expressed as
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In Formula 2, B,
EV; i represents the EV sequence; ¢

specific time in the scheduling period, and SOC! is the
state of charge of the ith EV. Power P (kW), time ¢
(h), SOC (dimensionless percentage or value between 0
and 1). E, is the total battery capacity of the ith EV;
At is the time step, and SOC!
the ith EV. The charging process is constrained:

refers to the charging power of the
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is the state of charge of
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and maximum SOC limits of the ith EVs.

are the minimum

3) EV and Grid Load Balance

When the EV is charging, its required load must match
the grid capacity. Assuming that at time ¢ , the load

required by the system is P, (¢), and the total charging
power of EVs is B, (7), then the relationship between

the system load and the grid supply is [21,22]:

Bowa () + Foy (1) = Py () (4)
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Among them:

Z, 1 charge (5)

P

id (t) is the power supply of the entire power grid.
This relationship ensures that the charging behavior of
EVs can adapt to the load requirements and capacity of

the power grid.

Due to the fact that different models of EVs are equipped
with various battery capacities, and as the service life
increases, even the same model of EV may experience
varying degrees of battery performance degradation. To
improve the authenticity of the model, this paper
introduces EV individual characteristic parameters to
enhance the system's adaptability to EVs.

For the update rule of the charging amount of the i -th
EVattime ¢:

Co(t+41)=C, (1)+ §Piage (1)- A (6)

Among them, C, (t) is the actual stored power of the

i -th EV at time ¢, and ¢, represents the efficiency
factor.

The SOC update rule is expressed as:

P} =1 P cnaree
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The SOC update rule is used to calculate the state charge
change of each EV at the next time step.

4) Scheduling Objectives and Constraints

With the goal of minimizing EV charging costs and grid
load fluctuations, the system's flexible scheduling
capabilities are improved through optimization strategies.
The charging cost of an EV depends on its charging
power and the real-time electricity price Assuming that

the electricity price is P (¢) , then the
charging cost of the i th car at this time is expressed as
C/

charge

at time t,

(¢), and there is an objective function:

Céharge ( ) = Pprice (t) Lharge ( ) (8)

The change of electricity price needs to take the
peak-valley difference into account, so the charging
behavior should be reasonably adjusted according to the
electricity price level. Under the premise of meeting the
battery SOC constraint, the charging cost should be
minimized, and the system load should be coordinated.
Based on this, the global goal is to minimize the sum of



the charging costs of all EVs, which is expressed as:
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Peharge (1)

To ensure the dispatch efficiency of EV and system, the
battery SOC limit condition is set:

50Ci, <S0C! <S0C!, , Vie(l, T}, vie{l,,N} (10)
Charging power limit:
P (1) S Puy (1), Vel T}, Vie{l, - N} (11)
Discharge power limit:
Piirarge (1) < Py (1), Ve {1+ T}, Vie{l- N} (12)
Load balancing constraints:
Zilf’cihargs(f)”’gnd (1) = Poa (1), Vte{l,-,T} (13)

5) EV Dispatch Dynamics and Time Intervals

It is assumed that the dispatch cycle is 7 duration, and

the decision of each time period is adjusted based on the
EV charging status, real-time electricity price, and grid
load forecast. Under the premise of fully considering the
timeliness of EV charging and discharging, the length of
each time period is set to one hour, that is, At =1 hour.

B.  Flexible Dispatch Optimization
1) ADMM Dispersion Optimization

The flexible dispatch of EV integrated power systems
includes centralized control and decentralized control
[23,24]. The centralized control strategy collects data
from EVs and the entire power grid in the system,
aggregates the data into the Center Controller (CC), and
dispatches them uniformly, as shown in Figure 1. CC
corresponds to the charging station, and information such
as charging/discharging time, user needs, and initial
charge state is input into CC. By collecting EV-related
data, CC centrally calculates the data of each EV and
feeds back the charging status to EV, thereby realizing
the regulation of the charging behavior of each EV. This
model is based on global optimization and
comprehensively considers multiple factors such as load
balancing and charging requirements. It has high
computational complexity, high communication costs,
and is prone to packet loss and network failure. It is
difficult to meet the scheduling needs of large-scale
dynamically changing systems.
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Figure 1. Centralized control strategy

Compared with centralized control, distributed control
treats each EV as a separate dispatch unit and makes
corresponding dispatch decisions based only on local
information [25,26]. Even if one EV fails in the system,
other EVs can still operate normally, thus achieving
flexible dispatch in a dynamic and changing environment
[27-29]. As shown in Figure 2, the core idea of
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distributed control is to decompose the overall planning
problem into several local optimal problems without
sharing global information, and each EV is dispatched
autonomously according to its own state. It introduces
local restrictions and coordination mechanisms to
improve the system's adaptability and efficiency without
affecting the performance of the entire system.
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Figure 2. Distributed control strategy

ADMM is an effective algorithm for solving
decentralized optimization problems [30-32]. The
algorithm can efficiently solve large-scale distributed
optimization problems and is suitable for complex
systems integrated by large-scale EVs. The algorithm can
be expanded smoothly when the number of EVs
increases, without significantly increasing the amount of
calculation. At the same time, the algorithm has iterative
characteristics and can quickly adjust and find new
optimization solutions when the system state changes
dynamically. For large-scale, nonlinear, or real-time
problems, directly solving them wusing linear
programming is time-consuming; Moreover, as the
population size increases, the scale of the problem
dramatically increases, making it difficult for traditional
centralized solving methods to effectively solve this
problem. ADMM divides the original problem into
several easily manageable sub problems, and based on
this, gradually approaches the global optimal solution

through continuous updates of global information.
Compared with directly solving large-scale linear
programming problems, it has significant advantages in
greatly reducing computational complexity while
ensuring accuracy.

Based on the decentralized optimization of ADMM, this
paper decomposes the complex global optimization
problem into several small local sub-problems and uses
auxiliary variables in combination with Lagrange
multipliers to achieve parallel solution of each
sub-problem on multiple nodes, thereby optimizing the
flexible scheduling capability of the system. Specifically,
as shown in Figure 3, in the EV integration scenario,
each charging station can make autonomous decisions
based on its load conditions and ensure consistency and
coordination among various decisions to meet the overall
scheduling requirements of the system.

ADMM

Local
decomposition

Flexible scheduling
optimization

Auxiliary variable

Lagrange
L multiplier

M(t) %" -

(t) % v

A(t)

A(t)

Figure 3. ADMM decentralized optimization
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According to the definition, the original problem global
objective formula 9 can be rewritten as:

min zllj: C, (Pl (1)) dt

st. SOCL, <SOC] <SOC},, Vie{l, T}, Vie{l,,N} (14)
P (£) < Pi (1), Vil T}, Vie{l,-, N}
Piaharse (1) < Py (1), V2 €{L, T}, Vi (L, N}

P

load

N
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On this basis, the overall optimal problem is transformed
into multiple local optimal problems through Lagrange
multipliers and alternating direction methods. The global
load balance constraint conditions are given:

+P,

grid

2 Parge (1)+ Pa (1) = Bg(9) (15)

Under this constraint, Lagrange multipliers l(t) are

introduced to relax the problem and divided it into
several independent sub-problems.

2)  Multi Level Decomposition

In EV integration, due to its large scale, if the ADMM
algorithm is directly used, the amount of calculation can
be too large, and it cannot be optimized in a short time
[33,34]. To address this problem, the ADMM algorithm
is optimized through multi-level decomposition. First,
the clustering algorithm is used to classify EVs
according to similarity, and then, local optimization is
performed within each EV cluster. Finally, on this basis,
global optimization is used to coordinate the charging
behavior among clusters, as shown in Figure 4:

EV Integrated power system ‘

B ~— T T ~ /’/ — T
(' Cluster 1 ) (f: luster 2 ( Cluster 3 \\) e ( - Cluster k ‘
t v ' t
’ Local update ‘

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

EV2

Lagrange multiplier update

Convergence determination

Figure 4. Multi-level decomposition ADMM

In multi-level decomposition ADMM, the algorithm
divides the system into several clusters, each of which
contains EVs with the same charging requirements. The
charging power of EVs in each cluster is optimized
separately first, and on this basis, the charging behavior
of each node in the cluster is coordinated through the
global optimal strategy to ensure the load balance of the
entire system and reduce the charging cost.

To achieve efficient hierarchical optimization, EVs are
divided into different levels. A cluster model consisting
of N, EVsis established. Its clustering is based on two

factors:
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(1) The time series characteristics of EV charging
demand: EV charging demand has a certain time series
change law.

(2) Battery capacity and maximum charging power:
These factors have a great impact on the charging
amount and endurance of EVs.

The clustering objective is to simplify the scheduling
problem and achieve load balancing by grouping EVs
with the same charging characteristics. The common
clustering methods currently include hierarchical
clustering DBSCAN (Density-Based Spatial Clustering
of Applications with Noise), Gaussian Mixture Models



(GMM) and the K-means algorithm. Although
hierarchical clustering can automatically determine the
number of clusters, its computational complexity is large
and difficult to meet real-time requirements; the
DBSCAN algorithm is easily affected by noise, difficult
to adjust parameters, and difficult to process large
amounts of data; Gaussian Mixture Model (GMM) can
provide soft clustering and is suitable for multimodal
distributions, but it cannot distinguish populations well.
The K-means algorithm stands out due to its simplicity,
high efficiency, and ease of implementation. This method
can quickly process massive amounts of data and is very
suitable for the dynamic and changing charging
environment of EVs. On this basis, the K-means
algorithm is used to iteratively optimize the cluster
centers, ensuring consistency in the charging requests of
electric vehicles within each cluster, in order to reduce
charging costs; a global optimization strategy is adopted
to collaboratively charge each node to ensure load
balance and response efficiency of the entire system.

The K-means clustering method is used to cluster EVs
and obtain K th clusters. There are N, EVs in each

cluster. The purpose of cluster analysis is to ensure that
multiple EVs in the same cluster have the same charging
requirements and operating characteristics. Let the EV
cluster be numbered k=1,2,---,K . In this way, the

charging power of the entire system can be expressed as:

Pc'harge( ) for i=1,2,---,N,, and k =1,2,---,K (16)

When performing local optimization within cluster & ,
the charging cost of the EV cluster is minimized while
Pl

charge

taking into account the SOC, and ( ) constraints

of each EV. The specific local optimization problem is
expressed as:

mm}jj (m@ﬁyfﬁif +P,(0)-R (»m (17)

Among them:
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Then, the Lagrange multipliers 4, (7) and Pc’harge( )

are iteratively updated using an iterative method to
gradually approach the global optimal solution. The
multi-level decomposition ADMM optimization process
is divided into three stages: local update, Lagrange
multiplier update, and convergence judgment.

In the local update, each EV optimizes its own Py, (7)

separately to minimize the charging cost and take into
account the load balancing and battery SOC constraints.
The standard optimization algorithm is used to solve the
local optimal problem of each EV. To overcome the
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disadvantage of the traditional ADMM algorithm that the
convergence speed is too fast when solving large
non-convex optimization problems. The adaptive step
size mechanism can be introduced into the iterative
algorithm, and the gradient descent method can be used
to achieve fast iteration based on gradient. First, the
gradient of the objective function is calculated for

Pclharge ( )

() A (02 Pra ()2, (1)~ Rus (1) (19)

Vamm[q(
For C, ( Chargc( )), the gradient is:
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In the case of A, (¢), the gradient is:
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In this way, the overall gradient is expressed as:
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In the gradient descent method, the objective function is
optimized by continuously adjusting P, (¢) . Updates

are made according to the following rules:
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Pharge (1 )k

n is the learning rate, which is used to control the

update step size. L, (f)clhargc( )) is the Lagrangian

function in the cluster £ .

For EV integrated power systems, accurate prediction
and control of Py . (¢)

important. Although the ADMM method can achieve
near optimal results, in actual operation, there may be
significant deviations due to various uncertain factors
such as changes in user behavior and power grid
fluctuations. Therefore, it is necessary to analyze the
deviation between power consumption and SOC.

and SOC are particularly

For the processing of boundaries and restrictions, when
performing gradient updates, it is necessary to ensure

that E,lhdrge( )k+1 meets the physical restrictions, that is:

0< Pclharge ( )kH

<P

max

(24)



If the updated Py, (t)"

corrected to the limit value [35]:

exceeds the limit range, it is

Pl (1) = min Bl max (0, Pi (7)) @5)

The updated SOC needs to meet the upper and lower
limit constraints. If the SOC is not within the range, it is
also corrected to the limit value:

SOC, (¢, min(soC;

max >

max (SOCy,, SOC, (¢ f" )) (26)

On this basis, 4,(¢) is used to modify the global

of each EV

can meet the grid load balancing requirements, which is
updated according to the formula [36]:

constraints to ensure that the Py . (6)"

20" =20 + (X Prae (0 4B (1) =R (1)) @)

p s the step size factor for adjusting the update rate.

The algorithm determines whether it has convergence by
judging whether the change of Pc'imge (t)k+1 and 4, (1)

is smaller than the preset tolerance error e . Specifically
[37-39]:

l i
?Zi] Z,Iil Pcharge
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If the condition of formula 28 is met, the algorithm
terminates.

3. Example Analysis
A.  Simulation Environment and Parameter Setting

To wverify the application effect of decentralized
optimization in the flexible dispatch of EV integrated
power system, this paper simulates its flexible dispatch
by constructing a simulation environment. Taking 100
EVs as the object, the charging demand of each EV is
comprehensively considered, and the charging behavior
of each EV is optimized for 24 hours a day. To simplify
the model, it is assumed that the battery capacity of each
EV is 30kWh, and the maximum charging power of EV
is 6 kW. The initial SOC range of each EV varies in the
range of 30%-50%, and charging is carried out in units of
24 hours. At the same time, the upper and lower limits of
SOC must be taken into account, and the SOC constraint
state of the battery must be guaranteed to be in the range
0f 30%-80%.

The system load includes EV charging demand and grid
load. On this basis, the maximum power supply of the
grid is set to 1200kW, and the load fluctuation is realized
in the range of 500kW to 1000kW. To simulate the
charging demand and load changes of the system, a load
curve is generated based on the actual load data. The
load fluctuation is affected by the daily period and EV
charging behavior.

The specific settings of the simulation parameters are
shown in Table 1:

Table 1. Specific settings of simulation parameters

Sequence Parameter Specifications

1 Number of EV 100 EV

2 E;, 30kWh

3 Max Py (1) 6kW

4 SOC initial range 30%-50%

5 SOC restriction 30%-80%

6 Max P, (f) 1200kW

7 Load fluctuation range 500kW-1000kW
8 C C"harge (t) coefficient (yuan per kWh) Time-sharing strategy
9 At 1 hour

10 Total simulation time 24 hours

B. Evaluation Indicators

This paper conducts a comprehensive evaluation from
the aspects of load balancing error, SOC error, and total
charging cost indicators:
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1) Load Balancing Error

The load balancing error is an important indicator used to
measure whether the load meets the requirements when
the system is running. Specifically, this indicator
represents the deviation between the grid load and the



EV integrated system load at each time point, and its
calculation formula is:

grid (t )_Pload (t )| (29)

LBT (t)=|Py (t)+P

As an important indicator to measure the accuracy of
system scheduling at each moment, the smaller LBT (r)

is, the higher the flexibility of the system is, the more
significant its effect on stabilizing load fluctuations in
the power grid is, and the more stable the system
operation is.

2) SOC Error

SOC error is used to measure the difference between the
state of charge of each EV battery and the target state of
charge. This indicator reflects the accuracy of battery
management during charging, that is, whether the battery
can be charged accurately according to the established
charging strategy. When the SOC error is small, the
battery charging behavior can be more reasonable, and
the battery loss is less. The calculation formula is:

SOC, ey (i) = [SOC gy (1) = SOC gy (i1 )] (30)
A
1200
Initial curve
1100 ‘
-------- ADMM optimization
1000
£ 900 - p
2800 | L g g ~-r\
700 [ i
600 |- §
S N I I N N Y B
2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

A is the ADMM optimization curve

Power (kw)

SOC e, (ist) s the target SOC of the i th BV at time
t,and SOC

el (£,1) 18 the actual SOC. The smaller the
SOC error, the closer the battery charging process is to

the expected value.
3) Total Charging Cost

The total charging cost is the total amount of EV
charging cost during the scheduling period, and its
calculation formula is:

(t))d (31)

C Y c (P!
total — Zi:lj‘tl i (Rhargc

C. Simulation Results
1) Load Curve Comparison

Based on 24 hours of simulation data, the charging
behavior of the EV group and the grid load are simulated.
On this basis, the ADMM algorithm is compared with
the traditional centralized optimization method, and its
load curve is analyzed from the change amplitude,
fluctuation trend, and peak situation of each period. The
results are shown in Figure 5:

B
1200
— Initial curve
1100 - ———
------ -- Centralized optimization
1000 —
900
800
[ %
700
600 —
soo Ll | | I |
2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

B is the centralized optimization curve

Figure 5. Load curve analysis

As shown in Figure 5, the load curve obtained by using
the ADMM algorithm has smaller overall fluctuations
and a more gentle load change range compared to the
centralized optimization method. In Figure 5A, EVs are
mostly charged during the period with the lowest
electricity price (24:00-6:00), and they can also generate
new load peaks during the valley price period, but they
do not exceed the limit due to capacity limitations. In
Figure 5B, although EVs under centralized optimization
also have a more significant role in filling the load valley,
their load curves show large fluctuations, and the load
reaches obvious peaks at 4:00, 8:00, etc. Compared with
traditional centralized optimization, the ADMM
algorithm divides the EV group into several subsystems,
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each of which optimizes its own energy scheduling,
effectively reducing the system load fluctuations caused
by centralized optimization. It can more flexibly adapt to
the actual needs and charging conditions of EVs, make
the load curve smoother, and prevent excessive load
peaks in a certain period of time. Through the
coordination between the subsystems, the reasonable
configuration of charging tasks is achieved, and the load
fluctuation of the system is reduced to a certain extent. In
contrast, the centralized optimization method is prone to
cause large load fluctuations at certain times, increasing
the load on the power grid and making it difficult to give
full play to the system's flexible scheduling capabilities.
Overall, the load curve after ADMM optimization has a



smooth transition, reducing load peaks, which is
conducive to reducing the overload pressure on the
power grid and avoiding overload risks.

2)  Comparison of Load Balancing Errors

To further determine the load balancing status, the load
balancing errors under the two optimization modes are
calculated, and the results are shown in Figure 6:
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Figure 6. Load balancing error results.

As can be seen from Figure 6, the load balancing error
results under ADMM optimization have more significant
advantages. In each time period, the error under ADMM
optimization is the highest in the 2:00 time period,
reaching 0.18kW, and its overall error mean is about
0.078; the error under centralized optimization is the
highest in the 24:00 time period, reaching 1.11kW, and
its overall error mean is about 0.808. In some periods of
time, centralized optimization cannot achieve effective
load balancing of the system, causing a certain amount of
load on the power grid; at the same time, there are large
errors in load balancing. The ADMM algorithm can
maintain a small load fluctuation and achieve effective
regulation of EV charging power while overcoming the
large differences in power demand in a single stage.

3) SOC Error Comparison

SOC error has a direct impact on the charge and
discharge management of EV in system integration. This
paper compares the SOC errors of the two methods
within 24 hours and evaluates the system energy
efficiency and stability. The results are shown in Figure
7.

As can be seen from Figure 7, the SOC error of ADMM
in each time period is generally lower than that of
centralized optimization. From the specific results, its
average SOC error reaches 1.03%, which is 35.63%
lower than that of centralized optimization. The SOC
error changes very little within a 24-hour period and
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remains at a low level, with good stability and
consistency. However, the centralized optimization has
large fluctuations in some periods. The lower SOC error
means that each EV can be closer to its desired charging
state, reducing energy loss caused by overcharging or
undercharging, thereby improving the energy utilization
of the system. ADMM enables each charging station to
make decisions locally, reducing dependence on the
central controller, reducing communication delays,
reducing the probability of failures, and ensuring that the
system can still operate normally when the network
topology changes or some nodes fail. It has the ability to
quickly adapt to EV charging and discharging behavior,
which has a very important impact on reducing the peak
load pressure of the power grid and achieving stable
system scheduling.
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Figure 7. SOC error results.
4)  Comparison of Total Charging Costs

By simulating the charging process under the two
optimization modes and taking into account the volatility
of grid prices, the charging costs of each period are
calculated and summed up to calculate the total cost.
Taking the total charging cost as the main evaluation
indicator, the impact of different optimization modes on
the cost is considered. Referring to the common
strategies of time-of-use electricity prices and their
impact on grid load management, the electricity price
parameter settings are shown in Table 2:

Table 2. Electricity price parameter settings

Period of time Grid price (Yuan grlilggmeua;tat;oel:
per kWh) kWh)
24:00-06:00 0.358 0.4
06:00-10:00 0.528 1.0
10:00-14:00 0.858 2.0
14:00-18:00 0.528 1.0
18:00-22:00 0.858 2.0
22:00-24:00 0.358 0.4

The final cost comparison results are shown in Figure 8:
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Figure 8. Cost comparison results

As can be seen from Figure 8, there are certain
differences in the cost results presented by the two
methods in each period. Among them, the total cost of
each period under ADMM optimization reaches 2642
yuan, and the total cost result under -centralized
optimization is 3050.4 yuan. In the comparison of
specific results, compared with centralized optimization,
the total charging cost of ADMM optimization is reduced
by about 13.39%. Although centralized optimization can
take into account the overall load balance of the power
grid, it lacks flexible scheduling for EV charging demand
and electricity price fluctuations. The use of ADMM can
achieve refined control of the charging strategy of each
EV, thereby reducing the charging cost.

4. Conclusions

This paper uses the ADMM algorithm to study the
improvement of the flexible dispatching capability of EV
integrated power systems under decentralized
optimization, and explores the problems of load balance,
SOC constraints, and charging costs faced during EV
charging. Through simulation experimental results, this
paper verifies the significant advantages of the ADMM
method in improving the flexible dispatching capability
of EV integrated power systems. Compared with the
traditional centralized optimization method, its average
SOC error is reduced by 35.63%, and the total charging
cost is reduced by about 13.39%. Based on the
multi-level ADMM algorithm, this paper combines local
and overall optimization, effectively improving the
flexibility and responsiveness of system scheduling, and
providing effective support for solving problems such as
actual communication delay and low computing
efficiency. However, this paper also has some
shortcomings. Due to the large amount of uncertainty in
the EV charging process, this paper has not fully
considered the factors affecting EV charging behavior
and battery characteristics, and the comprehensive
performance of the method needs to be verified in a
wider range of application scenarios. Future research can
fully consider the impact of complex environmental
factors on system scheduling, improve its adaptability in
various application scenarios, and promote the
comprehensive development of EV integrated power
systems.
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