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Abstract. Addressing the critical issue of three-phase
unbalance in power systems that affect stable operation,
this paper proposes a data-driven strategy for managing
three-phase unbalance. By utilizing smart meter data, a
voltage correlation data-driven model is employed to
achieve phase identification, and a multi-time-scale
prediction method is adopted to enhance accuracy.
Furthermore, real-time monitoring of load phase changes
is conducted through online gradient detection, and a
gradient-based load phase adjustment model is
constructed. Additionally, an unbalance compensation
algorithm is introduced to dynamically adjust the load
distribution based on real-time data. In practical
application in a low-voltage area, the proposed method
significantly reduced the degree of three-phase
unbalance, validating its effectiveness and practicality,
and providing a new solution to improve the stability and
efficiency of power systems.
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1. Introduction

The modern distribution network emphasizes efficiency,
safety, reliability, and sustainable development, while
three-phase unbalance is one of the critical factors
affecting the stable operation of power systems [1,2]. By
addressing three-phase unbalance, the stability of the
power system can be enhanced by ensuring balanced
currents and voltages, reducing fluctuations and
disturbances [3,4]. The mitigation of three-phase
unbalance requires real-time monitoring of the power
system's operational status and adjustments based on
actual conditions. This process aligns with the intelligent
control philosophy of modern distribution networks,
promoting their development towards greater intelligence
and autonomy [5].

In low voltage regions, the preponderance of single-phase
loads at end-user terminals results in three-phase
unbalances in both current and voltage within power
distribution lines. Consequently, the even distribution of
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power loads across the three phases is crucial.
Nevertheless, precise phase identification techniques at
the end-user level remain elusive, rendering the
alleviation of three-phase unbalance a pressing issue that
demands attention. There are research papers that address
phase identification and the management of three-phase
unbalance. A thorough literature review of the existing
phase identification methods is introduced in [6]. The
work in [7], a system for determining the phase of
underground distribution transformers has been created to
utilize fuzzy logic-based microprocessors for control. The
work in [8], a bi-level optimal phase switch device
placement model for mitigating three-phase unbalance is
proposed, and the bi-level model is tested by an actual
low-voltage area of Zhejiang province, China. In [9], the
unbalance detection issue is presented as a hypothesis -
related problem, and a rapid algorithm for detecting the
unbalanced vector within a three-phase system is put
forward. It mainly concentrates on the detection of three-
phase unbalance situations, yet not comprehensively deal
with the problem of alleviating three-phase unbalance
[10]. Due to the complex calculation process, the method
in [11] is not applicable in practical applications.

Currently, common methods for mitigating three-phase
unbalance in distribution substations can be categorized
into two major types based on modeling approaches:
physics-based modeling methods [12-16] and data-driven
approaches [17-24]. The control strategies based on
physics-based modeling typically formulate the system as
an optimal power flow problem. Under the premise of
ensuring the safe operation of the distribution network,
the objective is to minimize the degree of three-phase
unbalance by optimizing the control parameters of
various adjustable devices [10]. Since these problems are
usually non-convex, scholars often employ heuristic
algorithms such as particle swarm optimization or model
simplification methods like convexification/linearization
for solution. Representatively, the optimization algorithm
is proposed to achieve intelligent phase-shifting of
switches in [12], effectively addressing the three-phase
unbalance issue in distribution networks.
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Due to the traditional algorithms are prone to local
optimization. An improved genetic algorithm based on
the MIT-LXPM framework is proposed to implement the
double-layer treatment in [13]. [14] proposes a three-stage
incentive-based fair voltage control strategy to mitigate
fast voltage violations in distribution networks while
ensuring the benefits of both distribution system operators
and PV customers. In [15], it formulates the decision-
making process as a mixed-integer non-convex
programming problem based on SVC model for dispatch
purpose. Compared with existing work, the proposed
method aims at minimizing current unbalance based on
their phasor values and takes the network's operational
requirements into account. A novel method to control
phase-reconfiguration devices (PRDs) purely based on
measurable data from PRDs is proposed in [16], followed
by the optimization model that comprehensively
considers operational requirements in the network. which
is reformulated as an efficient solvable mixed-integer
second-order cone programming based on exact
reformulations or accurate linear approximations.
Although the above methods can improve the degree of
three-phase unbalance in distribution networks to some
extent, heuristic algorithms cannot guarantee global
optimality and are prone to falling into local optima.
Meanwhile, model simplification methods like
convexification or linearization assume global knowledge
of topology, line parameters, and customer load
conditions, making them difficult to apply to the actual
complex systems.

In recent years, the rapid iteration and updating of data-
driven methods such as machine learning and
reinforcement learning have provided a new approach for
the control and decision-making of various complex
dynamic systems. Among these, Deep Reinforcement
Learning (DRL) is an effective method for addressing the
aforementioned challenges. In models involving high-
dimensional state spaces, traditional reinforcement
learning methods suffer from the “curse of
dimensionality,” which greatly limits their practical
application in distribution networks. Therefore, scholars
have proposed deep reinforcement learning methods to
address this “curse of dimensionality”. In [22], it presents
an integrated method for solving related issues including
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user phase identification based on spectral clustering and
three-phase unbalance mitigation, and a Mixed Integer
Linear Programming model is then formulated.

A Deep Reinforcement Learning (DRL) algorithm based
on the Soft Actor-Critic (SAC) network is presented in
[23], which is used to optimize the offline strategy for
voltage control in distribution networks. Compared to
physics-based modeling approaches, it can achieve lower
network losses. Given the stated background and
numerous smart meter data available nowadays [24], a
practical integrated method for user phase identification
and three-phase unbalance control is proposed in this
work. Firstly, voltage amplitude data collected by the
Power User Electricity Data Acquisition System
(PUEEDAY) is utilized to identify the phase information
of the users. Based on this, an intelligent algorithm model
for mitigating three-phase unbalance has been established.
Finally, the practical application of this method in a low-
voltage area in a certain location is introduced, and the
relevant validation is presented.

2. Phase Identification of Load in the Substation Area
Based on Data Driven

Phase identification of load in the substation area based
on data driven is a progressive process. It progressively
achieves a comprehensive understanding of load phase
characteristics through data analysis, dynamic prediction,
and integrated recognition as shown in Figure 1. First, the
voltage correlation data-driven model serves as the
foundation of the entire process. It establishes a dynamic
relationship model between voltage and load power,
quantifies the impact of voltage on the load, and provides
key features and data support for subsequent phase
prediction.

Based on the correlation information between voltage
and load extracted from this model, multi-time-scale load
phase prediction is carried out. Short-term prediction
captures instantaneous fluctuations, medium-term
prediction identifies periodic variations, and long-term
prediction reveals long-term trends. This process
establishes comprehensive time-scale coverage for
identifying the dynamic characteristics of the load.
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Figure 1. Clustered phase-shifting control architecture for distribution transformer load areas
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Finally, in multi-time-scale phase prediction and
identification, the prediction results from different time
scales are integrated, and feature extraction techniques
such as wavelet transform are applied to further analyze
the phase variation characteristics of the load. The final
phase identification results are then generated through
phase angle calculation.

A. Data-Driven Model of Voltage Correlation

To achieve accurate prediction and identification of load
phase, establishing a voltage correlation data-driven
model is a core prerequisite. By analyzing the dynamic
relationship between historical voltage and load power in
the distribution transformer area, the impact of voltage
changes on load power is quantified. This provides
essential data support and feature information for
subsequent multi-time-scale load prediction and phase
identification.

Specifically, a mathematical model describing the
relationship between voltage V() and load power P(t) is
constructed using historical voltage data V() and

corresponding load power data P(t) . The model is
expressed in the form of linear regression as follows:

Pt) =4 +BVI)+BVit-D+BV(t-2)+..+BVit-n)+et) (1)

Here, f=[f.f.f5,]
coefficients, indicating the influence of current and
historical voltage on load power. £(t) is the error term,
used to represent the unexplained random fluctuations,
which are assumed to follow a  normal

distribution & (t) ~ N (0,67).

represents the regression

S is expressed as follows:
B=X"XD"X"y (2)

Where A is the historical voltage data matrix, B is the
historical load power matrix, expressed as follows:

LV (O, (e-1)-Y, (¢ )

x| TOV(ED V) | @)
LV (0)Vi (= 1)V, (e-n)
P (t)
S| RO @
PN(t.—n)

To establish a high-precision voltage correlation model,
data collection and preprocessing must first be conducted.
This includes obtaining voltage and load power data at
different time points from smart meters or distribution
transformer area monitoring devices. At the same time,
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outliers and missing values are cleaned and processed to
ensure the completeness and consistency of the data.
During the model construction phase, the model
parameters f§ are fitted using the least squares method,

and the model's performance is evaluated.

By analyzing the regression coefficients in the model, the
sensitivity of load power to voltage changes at a specific
time point can be determined. This dynamic characteristic
directly influences the phase behavior of the load. In
addition, the model's output provides critical input
features for subsequent steps, such as the current voltage,
lagged values of historical voltage, and their impact on
the load.

B. Multi-Time-Scale
Identification

Phase Prediction and

By integrating short-, medium-, and long-term prediction
results and applying wavelet transform, a comprehensive
dynamic analysis of load phase is performed. This
process integrates the applications of the previous two
steps, unifying phase variation information across
different time scales and generating phase identification
results that can be directly utilized for grid management
and planning.

1) Integration of Multi-Time-Scale Prediction Results

Short-term prediction results capture the instantaneous
fluctuation characteristics of load power, while medium-
term and long-term prediction results reveal periodic and
trend variations, respectively. To integrate short-,
medium-, and long-term prediction results effectively, a
weighted fusion method is employed. This method
combines predictions from different time scales based on
their importance in specific application scenarios, as
shown below:

(t)+a,P,

m™ mid

Pcombined (t) = a)spshort (t) + CqPIong (t) (5)

Here, o,

s 2

o, , o represent the weights for short-term,

medium-term, and long-term predictions, respectively.

2) Phase Angle
Analysis

Calculation and Characteristic

Based on the integrated prediction results, the phase angle
of the load is further calculated to analyze its dynamic
characteristics. The phase angle is a key indicator
describing the relationship between load voltage and
power, expressed as follows:

Q=B (+Ke)-L O B(e+Hit)-PO)rap(B(e+me)-L(0) (6)

Here, P(t) represents the active power of the load, 6

represents the phase angle of the load and k , [ ,
and m represent phase A, phase B, and phase C,
respectively.



3) Temporal Feature Extraction of Power A. Unbalance of Active Power

In order to comprehensively analyze the dynamic The unbalance of load phase power gradient is primarily
changes of load phase, the load power data is quantified by calculating the deviation of the three-phase
decomposed into different time scales to extract short- power from the average power. For active power, the
term, medium-term, and long-term characteristic signals. unbalance U (t) is defined as:

The transformation formula is as follows:

P, (mbrﬁfif(t)l’(%“ ™ VO3 ®

Here, P, (a, b) represents the load power signal, f (t) i Here, R(t) is the active power of phase i at time ¢t ,

the wavelet coefficient at scale a and position b. and P (t) is the average active power of the three phases,

defined as follows:
By integrating the analysis results of prediction
consolidation, phase angle calculation, and multi-time- = / )
scale feature extraction, comprehensive load phase P(t)= 3 ©)
identification results are generated. The specific outputs
include real-time phase variations, periodic phase
changes, and long-term trend variations.

The online gradient detection of load phase is designed
for real-time monitoring of the dynamic changes in load
phase. By calculating the power gradient and evaluating

3. Online Gradient Detection of Load Phase Based on the unbalance level, this method can promptly identify
Data-Driven anomalies or optimize load distribution, as shown in
Figure 2.

a8
J—

: ——
c—
-
-
—
—
—

Voltage gradient of phase A

Voltage gradient of phase B Voltage gradient of phase C

Figure 2. Three-phase voltage gradient in the transformer district.

B. Power Gradient Model for Load Phase 0, (t,+At)-6,(t,)

GradP == (11)

The core of the power gradient model is to calculate the

rate of change of load power P (t) and phase C. Optimization of Load Phase Power Unbalance

angle 6(t) with respect to time, which respectively Based on Data Driven

describes the dynamic behavior of the load and its phase

L In the analysis above, the load power unbalance and
response characteristics.

power gradient were obtained. To achieve rapid
optimization of power imbalance, this paper adopts a

For active power P(t), its gradient can be expressed as: combination of load phase switching based on gradient
descent method and power electronic equipment control,

dP(t) P(t+At)-P(t) wh.ich. can also ?educe the nqmber of load phas.e

ai At (10) switching times. Firstly, the gradient descent method is

used to optimize the load power imbalance degree

In order to further analyze the phase characteristics, the toa 'U(to) » and then further optimization is carried out

phase angle change rate is introduced, and its formula is: using power electronic devices. In the above, a is the
adjustment coefficient and it takes values between 0 ~1,
and its value depends on the current load capacity and
the specific power electronic device
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capacity. U (to) represents the initial imbalance degree at

timet, .

1)  Theoretical Design of Gradient Descent Method

To optimize the power unbalance, the optimization
objective function is set as power imbalance U(t) , with
the optimization objective of o -U (to) At the same time,

the number of load switching times is added as a
constraint condition.

(1) Optimization Objective

The optimization objective function is as follows:

g,

min U

The optimization objective is as follows:
U(t)<a-U(t,) (13)

The additional constraint is that during the optimization
process, the number of adjustments to the power

distribution P, (t) should be minimized.

(2) Gradient Calculation Based on Gradient Descent
Method

Utilizing the power gradient model, for each adjustment
of U (t) , optimize power allocation through a load

switching strategy. The gradient direction of each phase
power is as follows:

au(t) 1
oP(t) 3P(t)

According to the principle of gradient descent, the power
is adjusted in each iteration as follows:

sign(P;(t)-P(t)) (14)

ou (t)
R ()

P(k+1)

i

P (t)-n (15)

Among them, 7 is the learning rate.

(3) Control of the Number of Load Switching Operations

To reduce the number of load switching operations,
constraints are introduced into the power allocation
during the optimization process. The load switching
function is as follows:

AP, ) (16)
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In the formula, "() represents an indicator function.

When the load variation ‘Pi(k”) - R(k) (t)‘ exceeds the set

minimum value AP_. , it is counted as one switch.

min >

2) Implementation of Power Imbalance Optimization
Algorithm

Stepl: Initialization
(1) Allocation of initial power: Pﬂ(o) , Pb(o) , PC(O) ;

(2) Calculate initial unbalance:

(3) Set learning rate 7> switching threshold P> and

target:

Uturget (t) < a U (tO) (18)

Step2: Optimization Process of Gradient Descent

(1) Calculate the gradient for the power P,(t) of each
phase (Formula 14).

P

1

(2) Adjust power allocation (t) that has the greatest

impact on U (t) based on the priority of sorting

according to the absolute value of the gradient;
(3) Load Adjustment:

[Update the value of power (Formula 15):

(k+1)

-p*

Il If the adjustment amount ‘P ") (¢ )‘ is greater

than AP_.

min

record the load switching once.

(4) Recalculate Unbalance:

(5) Check the Convergence Condition.

is less than U and the condition for

target

If U(t)
minimizing the number of load switching times is met,
terminate.

D. Comparison of Different Optimization Algorithms

From the table, it can be seen that the gradient descent
method exhibits a significant advantage in terms of time
complexity. Specifically, the time complexity of the



gradient descent method is relatively low, which implies
that it may be more efficient when dealing with large-
scale datasets.

Table 1. Comparison of Different Optimization Algorithms.

Algorithm Time . Time complexity
complexity concrete value

Gradient descent O d 1.5x10°

LSTM O(m- p2) 3.63x10°

CNN-LSTM Ok m- p2) | 2.3232x10%

CNN-LSTM-AM O(k m- p2) | 2.3232x108

4. Switching of Load Phases Based on Data-Driven

A. Load Phase Adjustment Model under the Gradient
Model

By calculating the gradient changes of load power and
imbalance degree, the optimal load adjustment amount

AP (t) is determined, and the adjustment formula is:

()=P 1)+ ) @0)

adjusti

Where Padjum.(t) is the power of the i-th phase after
adjustment; R(t) is the power of phase i before
adjustment; AP, (t) is the adjustment amount,

representing the power transferred or introduced from the
i-th phase.

The calculation formula for adjustment amount AP, (¢) is

as follows:

ou(t)
2 ()

AP(t)=-a 1)

Among them, 0 is the adjustment parameter used to
control the adjustment force, and U (t) is as shown in the

previous text.
B. Multi-Time Scale Load Phase Adjustment Strategy

By combining short-term, medium long-term, and long-
term load analysis, dynamically optimizing load phase

allocation and reducing three-phase imbalance U (t) , the

adjustment formula is as follows:

P

adjust

(t)=w,AP,

short

(t)+w,AP,

mid (t +k )+ a)IAPIong (t ) (22)
Here: a)s > a)m s a)l
medium-term,
respectively.

represent the weights for short-term,

and long-term adjustment amount

127

And AP

short

and AP,

(€) AP (£+K) ong

term, medium-term, and long-term adjustment amount
respectively,the expression formulas are as follows:

, AP

mi

(t) are short-

AP,

short

(¢)=—k, (P (£)-P(t)) (23)

AP, (t+k)=—k, [ (P (2)-P (r)}dr (24)

AP, (£) ==k, (T, (6)=T (¢)) @5
Among them, k_ , k, and k, are the short-term,
medium  long-term, and long-term  adjustment

coefficients, respectively, and T,(t) is the long-term

trend component, T(t) is the average of the long-term

trend of the three phases.

5. Unbalance Compensation Algorithm Based on
Unbalance Range

A. Unbalance Range for Power Unbalance Based on
Data-Driven

In three-phase power systems, load power unbalances can
lead to increased equipment losses, intensified voltage
fluctuations, and even potential power quality issues.

This paper employs real-time calculation and analysis
methods based on load data to evaluate the uniformity of
three-phase load distribution in the power grid, identify
unbalance issues, and provide decision-making support
for subsequent compensation strategies. Power unbalance
not only requires instantaneous detection but also needs
to track its dynamic variation over time. To this end, the
time rate of change of unbalance is introduced with the
following formula:

dU(t) ouU(t)dP(t)

at oP,(t)

dp(9
dt (26)

Using the formula above, the variation trend of the
unbalance can be dynamically tracked, allowing for the
early identification of potential worsening unbalance
situations.

B. Unbalance Compensation Strategy Based on Data-
Driven

By introducing or removing a compensation amount
AP, (t) for each phase load, the load distribution is

comp
dynamically adjusted to reduce power differences among
the three phases and achieve load balance. The
compensation formula is as follows:

AP

comp,i

(t)=-pU (t)xsign(P.(t)-P(t)) (27)



AP

comp,i

Here, (t) is the compensation amount, £ is
the compensation coefficient, used to control the intensity
of the compensation, and sign(R. (t)-P (t)) indicates
the direction of deviation of phase power from the
average power.

C. Consideration of Power Unbalance and Three-
Phase Unbalance Compensation Design
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Figure 3. The Proposed Three-Phase Unbalance Compensation
Process for Power Unbalance

The three-phase voltages u, , u, , u, and the

corresponding phase currents i, ,i,,,i,, of the four-wire
system output of the distribution transformer in the
distribution network are collected. According to Equation
(20), the three-phase unbalanced power Ap, , Ap, and
Ap,
unbalanced power in the a—f

is obtained. Through the Clark transformation, the
coordinate system is

derived, and the unbalanced compensation current is
obtained by applying the inverse Clark transformation to
the unbalanced power, as shown in Figure 3.

To further process and compensate for this unbalance, the
unbalanced powers are transformed into the o -—pf

coordinate system using the Clark transformation. Unlike
conventional  current and  voltage  Unbalance
compensation methods, the power imbalance detection
and compensation integrates the advantages of phase
shifting and capacity compensation. By ensuring
infrequent phase reversals, it guarantees the frequency
stability of the power transmission system, while dynamic
capacity compensation in real-time achieves optimized
governance of three-phase unbalance. Once the
unbalanced powers are in the o —f coordinate system,

the unbalanced compensation currents can be derived by

applying the inverse Clark transformation to these powers.

This inverse transformation converts the unbalanced
powers back into the three-phase system, bu t in a form
that represents the currents needed to balance the system.
By following these steps, the distribution network can be
maintained in a balanced state, ensuring optimal
performance and minimizing potential issues related to
unbalance.
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6. Strategy of Data-Drive Three-Phase Unbalance
Compensation

To address the issue of three-phase unbalance in power
systems, we propose a data-driven strategy for managing
three-phase unbalance, shown as in Figure 4. The detailed
procedure of this strategy is as follows:
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Figure 4. Clustered phase-shifting control architecture for
distribution transformer load areas

Step 1: Data Collection and Preprocessing

First, real-time data on voltage, current, and other
relevant parameters are collected from the power system
using smart meters and other devices. Subsequently, the
collected data undergo preprocessing, including data
cleaning, noise reduction, and other steps to ensure the
accuracy and reliability of the data.

Step 2: Data-Driven Phase Identification

Using the preprocessed data, a voltage correlation-based
data-driven model is constructed for phase identification.
This model accurately determines the phase affiliation of
each user by comparing the correlations in voltage data.
Additionally, short-term, medium-term, and long-term
prediction methods, combined with techniques such as
wavelet transformation, are employed to predict and
identify phases across multiple time scales, providing a
solid foundation for subsequent management efforts.

Step 3: Online Gradient Detection and Optimal Load
Distribution

By calculating the gradient changes in load power and
phase angle, the dynamic changes in load phase are
monitored in real-time. Upon detecting any changes in
load phase, a gradient-based load phase adjustment model
is immediately triggered. This model dynamically adjusts
the load distribution based on real-time monitoring data,
redistributing unbalanced loads to other phases to
optimize overall load distribution.

Step 4: Application of Unbalance Compensation
Algorithms



Building on real-time monitoring and optimization, an
unbalance compensation algorithm is introduced. This
algorithm detects power unbalance in real-time based on
live data and dynamically adjusts the load distribution
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according to the detected level of unbalance. The
algorithm provides specific compensation formulas and
strategies. Achieving three-phase load balance by
adjusting the load quantities of each phase.
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Figure 5. Examples and results of phase identification for transformer district load

7. Experimental Case Study Analysis

Verification and analysis of three-phase unbalance
mitigation strategies in the 400V distribution area of Jin
Yun Lane. The study object is a distribution area
containing 358 single-phase loads, with the three-phase
unbalance degree of the transformer ranging from 15.8%
to 26%. The verification and analysis steps are as follows:
First, the phase identification of single-phase loads is
verified; Second, the load power gradient is validated,
Third, analyze the unbalanced phase adjustment; Finally,
the coordinated mitigation strategy of the unbalance
mitigation device is verified.

A. Phase Identification Analysis of 358 Single-Phase
Loads in a Distribution Area

As shown in Figure 5, the demonstration validation
platform confirms that the voltage fluctuation range in the
distribution area is between 213V and 224V. The voltage
waveforms of the three phases (A, B, and C) at the
voltage outlet of the distribution area were collected.
Through data-driven model training, the characteristics of
the three-phase data were obtained: the characteristic
values of phase A fluctuate between 30 and 55, those of
phase B between 15 and 40, and those of phase C
between 5 and 30. The data-driven model-generated data
characteristics exhibit significant phase differences.
Subsequently, the convolution processing of the
characteristic fluctuation values with the single-phase
load data characteristics yields the target identification
data characteristics. The target characteristic values are
within a 5% identification margin of the phase
characteristic values, leading to the identification results.
Through phase A identification, 108 single-phase users
were identified; through phase B identification, 120
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single-phase users were identified; and through phase C
identification, 130 single-phase users were identified. On-
site verification of phase identification revealed that 5
users (2 in phase B and 3 in phase C) were incorrectly
identified, primarily due to the similarity in the
fluctuation of the data characteristic markings. Therefore,
the phase identification accuracy is 98.6%.

B. Load Phase Voltage Gradient

As shown in Figure 6, the demonstration verification
platform confirms that the three-phase power ranges from
0 to 400W, with a three-phase unbalance degree spanning
from 5% to 35%. The unbalance degree of Phase A load
ranges from 5% to 35%, with an unbalance probability of
63.62%, and the probability of optimizing to a 10%
unbalance degree through gradient optimization is 35.4%.
The unbalance degree of Phase B load ranges from 5% to
40%, with an unbalance probability of 64.78%, and the
probability of optimizing to a 10% unbalance degree
through gradient optimization is 37.65%. The unbalance
degree of Phase C load ranges from 5% to 30%, with an
unbalance probability of 61.64%, and the probability of
optimizing to a 10% unbalance degree through gradient
optimization is 32.14%. The unbalance degree of the
three-phase load is time-varying. For a 1600KVA
distribution transformer, the cost of compensation
capacity at a maximum of 40% is relatively high. By
optimizing the three-phase power gradient, with a target
of 10% unbalance, the phase of critical load users is
adjusted through phase-switching switches to achieve an
optimized three-phase unbalance degree with a
probability of 40.92% within the range of 5% to 10%.
This phase optimization ensures that users remain on the
same phase for 5 hours, preventing oscillation risks
associated with frequent phase switching.
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Figure 6. Gradient of three-phase voltage variation in transformer district load.

C. Verification of  Unbalanced Coordination
Governance Strategies

At the transformer outlet of the distribution station area, a
three-phase unbalance compensation device with 15%
capacity is installed. As shown in Figure 6, gradient
optimization phase adjustment is performed under a
scenario with an unbalance degree of 25.8%. Before
phase adjustment, the currents in phases A, B, and C are
250A, 166.6A, and 250A, respectively, with a three-phase
unbalance degree of 25.8%. After gradient optimization
phase adjustment, the currents in phases A, B, and C are
214A, 192.5A, and 242A, respectively, with a three-phase
unbalance degree of 11.91%. Finally, the auxiliary
compensation device is used for compensation, resulting
in currents of 216.5A, 217A, and 217.5A in phases A, B,
and C, respectively, with a three-phase unbalance degree
0f 0.257%. Data analysis shows that the strategy of power
gradient optimization and auxiliary compensation has a
good effect on three-phase unbalance management, with
lower costs, thus validating the effectiveness of the
proposed method and strategy.
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Figure 7. Case study of unbalanced feeder zone auxiliary
device governance.

8. Conclusion

This paper proposes a data-driven three-phase unbalance
management strategy for distribution network transformer



districts, leveraging intelligent algorithms and real-time
data analysis to effectively address the issue of three-
phase unbalance. The following is a summary of the
contributions and innovations of this study:

1) By integrating data-driven methods with deep
reinforcement learning and other intelligent algorithms,
the traditional "curse of dimensionality" problem
associated with high-dimensional state spaces in physical
modeling is resolved. A phase identification method
based on voltage correlation data-driven models is
proposed, which accurately identifies user load phases by
analyzing the dynamic relationship between voltage and
load power.

2) An innovative multi-time-scale load phase adjustment
strategy is introduced, combining short-term, medium-
term, and long-term adjustments to comprehensively
analyze the dynamic characteristics of load phase changes
and perform intelligent adjustments accordingly.

3) A real-time online gradient detection technique is
proposed, which can rapidly respond to load changes and
adjust load distribution in a timely manner, effectively
avoiding the lag issues inherent in traditional methods
and significantly reducing three-phase unbalance.

4) The effectiveness and practicality of the proposed
method are validated through real-world application cases,
providing a new solution for three-phase unbalance
management with significant engineering application
value.
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