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Abstract. With the widespread application of renewable
energy, photovoltaic (PV) storage and charging (SC)
integrated stations are important in providing a stable
power supply and optimizing energy management.
Traditional integrated PV SC stations mostly use the PID
(Proportion Integral Differential) control algorithm for
automatic switching in grid-connected/off-grid (GC/OG)
mode. The switching decision accuracy is low, energy
consumption is increased, and there needs to be a more
intelligent prediction of future photovoltaic power
generation (PVPG), load demand and grid conditions.
This paper is the first to combine the advantages of the
dynamic decision-making of the DQN (Deep Q-Network)
algorithm and the time series prediction of the LSTM

(Long Short-Term Memory) model to study the
automatic switching strategy of the
grid-connected/off-grid mode of the integrated

photovoltaic storage and charging station. The study first
built a PV SC integrated station model, including PVPG,
energy storage system, power grid model and load
demand model, and set the objective function and
constraints. Then, the LSTM model was used to predict
the future load demand and PVPG of the PV SC
integrated station, and the prediction was input into the
DQN model. Finally, the DQN model combined the
LSTM prediction results with the current environmental
status to decide whether the PV SC integrated station
should be connected to or off the grid. The experiment is
based on the data of the PV SC integrated station
actually deployed in a particular area from January to
June 2023, and the performance of the GC/OG mode
automatic switching strategy of the PV SC integrated
station is statistically analyzed. The experimental results
show that the strategy switching accuracy of the
DQN-LSTM  (Deep Q-Network-Long  Short-Term
Memory) model reaches 95.87%, which is 15.44%
higher than the traditional PID, and the energy efficiency
ratio is as high as 1.75. The experimental results show
that the DQN-LSTM model combined with intelligent
control can automatically switch the GC/OG mode of the
integrated PV SC station, which significantly improves
the accuracy and efficiency of the strategy and reduces
energy consumption to a certain extent.
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1. Introduction

As the global demand for sustainable energy increases,
PVPG has been widely used as a green and clean energy
form [1,2]. To improve energy efficiency and reduce
dependence on the power grid, integrated PV SC stations
have become a solution that has attracted much attention
in recent years [3-5]. How to efficiently achieve GC/OG
mode switching and ensure system stability and optimal
energy efficiency is still a hot and challenging issue in
current research.

In recent years, with the integration of PVPG, energy
storage systems and charging piles in photovoltaic
energy storage integrated stations, many scholars have
begun to study the GC/OG mode automatic switching
problem and have achieved many research results. Yao
M, Wu K Y, and other scholars reviewed the capacity
allocation, energy management and control strategies of
photovoltaic energy storage integrated electric vehicle
charging stations, providing an important research basis
for this paper [6,7]. Hmad J and other scholars used
microgrid technology to convert the grid-connected and
off-grid modes, ensuring a smooth transition between the
grid-connected and off-grid modes [8]. Based on the
adaptive fuzzy neural reasoning system and adaptive
fuzzy PID control, the NMC (nonlinear multimode
controller) controller has been widely used in the
switching of photovoltaic-WT (Wind Turbine) system
grid-connected and off-grid and energy storage inverter
seamless off-grid, significantly reducing the switching
time [9-11]. Kampik M et al. constructed a
threshold-based converter system for switching between
off-grid and grid-connected operation modes, which
improved the switching efficiency, but it could not adapt
to dynamic and complex environments [12]. Perumal V
et al. used a controller developed using the MPSO
(modified particle swarm optimization) algorithm to
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switch the grid mode, achieving fast and smooth
switching of the grid mode [13]. The above scholars use
PID control, threshold-based controllers, etc., to analyze
historical data and achieve flexible mode switching.
However, these methods have poor switching decision
accuracy and need long-term prediction of future load
demand and PVPG, making it difficult to cope with
dynamic changes in complex environments.

To overcome the low switching decision accuracy and
lack of intelligent prediction capabilities, many scholars
have begun to explore dynamic decision-making
methods based on intelligent control and have achieved
good results. Among them, applying deep reinforcement
learning and time series prediction models in energy
management has achieved certain breakthroughs. As a
type of reinforcement learning, the DDQN (Double Deep
Q-Network) algorithm has been widely used in the
cost-effective operation of residential buildings with
grid-connected photovoltaic battery systems,
significantly reducing costs [14,15]. The TD3 (Twin
Delayed Deep Deterministic policy gradient) algorithm
has been well applied in the management of
grid-connected wind-microturbine-photovoltaic-electric
vehicle energy systems and grid-connected photovoltaic
systems, improving the switching efficiency between
grid-connected and off-grid systems while reducing costs
[16,17]. Qi J et al. used the DQN algorithm to dispatch
microgrids and improve dispatch efficiency optimally
[18]. Mohammad F et al. introduced a fusion model of
ConvLSTM (Convolutional Long Short-Term Memory)
and BiConvLSTM (Bidirectional Convolutional Long
Short-Term Memory) to predict the network energy
demand load of electric vehicle charging stations,
achieving good prediction results and providing a basis
for strategy advancement for subsequent intelligent
decision-making [19]. Yang C, Aduama P and other
scholars used LSTM model to predict the load of electric
vehicle charging stations, achieving extremely low
prediction error  [20,21]. Avar et al. used bidirectional
LSTM to predict photovoltaic power generation and load
demand, reducing deviation and improving efficiency
[22]. The above scholars used TD3 algorithm, DQN
algorithm and other algorithms to make decisions and
control grid-connected photovoltaic cells and other
energy systems, achieving good results. However, there
are few studies on applying deep intensity learning
models in the automatic switching of GC/OG mode in
integrated PV SC stations, and scholars have not been
able to integrate intelligent strategies and future load
forecasting.

This study aims to address the decision-making accuracy
and energy efficiency issues faced by integrated PV SC
stations in GC/OG mode switching. It adopts an
intelligent decision-making strategy based on deep
reinforcement learning and time series prediction. In the
experiment, a comprehensive model of the integrated PV
SC station is built first, covering multiple factors such as
PVPG, energy storage system, power grid and load
demand, ensuring the comprehensiveness and practical
operability of the system model. LSTM is used to make
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time series predictions for future load demand and PVPG,
and the prediction results are input into the DQN model.
The DQN model then uses the real-time environmental
status and the LSTM prediction results to jointly decide
whether to switch to grid-connected or off-grid mode,
thus optimizing the decision-making process. Through a
series of experiments based on actual data, the study
verifies the significant advantages of the DQN-LSTM
model in improving the GC/OG mode switching
accuracy, energy efficiency ratio and system response
speed of the integrated PV SC station. The experimental
results show that DQN-LSTM significantly improves the
accuracy and efficiency of strategy switching and also
effectively improves the overall performance of energy
management, demonstrating its potential application in
renewable energy management.

Contribution of the paper:

(1) This paper innovatively combines the DQN algorithm
with the LSTM model, fully utilizing deep reinforcement
learning’s dynamic decision-making ability of deep
reinforcement learning and the advantages of LSTM in
time series prediction. It also deepens the research depth
in GC/OG mode switching of PV SC integrated stations.

(2) The study comprehensively considers multiple key
factors such as PVPG, energy storage system, grid
conditions and load demand. A comprehensive and
practical PV SC integrated station model is also
constructed. This model provides accurate input data for
decision-making, ensures the algorithm’s practical
application value, providing a reference for future
scholars.

(3) Experimental verification shows that the
DQN-LSTM model performs well in improving energy
utilization efficiency and significantly improves the
system’s energy management performance. The
optimization  decision-making  process of  the
DQN-LSTM model improves the overall economic
benefits, showing its wide application potential in
renewable energy management and its value in green and
low-carbon development.

2. Design of GC/OG Mode Automatic Switching
Strategy for Integrated Photovoltaic, Storage and
Charging Station

A. Construction of Integrated Photovoltaic, Storage
and Charging Station Model

1) PVPG Model

By combining solar PVPG with battery energy storage
system, efficient production, storage and distribution of
electricity are realized, and charging services are
provided for electric vehicles and other equipment
[23-25]. In the PVPG model, the output power depends
on the light intensity, ambient temperature and the



efficiency of the photovoltaic panel. The modeling
expression of the PVPG model is shown in formula (1).

p,(t) = B(t)-I-a,cos(6)(1)
p, (t) represents PVPG.

2)  Energy Storage System Model

Battery packs and battery management systems are part
of the energy storage system [26,27]. Formula (2) shows
the modeling expression of the battery pack charging and
discharging process.

P,(t)-At

D(t+1)=D(t)+ 2)

b
3) Load Demand Model

The load demand model covers historical data and future
forecast values. The expression of the load demand
model is shown in formula (3).

E(t) = f(E(t-1),E(t-2),-- E(t-n))(3)

f represents the function of the LSTM model learning
historical data and predicting load demand.

4) Grid Model

The expression of the total system power is shown in
formula (4).

P, () = P, (t) + P, (t) + P, (t)(4)

5) Energy Management Objective Function and
Constraints

The system in the integrated PV SC station aims to
maximize energy efficiency and ensure stable power
supply [28]. The objective function is expressed as
shown in formula (5).

Ob=max}_, (BP, () + P, (1) - 6P, (H)(5)
B .y ,andd represent weight coefficients.

When constructing the PV SC integrated station model,
the constraints are as follows:

The constraint of battery charging and discharging
restrictions are shown in formula (6).
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0< D(t) < C,(6)

The constraint corresponding to the power balance are
shown in formula (7).

P, (t)+P,(t)=E(t)+P, (t)7)
The battery power limit is shown in formula (8).

P 2 |P, (1) 2 0(8)

P represents the maximum charge and discharge

power of the battery.
The energy management problem of integrated
photovoltaic storage and charging stations is a

non-convex optimization problem. The problem involves
multiple complex constraints, such as battery charging
and discharging restrictions, power balance, and battery
power restrictions. These constraints make the
relationship between the objective function and the
constraints nonlinear and have multiple local minima.

To solve this non-convex optimization problem, this
paper adopts the DQN algorithm. DQN combines the
advantages of deep learning and Q learning. It estimates
the state-action value function by training a deep neural
network to guide the intelligent agent to make the best
decision in a complex and dynamically changing
environment. In the energy management problem of
integrated photovoltaic storage and charging power
stations, DQN can effectively learn the optimal energy
scheduling strategy through interaction with the
environment. This can achieve the optimal operation of
the system in terms of battery charging and discharging,
photovoltaic power generation, energy storage and grid
interaction, maximize energy efficiency, and ensure
power supply stability.

B. DQN Algorithm Construction and Training

1) DON Algorithm

DQN (deep Q-learning) [29-31] combines the ideas of
deep neural networks and Q learning, and uses the
approximate representation of the Q-value function to
achieve learning and optimization of the action value
function in complex environments.

2) DQN Design (State Space, Action Space, Reward

Function Design)
(1) State space design

In fully describe the state of the PV SC integrated station,
the experiment selects key features related to the power
grid, PVPG, energy storage system and load demand,



including PVPG power, charging state of energy storage
battery, load demand, grid power, etc. The definition of
the state space is shown in formula (9).

S(6) =[P, (), D), E(t), P,, () |(9)

E(t) represents the load demand, which corresponds to
the user's electricity demand.

(2) Action space design

The action space defines the operation of the DQN
algorithm in a given state. DQN makes the most
appropriate decision at each time step based on the
current state, ensuring that the PV SC integrated station
can efficiently switch between grid-connected and
off-grid. This paper’s action space includes two
operation modes: grid-connected and off-grid. The
definition of the action space is shown in formula (10).

A(t)= [al’az ](1 0)

a, represents the off-grid mode, and the corresponding

value is 0. a, represents the grid-connected mode, and the
corresponding value is 1.

(3) Reward function design

As a core part of DQN, the reward function measures the
return brought by a certain action. In the automatic
switching strategy of the PV SC integrated station, the
goal of this paper is to maximize the system’s energy
efficiency and reduce unnecessary energy consumption.
The reward function is designed based on the efficiency
of PVPG and energy storage batteries, the degree of grid
dependence, and the degree of matching of load demand.

The reward function design expression is shown in
formula (11).

R(6) = &-(P, ()~ E(®) - - |D(O) - D, |- pP, (1)

D, represents the target battery charge state value, which
is 50% of the original value.

The reward function design diagram is shown in Figure 1.
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Figure 1. Reward function design diagram



In terms of energy storage system utilization efficiency,
when the energy storage battery is fully utilized and the
battery charge state value is in a moderate range, the
system gets a positive reward of +3. If the target value is
very close, it is +5, and if it is generally close to the
target value, it is +1. If the battery charging state value is
far from the target value, a negative reward is given
according to the degree of deviation. If the deviation is
large, it is -5, if the deviation is medium, it is -3, and if
the deviation is small, it is -1. In terms of the degree of
grid dependence, if the system depends on the grid, it
corresponds to the grid-connected mode and a negative
reward of -3 is given, otherwise it corresponds to the
off-grid mode and a positive reward of +3 is given.

3) DON Algorithm Construction

The DQN algorithm structure constructed in this paper is
divided into an input layer, a hidden layer, and an output
layer. The input layer is the state of the integrated PV SC
station system, and the output layer is the Q value and
action corresponding to the action. To improve training
efficiency and stability, the DQN algorithm adopts an
experience replay mechanism [32,33]. Through
experience replay, the intelligent agent can break the
time correlation in the training process, reduce the
correlation between data, and make the training process
more stable.

The steps of the DQN algorithm are as follows:

(1) The parameters of the deep neural network and the
target network can be initialized first, and the experience
replayer can be initialized.

(2) It can select an action under the current strategy,
observe the reward and next state returned by the
environment after executing the action, and then store the
experience tuple in the experience replay memory.

(3) A small batch of experience tuples can be randomly
sampled from the experience replay memory, and the
target network can be used to predict the Q value of the
next state and calculate the target value.

4) Loss Function and Parameter Update

In DQN training, the loss function is mainly used to
measure the difference between the current network
output Q value and the target Q value. DQN uses the
Q-Learning objective function for update, and the
calculation of the loss function is shown in formula (12).

LO)=E,.. 0|2 -Q(s,a,0) |(12)

z, represents the target Q value, and O represents the
experience replay buffer.
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The calculation formula for the output target Q value is
shown in formula (13).

Z, =T+ (maxQ(St(,Cl'; 07)(13)

The Adam optimizer combines the gradient descent and
momentum methods and can converge quickly in most
cases. This paper uses the Adam optimizer to minimize
the loss function and update the network parameters as
shown in formula (14).

lgt

L

6 =6, -

t t

14)

9 represents the first-order moment estimate,
and ¢ represents the second-order moment
estimate. k represents a very small constant,

and @ represents the learning rate.

C. LSTM Model Design and Training

In this study, the paper use a standard LSTM neural
network for load demand and PV output forecasting,
mainly considering the simplicity and interpretability of
the model. More complex models such as bidirectional
LSTM and stacked LSTM can better capture the
long-term and short-term dependencies in time series in
some cases, resulting in higher prediction accuracy, but
these models are more complex and more difficult to
train and tune. To ensure that the model is trained in a
reasonable time and has good generalization capabilities,
the standard LSTM network is selected for the
experiment.

In the GC/OG mode automatic switching strategy of the
integrated PV SC station, this paper applieds the LSTM
model [34-36] to perform time series prediction of load
demand and PVPG. As a deep learning model, the LSTM
model can effectively model long-term dependencies,
provide accurate predictions for future load demand and
power generation, and provide reliable decision input for
the DQN algorithm.

The input layer of the LSTM model inputs the load
demand and PVPG in the PV SC integrated station in the
past n time steps. Then, the LSTM unit layer uses the
gating mechanism to selectively remember or forget the
information and output the load demand and PVPG
forecast value at a certain moment in the future.

Forget gate is shown in formula (15).
9. =W, [m,, @]+ ¢,)(15)

Input gate is shown in formula (16).



je =§U; [m,, @, ]+ ,)(16)
Candidate memory cellis shown in formula (17).
M, =tanU,, [m, ,, @, |+ ¢, )(17)
Memory cell update is shown in formula (18).
M, =g,-M,, +j,-M,(18)
Output gate is shown in formula (19).
D, ={Uy[m, @, ]+,)(19)
Hidden state is shown in formula (20).
m, = @, -tanh(M, )(20)

D.  Fusion of DON Model and LSTM Model
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In this paper, the DQN model and LSTM model are
responsible for the tasks of intelligent decision-making
and time series prediction respectively. The study uses a
cascade structure to fuse the DQN and LSTM models.
The LSTM model first performs time series forecasting
on PVPG and load demand and uses the forecast results
as the input of the DQN model. The DQN model uses
learning to obtain the optimal GC/OG decision. The core
of the cascade structure fusion method is to enhance
DQN's ability to predict future states through the output
of LSTM so that it can make more accurate decisions in
a dynamically changing environment.

In the DQN-LSTM fusion model, DQN calculates the
corresponding Q value based on the current state and
prediction results in each training step and updates its
network parameters. The prediction value output by
LSTM helps DQN better judge the future state and
improve the accuracy of decision-making. The training
of the LSTM model and the DQN model is synchronized
to a certain extent, and the error feedback of the LSTM
during the training process affects the parameter update
of the DQN through back propagation.

The structure of the DQN-LSTM fusion model is shown
in Figure 2.
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Figure 2. Structure of DQN-LSTM fusion model

E. GC/OG Mode Switching Logic

The DQN model selects the appropriate mode based on
the calculated Q value. The switching rules are as

follows. When the energy storage battery is fully charged
and photovoltaic power generation cannot meet the load
demand, the system will prioritizes off-grid mode and
provides power through the energy storage battery. When



the energy storage battery is insufficient and the
photovoltaic power generation is greater than the load
demand, the system will switches to grid-connected
mode. The switching conditions between the
grid-connected mode and the off-grid mode are shown in
formula (21).

P,(t)2 P, and P,(t) 2 E(t)
P,(t) <P, and P, (t) < E(t)

P, represents the sufficient threshold of the energy
battery.

When the energy storage battery power is moderate and
the PVPG power is close to the load demand, the system
decides to connect to the grid or go off the grid according
to the actual situation. When the energy storage battery
power and PVPG power are both unstable, the prediction
and intelligent decision-making of the DQN model are
used to make switching.

The classification tree diagram of various control
strategies for the storage system of the renewable energy
station is shown in Figure 3. Figure 3 clearly shows the
structure and characteristics of various methods, which
provides an intuitive reference for understanding and
selecting storage system control strategies suitable for
different scenarios.
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Figure 3. Classification tree of various control strategies for storage systems of renewable energy stations

In Figure 3, a tree flow chart shows the main
classification and subclassification of storage system
control strategies for renewable energy stations
connected to smart grids. The control strategies are
divided into four categories: rule-based strategies,
optimization algorithm-driven strategies,
prediction-based strategies, and hybrid control strategies.
Rule-based strategies include simple methods such as
fixed scheduling control, state feedback control, and
event-triggered control. Optimization algorithm-driven
strategies cover linear programming, dynamic
programming, and meta-heuristic algorithms such as
genetic algorithms and particle swarm optimization.
Prediction-based strategies focus on time series analysis
and machine learning prediction, among which deep
learning methods such as recurrent neural networks and
LSTM networks. Hybrid control strategies integrate rules,
optimization, and prediction, and propose solutions for
multi-objective collaborative control.

3. GC/OG Mode Automatic Switching Strategy
Evaluation Experiment

A. Experimental Environment

Hardware environment: Intel Core i9-13900K, NVIDIA
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RTX 4090, 64 GB DDR5 5600 MHz, 2 TB NVMe SSD.

Software environment: Windows 11 Pro, Python 3.11,
PyTorch 2.1.0, Matplotlib 3.8.2, Pandas 2.1.1, CUDA
12.2.

In the construction of the experimental test bench, this
paper builds a high-precision experimental platform
based on the hardware and software environment. The
test bench simulates the actual operation of the
photovoltaic power generation system and integrates
energy storage equipment to truly reproduce the impact
of different load conditions and environmental variables
on system performance. In the test bench, a
high-frequency data acquisition module is used to record
the system operation status in real time, including key
parameters such as voltage, current, temperature and
light intensity, providing reliable measured data support
for model verification.

In the development of the intelligent control part, this
study implements a control algorithm based on
DQN-LSTM and embeds it into the experimental test
bench for real-time verification. To adapt the intelligent
control algorithm to the actual system, the parameters are
optimized according to the operating characteristics of



the test bench, and the stability and efficiency of the
control strategy are determined through multiple rounds
of experiments. At the same time, the experimental
results are compared and analyzed with the simulation
data to verify the effectiveness and superiority of the
proposed method in practical applications, ensuring the
integrity of the research from theory to experiment to

practical application and enhancing the persuasiveness
and practicality of the research results.

A view of the PV SC integrated station with all
measurement instruments and data acquisition systems is
shown in Figure 4.

Photovoltaic SC integrated station

Control strategy
adjustment module

Figure 4. View of the photovoltaic SC integrated station and all measuring instruments and data acquisition systems

In Figure 4, the view of the photovoltaic SC integrated
station and all measuring instruments and data
acquisition systems shows the overall architecture of the
photovoltaic storage and charging integrated system and
the interactive relationship between key components.
The system uses integrated photovoltaic power
generation, energy storage equipment and intelligent
control modules to monitor and adjust the operating
status of the system in real time. The photovoltaic power
generation system collects power output, light intensity
and environmental data through photovoltaic modules,
inverters, voltage and current meters, temperature
sensors and other equipment. The energy storage system
uses battery packs, battery management systems and
related measuring equipment to monitor the charging and
discharging process of the battery. The data acquisition
module is responsible for the collection and transmission
of high-frequency real-time data, and the data is analyzed
and displayed through the monitoring platform. The
intelligent control system is dynamically adjusted based
on the DQN-LSTM algorithm to optimize the
grid-connected/off-grid mode switching strategy of the
photovoltaic storage and charging system and improve
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the system’s operating efficiency and stability. The
integration of the entire system enables the experimental
test bench to effectively verify the intelligent control
algorithm’s performance in a real environment and
provide reliable data support for practical applications.

The high-frequency data acquisition module is an
important part of the photovoltaic storage and charging
integrated system, which includes a data acquisition card,
photovoltaic voltage and current sensors, temperature
sensors, light intensity sensors, data storage and
transmission modules, system control modules, and
power analyzers. The design specifications and
parameters of the high-frequency data acquisition
module are shown in Table 1.

Table 1 shows the specifications and parameters of each
component in the high-frequency data acquisition
module. For the data acquisition card, the design
specifications include the sampling frequency, number of
input channels, accuracy, input range, and parameters
including sampling accuracy and maximum sampling
speed.



Table 1. Design specifications and parameters of the high-frequency data acquisition module

Number of . .
. . Sampling Maximum
Sampling frequency input Accuracy Input range .
Data channels accuracy sampling speed
Acquisition
Card 0-10 V voltage
1000 Hz 16 channels 16 bits input, 0-20 A +0.1% 1 MS/s
current input
Voltage Current Response . Rated operating
. measuremen ) Accuracy Noise
Photovoltaic measurement range t Tange time temperature
voltage g Loss than 5
0-600 V 0-20 A o +0.5% <l mV -20°C to +60°C
Analog .. .
Temperature Response . . Digital signal
) Accuracy Resolution signal
Temperature measurement range time output output
sensor I 0
-40°C to +85°C il B R B0 0.01°C 0-5V 12C, SPI
500 ms
Light Light intensity Response Accuracy Resolution Analog output interface
R . range time
intensity L h
sensor 0-2000 W/m? s AN 30, 1 W/m? 0-10V
200 ms
. Transmissio Data Storage .
Storage capacity . - Transmission rate
Data storage n protocol interface capacity
and Supports
transmission Ethernet or | USB,
module 24 hours Wi-Fi RS-232. >16 GB At least 1 Gbps
RS-485
. Processor . .
I/O interface frequency Memory capacity System response time
System -
Control Supports multiple
Modul input and output | >
odule interfaces  (GPIO, >1 GHz >4 GB Less than 1 ms
PWM, SPL, 12C)
Power Power measurement Accuracy Measuremen Response time Analog output interface
Analyzer range t accuracy
0-100 kW +0.1% +0.1% Less than 1 m 0-10V

B. Experimental Data and Preprocessing

The experimental data in this paper comes from the PV
SC integrated station actually deployed in a certain area.
The data is collected in real time every 10 minutes by the
monitoring system of the station from January to June

2023. The data includes PVPG (PV power generation),
energy storage battery charging and discharging power,

25,920

experimental data are shown in Table 2.

Table 2. Some experimental data

grid power load, user load demand, energy storage
battery power, temperature, humidity, light intensity, etc.
In the experiment, 180 days of operation data, about

sets of data records, are collected. Some

Energy  storage . .
of | g | bty chrsing | ol | qimnd | vary powe | SmpeTeue | Humidiy | i
groups | n (kW) power (kW) BN | Joad (kW) | (kW) (kWh) o (W)
1 120 40 80 100 300 28 65 900
2 130 35 75 110 295 29 60 950
3 140 45 85 120 310 30 70 1000
4 110 30 90 90 280 27 55 850
5 95 20 100 85 270 26 80 800
6 100 50 95 95 320 25 75 880
7 150 60 70 115 350 32 68 1100
8 80 15 105 75 260 24 60 700
9 125 55 80 100 330 29 72 950
10 135 40 90 110 315 30 68 980
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Table 2 shows 10 sets of data in 180 days, including
PVPQG, energy storage battery charging and discharging
power, grid power load, user load demand, energy
storage battery power and some environmental
information.

Preprocessing
(1) Data cleaning

For missing value data, linear interpolation is used to fill
in the data. For continuous data, the linear relationship
between the previous and next data is used to fill missing
values to ensure smooth data transition, while for
discrete data, the nearest neighbor interpolation method
is used to fill in the missing values.

(2) Data normalization

The dimensions and numerical ranges are quite different.
This paper uses the Min-Max normalization method to
map the value of each feature to the interval [0, 1] to
eliminate the dimensional differences between different
features.

C. Experimental Design
Experimental Objectives:

(1) Optimizing the switching strategy can enable the
system of the PV SC integrated station to operate
efficiently and stably under different load demands and
environmental conditions, maximize energy utilization
and reduce energy loss.

(2) It can ensure that the intelligent control model can
respond in real time and make accurate automatic
switching decisions, thereby improving the real-time and
flexibility of the system.

Based on the above experimental data, the experimental
steps are as follows:

@ The collected experimental data can be cleaned and
smoothed first, and normalized using Min-Max.

(2 The experiment constructs a PV SC integrated station
model, which is divided into PVPG, energy storage
system, power grid model and load demand model, and
designs the objective function and formulates the
constraints.

(3 The study uses the LSTM model to predict the load

65

demand and PVPG of the PV SC integrated station in the
future, and inputs it into the DQN model.

@ Based on the prediction results and the current
environmental status, the DQN model makes intelligent
grid-connected or off-grid switching decisions for the
integrated PV SC station.

® The automatic switching decision performance of the
fusion model DQN-LSTM in the integrated PV SC
station GC/OG mode can be statistically analyzed.

To verify the effectiveness of the proposed method, a
photovoltaic integrated power station is used in a
medium-sized industrial park with a load demand of 200
kW-500 kW and a photovoltaic power of 100 kW-250
kW. The capacity of the energy storage battery is
generally designed to be 1.5-2 times the photovoltaic
power generation power, and the energy storage battery
capacity is designed to be 150 kWh to 500 kWh.

The basic system structure of the photovoltaic integrated
power station includes a photovoltaic power generation
system, an energy storage system, a control strategy and
decision system, and a grid/load connection module. It is
assumed that the system scale is further expanded to
increase the photovoltaic power generation capacity to 1
MW to 5 MW, or to expand to a larger industrial area or
a power station in multiple regions. In that case, the
method proposed in this paper is still applicable, but
there are some limitations.

(1) As the scale increases, the load demand, photovoltaic
power generation, and energy storage capacity increase
significantly, resulting in an increase in the
computational complexity of the DQN and LSTM
models. It is necessary to adopt a more -efficient
optimization algorithm or distributed computing method
to maintain the real-time response capability of the
system.

(2) When the scale is expanded, the system's real-time
response and control decision-making delay can increase,
so combining edge computing or cloud computing
technology is necessary to further optimize the system's
response time and computing power.

(3) Larger-scale systems have more complex dynamic
changes, and the platform needs to retrain and adjust the
DQN and LSTM models to ensure the accuracy and
effectiveness of decisions.

The experimental hyperparameter settings are shown in
Table 3.



Table 3. Hyperparameters

Parameters Value Parameters Value
Learning rate 0.001 Number of hidden layer units 128
Discount factor 0.9 Time step 10
Experience replay pool size 5000 Optimizer Adam
Batch size 64 Number of training rounds 100

In the experimental application, this paper encounters
some challenges, including incomplete and unbalanced
data sets, making it difficult for the model to obtain
effective learning results during training. The actual data
of photovoltaic power generation and energy storage
systems are greatly affected by environmental factors,
resulting in data volatility and wuncertainty, further
increasing the complexity of model prediction. This
paper preprocesses the data and uses data enhancement
technology to balance the data set by supplementing and
expanding samples to improve the generalization ability
of the model. The hyperparameters in the model training
process are optimized, and the cross-validation method is
combined to avoid overfitting to ensure that the model
can maintain good performance under different
conditions.

During the training process, the DQN-LSTM model’s
convergence speed is slow. Especially when facing
complex power grid scheduling and load demand
changes, the amount of calculation in the training process
is large. This paper adopts the model parallelization
method to distribute the computing tasks to multiple
processing units for parallel computing, which greatly
accelerates the training speed. At the same time, in terms
of algorithm optimization, the experience replay
mechanism and target network update strategy are
adopted to effectively improve the training stability and
reduce the fluctuations in the training process.

D. Experimental Results

1)  Grid-Connected/Off-Grid Switching Accuracy,

Precision and Efficiency of Different Models

To evaluate the automatic switching decision-making
performance of the integrated PV SC station GC/OG
mode, the GC/OG switching accuracy, precision and
efficiency is used in the experiment to analyze the
automatic decision-making performance. The results are
shown in Figure 5. In Figure 5, the comparison models
include TD3-LSTM (Twin Delayed Deep Deterministic
policy gradient-Long Short-Term Memory), A3C-LSTM
(Asynchronous Advantage Actor-Critic-Long Short-Term
Memory), DQN, and PID.

Switching accuracy refers to the proportion of the model
correctly switching to the target mode (grid-connected or
off-grid). The model's prediction of when to switch to the
grid or off-grid matches the actual demand. High
accuracy indicates that the model can accurately identify
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and execute the correct mode switch. Switching accuracy
measures the accuracy of the model's switching decision.
It is mainly used to evaluate the deviation between the
actual correct switch (grid-connected or off-grid) and the
predicted decision result in the switching decision made
by the model. It focuses on the number of wrong
switches of the model. If the model predicts that the grid
should be switched, but it should actually be off-grid,
then this wrong switch will affect the accuracy.
Switching efficiency refers to the amount of time or
resources consumed by the model when switching
between grid-connected and off-grid modes. A
high-efficiency model can make decisions and execute
the switch in a shorter time, reducing the response delay
of the system.

Accuracy focuses on the correctness of the model's
switching decision, that is, whether the correct
grid-connected or off-grid mode selection is made.
Precision pays more attention to the proportion of wrong
switches, evaluating the "wrong" situation of the model
when executing the switching decision. Efficiency
reflects the resource consumption and time efficiency of
the model when executing the decision. Switching
efficiency is quantified by analyzing the time and
resources consumed by each model when performing a
switch. Switching precision is quantified by calculating
the ratio of correct switches predicted by the model to all
predicted switches, and switching accuracy is quantified
by comparing the correct switching ratios of different
models.

Switching accuracy (%)—@— Switching precision (% )—A— Switching efficiency (%)

DQN-LSTM

100

PID | \ / TD3-LSTM
DON A3C-LSTM

Figure 5. GC/OG switching accuracy, precision and efficiency
of different models



In terms of switching precision, DQN-LSTM reaches
93.22%, and A3C-LSTM reaches 86.56%. In contrast
DQN and PID have precision rates of only 82.33% and
75.21%, respectively. In terms of switching efficiency,
DQN-LSTM performs best, reaching 96.34%, while PID
only reaches 84.56%. In summary, the DQN-LSTM
model achieves the best performance in automatic
switching decision-making for the GC/OG mode
integrated PV SC station. DQN-LSTM uses the
Q-learning algorithm in deep reinforcement learning to
dynamically adjust the decision-making strategy so that
it can better adapt to changes in complex environments.
The PID model uses simple rule control, which is
difficult to cope with complex decision-making needs
and has a low accuracy rate.

2) Energy Management Effects

Energy management is crucial in a PV SC integrated
station. A good switching strategy can often reduce
energy consumption and improve utilization. The
experiment counts the PVPG utilization rate and battery
utilization rate, and the energy efficiency ratio is used to
measure the overall energy utilization efficiency. The
energy management effect analysis is shown in Figure 6.
The higher the energy efficiency ratio, the more useful
output the system can produce under unit energy input.

In Figure 6, from the perspective of energy efficiency
ratio, the DQN-LSTM model performs best, with an
energy efficiency ratio of 1.75, which is 0.55 higher than
PID. The energy efficiency ratios of TD3-LSTM and
A3C-LSTM are 1.6 and 1.5 respectively. The energy
efficiency ratios of DQN and PID are 1.35 and 1.2
respectively, and the energy efficiency management is
relatively inefficient.
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Figure 6. Analysis of energy management effect

In terms of PVPG utilization and battery utilization, the
PVPG utilization and battery utilization efficiency of the
DQN-LSTM model reach 95.35% and 92.12%
respectively, with the highest utilization rate. The PVPG
utilization rate of DQN is only 85.12%, and the battery
utilization efficiency is 79.61%. PID performs the worst,
with a PVPG utilization rate of only 80.45% and a
battery utilization efficiency of only 76.98%.
DQN-LSTM uses deep reinforcement learning to achieve
more accurate scheduling and switching, which can
maximize the use of PVPG and energy storage systems.

3) Comparison of Load Demand and PVPG
Prediction Performance

In Figure 7, the comparison models include GRU (Gated
Recurrent Unit), ARIMA (Autoregressive Integrated
Moving Average model), RF (Random Forest), and KNN
(k-nearest neighbor).
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Figure 7. Comparison of load demand and PVPG prediction performance. Figure 7 (a) Load demand prediction performance, Figure
7 (b) PVPG prediction performance.

In Figure 7, Figure 7 (a) shows the load demand
prediction performance, and Figure 7 (b) shows the
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PVPG prediction performance. In Figure 7(a), the LSTM
model performs best, with a MAE (Mean Absolute Error)



of only 0.31 kW and an RMSE (Root Mean Square Error)
of only 0.42 kW. The MAE of the GRU model is 0.55
kW and the RMSE is 0.65 kW, which is worse than the
LSTM. The KNN has the highest MAE of 0.72 kW and
the RMSE of 0.85 kW, with the largest error.

In Figure 7 (b), the LSTM performs well, with an MAE
of 0.21 kW and an RMSE of 0.35 kW. The MAE of
KNN is 0.55 kW and the RMSE is 0.75 kW. In summary,
LSTM has a high accuracy in load demand and PVPG
prediction due to its powerful time series modeling
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ability, and can make more accurate predictions of load
demand and PVPG.

4) Real-time Performance
Decision-Making

of

Intelligent

To further explore the real-time decision-making of the
integrated PV SC station, its decision response time,
training time, training speed, and parameter quantity are
statistically analyzed. The results are shown in Figure 8.
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Figure 8. Real-time performance of intelligent decision-making. Figure 8 (a) Decision response time and training time, Figure 8(b)
Training speed and parameter amount.

In Figure 8, Figure 8(a) represents the decision response
time and training time, and Figure 8(b) represents the
training speed and parameter amount. In Figure 8 (a), the
PID model performs best in decision response time,
which is only 5.0 ms. The A3C-LSTM model has the
longest response time, up to 23.0 ms. The DQN-LSTM
model reaches 12.2 ms, which shows that it has a certain
degree of real-time performance. In terms of training
time, the DQN-LSTM model training time is only 1.2
hours, while the TD3-LSTM model and the A3C-LSTM
model reach 1.5 hours and 2 hours respectively.

In Figure 8 (b), from the perspective of training
convergence speed, DQN-LSTM converges faster, and
the convergence speed of DQN is only 42 epochs, which
is slightly slower than traditional PID control. The
training speed of TD3-LSTM and other models is slower,
among which the TD3-LSTM model reaches 91 epochs.
In terms of parameter quantity, the PID model has the
least number of parameters, which is only 20M. The
number of parameters of DQN-LSTM is 70.5M, while
the number of parameters of TD3-LSTM and
A3C-LSTM is 80.2M and 85M respectively. In summary,
the DQN-LSTM model achieves good real-time
decision-making and meets actual needs.

5) Economic Benefits and Energy-Saving Effects

The PV SC integrated station is characterized by energy
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saving and high efficiency. In order to explore the
performance results of the DQN-LSTM experimental
method applied to the PV SC integrated station, the
economic benefits and energy saving effects are analyzed
by electricity cost, maintenance cost, and investment
payback period. The results of the economic benefit and
energy saving effect analysis are shown in Figure 9.
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Figure 9. Economic benefits and energy-saving effects



In Figure 9, the DQN-LSTM model performs best in
terms of electricity cost, with an electricity cost of
125,000 yuan, while the electricity cost of TD3-LSTM is
140,000 yuan and that of DQN is 130,000 yuan. The PID
model has the highest electricity cost, which is 180,000
yuan. In terms of maintenance cost, PID has the lowest
maintenance cost, which is only 30,000 yuan, while the
maintenance cost of DQN-LSTM is 50,000 yuan. It can
be found that the maintenance cost of deep learning
methods can increase, and it requires the maintenance of
more complex computing models and systems.

In terms of the payback period, DQN-LSTM has a
shorter payback period of 3.2 years, indicating that it has
better economic benefits in terms of energy saving. The
payback period of DQN is 3 years. The payback periods
of TD3-LSTM and A3C-LSTM are 3.5 years and 4 years,
respectively, and PID has the longest payback period of
up to 5 years. Overall, the DQN-LSTM model has a
shorter payback period in terms of economic benefits and
energy saving compared to the traditional PID control
method, and the integrated PV SC station is in line with

the green and low-carbon development of society.

The theoretical research in this paper reveals the
dynamic interaction mechanism between smart grids,
renewable energy stations and energy storage systems,
and provides theoretical support for optimization control
in real-time environments. This study explores how
smart grids can achieve efficient utilization of power
resources and balance supply and demand by
coordinating distributed energy scheduling and energy
storage system management under uncertain load
demand and variable energy input. The theoretical model
provides a framework for improving real-time
monitoring, prediction, and response capabilities, which
can guide the design of optimization algorithms in
practical environments and promote the stability,
reliability, and sustainable development of smart grids.

6) Comparison with Other Literature

The results of comparison with other literature are shown
in Table 4.

Table 4. Comparison results with other literature

References Switching accuracy (%) Switching efficiency (%) Switching time (s)
DQN-LSTM 95.87 96.34 0.01
EP-ANFIS [9] 92.45 91.78 0.78
Adaptive fuzzy PID [10] 83.62 82.95 0.56
NMC [11] 90.13 89.34 0.42
MPSO [13] 93.76 94.21 0.15

Table 4 shows that DQN-LSTM has a switching
accuracy of 95.87% and a switching efficiency of
96.34%, which are significantly better than other
literature methods, and the switching time is only 0.01s.
The accuracy and efficiency of EP-ANFIS and NMC are
good, but the switching time is long. The adaptive fuzzy
PID method is simple, but its accuracy and efficiency are
only 83.62% and 82.95% respectively, which are far
lower than other methods. The performance of MPSO is
relatively balanced, with a switching accuracy of 93.76%,
a switching efficiency of 94.21%, and a switching time
of 0.15s, which is suitable for scenarios with medium
real-time requirements. In summary, DQN-LSTM has
significant advantages in the comprehensive performance
of high accuracy, high efficiency and extremely low
switching time, demonstrating the potential of theoretical
research and practical application.

4. Experimental Discussion

In the experiment, the DQN-LSTM model performs well
in multiple performance indicators, among which the
accuracy, precision and efficiency of GC/OG switching
exceeded other models. In terms of energy management,
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the DQN-LSTM model is characterized by the highest
PVPG utilization rate and battery utilization efficiency,
which significantly improves the system’s energy
efficiency, and is significantly higher than that of PID. In
terms of load demand and PVPG prediction, the LSTM
model performs well, showing its strong ability in time
series prediction tasks. During training, the DQN-LSTM
model has a shorter training time and faster convergence
speed. DQN-LSTM combines DQN and LSTM and can
flexibly adapt to complex environmental changes by
dynamically adjusting decision-making strategies,
achieving more precise control and more efficient energy
management.

This study introduces advanced deep learning technology,
deep reinforcement learning and LSTM, to optimize the
integrated PV SC station’s energy management and
decision-making process. The DQN-LSTM model has
shown obvious advantages in multiple dimensions,
improving the GC/OG switching accuracy of the system,
enhancing energy utilization, reducing electricity costs,
and shortening the investment payback period. The
research is of great significance to promoting the
intelligent management of integrated PV SC station. By
optimizing switching decisions and energy scheduling, it



can achieve more efficient energy utilization, thereby
promoting the application of green and low-carbon
energy. The research results show that the intelligent
decision-making system based on deep reinforcement
learning has great potential in improving system
operation efficiency, energy conservation and emission
reduction. It can be extended to a wider range of energy
management systems, which can help promote
technological progress and application in the fields of
smart grids and renewable energy.

5. Conclusions

This paper adopts for the first time an intelligent control
strategy combining DQN with the time series prediction
LSTM model for automatic switching of the
grid-connected/off-grid mode of integrated photovoltaic
storage and charging stations. It combines LSTM to
predict future load and PVPG and inputs DQN for
decision optimization, which effectively improves the
system's switching accuracy, energy efficiency ratio and
overall energy management efficiency. This study has
made some achievements, but there are still some
shortcomings. The responsiveness of the experimental
model needs to be further optimized, and the
computational complexity is high when deployed on a
large scale. Future work and prospects are as follows:

(1) Design customized energy scheduling strategies
based on the climate characteristics and user load
characteristics of different geographical regions to
enhance the regional adaptability and accuracy of the
model.

(2) Combine distributed edge computing and cloud
computing technologies to distribute computing tasks
between site edge devices and central servers, reduce
computing delays and improve system scalability and
stability.

(3) Explore strategies for multi-energy coordinated
scheduling, such as wind and solar complementarity,
hydrogen energy storage, etc., to further improve the
green energy utilization efficiency of the system and
promote the innovative application of sustainable energy.
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