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Abstract.
The uncertainty associated with the prospective Energy Yield 
Assessment (EYA) of a wind farm may be reduced by re-

estimating the energy yield after it enters normal operation. This 

study aims to validate a simple methodology for conducting 

post-construction EYA of an operational wind farm. The 
proposed methodology derives a linear relationship between a 

historical source of wind speed data and the observed wind farm 

production on a monthly basis. In a first stage, the impact of 

different data sources on the accuracy of the Long-Term energy 
yield estimate was assessed. Results suggest that the 

determination coefficient R2 is a reliable indicator for selecting 

the most adequate source of historical wind speed data to be used 

in the Long-Term energy yield estimate. In a second stage, the 
model was validated from a statistical point of view by testing 

the premises of the linear regression model, namely the 

significance of the linear correlation (ANOVA test), and 

normally-distributed (Shapiro-Wilk test), non-self-correlated 
(Durbin-Watson), homoscedastic (Breusch-Pagan test) residuals. 

Results show these premises are verified for most test cases, 

indicating that the model is statistically robust that the model is 

statistically robust for most test cases. 
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1. Introduction

Implementing a wind farm involves several challenges, 

including assessing its economic viability and securing 

financing. However, a prospective Energy Yield 

Assessment (EYA) has a significant underlying 

uncertainty which can be attributed to uncertainty in the 

local measurements and intrinsic limitations of the wind 

models. After construction and once the wind farm enters 

normal operation, reassessing the annual energy yield 

using operational data (post-construction EYA) allows for 

a significant reduction in uncertainty relative to the pre-

construction study. This is key if the wind farm owner 

wishes to refinance or sell the project. 

There are several methods for the post-construction EYA 

of an operational wind farm, including the historical 

power curve method and the index method. Both methods 

apply the Measure-Correlate-Predict (MCP) to a historical 

Long-Term data source [1]. The MCP statistical method 

may reduce uncertainties in a wind project by correlating 

observed energy yield data from the operational wind 

farm with a Long-Term wind database. The wind database 

used in the MCP method can be of various types, the most 

common being reanalysis. The most commonly used 

reanalysis series are MERRA-2 and ERA5 and the main 

distinction between which lies in the spatial resolution, in 

terms of degrees, and the height at which the wind 

characteristics are measured [2], [3]. This approach 

establishes a correlation between these two data sources 

for a concurrent period, which is then applied to a longer 

dataset of historical data to estimate the long-term energy 

yield, as shown in Figure 1. 

This study aims to validate a simple methodology for the 

post-construction EYA of operational wind farms, using 

statistical methods that analyze the main assumptions 

considered. 
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Fig. 1. Schematic demonstration of the correlation between wind 

farm production data and data from the historical data source, in 

the MCP method. 

 

2. Methodology 

 

The study database consisted of 26 wind farms with 

varying operational periods (4 to 20 years), distributed 

across different countries: Portugal, Spain, Romania, and 

Canada. The selection of wind farms in different parts of 

the world aimed to capture different wind regimes and the 

effect they may have on the quality of the reanalysis series 

itself and the estimation of long-term energy production. 

The general information on each wind farm used in this 

study is described in Table I.  

 
Table I. Generic information for each wind farm 

Country Designation 
Installed 

capacity [MW] 

Years of 

operation 

Portugal 

P1 26 6 

P2 15 12 

P3 40 6 

P4 102 5 

P5 12 20 

P6 21.6 20 

P7 18 20 

P8 0.6 15 

P9 18.4 15 

P10 20 15 

P11 144 15 

P12 13,5 15 

Spain 

E1 64,7 4 

E2 100,7 4 

E3 54,4 4 

E4 128 4 

E5 45 4 

E6 20 4 

E7 49,5 4 

E8 49,5 4 

E9 30,6 4 

E10 25,2 4 

E11 30 4 

Romania 
R1 33,6 4 

R2 8,4 4 

Canada C1 100 9 

 

The input data used is the actual energy production of the 

selected wind farms, on a monthly basis, and the 

availability of the wind turbines that make up the farm, for 

the operating period.  The wind farm's actual production 

data is corrected for 100 % farm availability, i.e. the ratio 

between the monthly production value and the farm's 

availability in that month is calculated. This results in a 

series of monthly energy production data equivalent to 

100 % wind farm availability. 

 

For the central location of each wind project, 8 reanalysis 

series (4 of type ERA5 and 4 of type MERRA-2) were 

extracted for grid points closest to that central point, as 

shown in Figure 2. For each reanalysis data set, the 

observed monthly production data of each wind farm was 

linearly correlated with Long-Term wind data series for 

the simultaneous period, resulting in 8 correlations. To 

improve these correlations, points that are too far from the 

trend line or have a monthly availability value of less than 

85 % are filtered out. The established correlation was 

applied to the selected reanalysis data series, generating a 

reconstructed monthly production series for the wind 

farm's 15 years of operation, since 15 years was 

considered to be representative of the Long Term. 

Subsequently, the annual production series was obtained 

by summing the monthly productions for each year, and 

the Long-Term energy production estimate was calculated 

by averaging the annual productions over the 15-year 

period. The method is schematized in Figure 3.  

 

 
Fig. 2. Representation of the central point of a certain wind farm 

and the respective extracted reanalysis points. 
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Fig. 3. MCP method schematized. 

 

The validation of the adopted methodology was conducted 

by verifying the compliance with the assumptions of 

linear regression for the obtained correlation, through 

statistical analyses assessing each of the most relevant 

parameters. These analyses were applied to all wind farms 

with 4 to 15 years of operational data. The statistical tests 

used included: 
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A. The analysis of variance (ANOVA) is used to assess the 

statistical significance of the regression model, helping to 

determine whether the linear regression fitted to the data is 

statistically significant and whether the independent 

variables are making a significant contribution to 

explaining the behavior of the dependent variable 

(alternative hypothesis). The p-value is the statistical 

measure that helps determine whether there is evidence to 

reject the null hypothesis, so if the p-value is lower than 

the significance level (namely 0.05) it is possible to state 

that the model is statistically significant [4]. 

 

B. The Shapiro-Wilk test is the most powerful test for 

assessing the normality of a sample's distribution. If the p-

value is less than the significance level (usually 0.05), the 

null hypothesis can be rejected, and it can be concluded 

that the data does not follow the theoretical distribution. In 

the context of this work, this test was applied to assess the 

normality of the residuals [5]. 

 

C. The Durbin-Watson test is a statistical procedure used 

to check for the presence of autocorrelation in the 

residuals of a regression model, which occurs when the 

residuals of a model are not independent of each other, i.e. 

there is a relationship between the error at one point and 

the error at previous points. This test calculates a statistic 

that varies between 0 and 4, where a value close to 2 

indicates that there is no significant autocorrelation in the 

residuals and a value less than or greater than 2 suggests 

that adjacent residuals are correlated [6]. 

 

D. The Breusch-Pagan test is used in regression analysis 

to assess the variability of the model's residuals. The test 

assumes that the variability of the residuals in regression 

models is constant, calculating a statistic under the null 

hypothesis of constant variability and if the p-value 

associated with the D-statistic is less than a certain 

significance level (usually 0.05), the null hypothesis can 

be rejected, and it can be concluded that there is evidence 

of non-constant variability [7]. 

 

3. Discussion of results  
 

The correlations were analyzed to choose the most 

suitable reanalysis point for the study, with the selection 

criterion being the series associated with the combination 

of random residuals and the highest determination 

coefficient (R2). Using the wind farms with 15 years of 

operational data (wind farms P5 to P12) as a database, an 

analysis was carried out of all the reanalysis data sources 

extracted for these eight wind farms.  

 

The main objective of this analysis was to investigate the 

relationship between the value of the R² and the value of 

the percentage deviation between the estimate of Long-

Term energy production obtained for each of the 

reanalysis series and the actual average for the wind farm 

(Long Term Energy Yield Error). For each of the 

reanalysis series extracted, the reconstructed production 

series was estimated by calculating the value of the Long-

Term energy production estimate for this reanalysis series, 

and then calculating the percentage deviation between this 

value and the actual average value for the 15 years of 

operation. In this way, it is possible to relate the value of 

the determination coefficient of the linear relationship 

obtained for each reanalysis series to the deviation 

between the estimate of long-term energy production for 

that reanalysis series and the actual average for the wind 

farm, as shown in Figure 4. 

 

 
 

Fig. 4. Long Term Energy Yield Error, for wind farms P5 to P12.
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The analysis revealed that there is a high correlation, 

above 80 % for the wind farms under study, between the 

R2 associated with each reanalysis series and Long-Term 

Energy Yield Error. This correlation indicates a strong 

relationship between these two variables. In the case of 

wind farms P9 and P11, there is no direct relationship as 

mentioned above - the Long-Term Energy Yield Error is 

approximately constant, regardless of the R2 value. 

Although the determination coefficient measures the 

linear relationship between two variables, real phenomena 

are not always strictly linear, so there may be non-linear 

factors that affect the estimated energy production of wind 

farms P9 and P11. Despite this exception, the information 

contained in the graphical representation in Figure 4 

suggests that the R² determination coefficient may be a 

good indicator for choosing the most suitable reanalysis 

series for studying the wind farm in question. 

 

To verify compliance with the assumptions of the linear 

regression model, all the wind farms were subjected to the 

set of statistical tests mentioned above, which allowed us 

to draw relevant conclusions for the validation of the 

methodology used. To do this, the reanalysis series with 

the highest R2 for each of the wind farms under study was 

selected. The results obtained are shown in Table II.  

 
Table II - Results relating to the statistical tests carried out. 

ANOVA: SS = statistically significant; Shapiro Wilk: ND = 

normal distribution and NND = non-normal distribution; Durbin 
Watson: AR = autocorrelation in the residuals and NAR = no 

autocorrelation in the residuals; Breush Pagan: CV = constant 

variability in the residuals and NCV = no constant variability in 

the residuals 
 

Wind 

Farm 
ANOVA 

Shapiro-

Wilk 

Durbin 

Watson 

Breush-

Pagan 

E1 SS ND NAR CV 

E2 SS ND NAR CV 

E3 SS ND NAR CV 

E4 SS ND NAR NCV 

E5 SS ND NAR CV 

E6 SS ND NAR CV 

E7 SS ND AR CV 

E8 SS ND NAR CV 

E9 SS ND NAR CV 

E10 SS ND NAR CV 

E11 SS ND NAR CV 

R1 SS ND NAR NCV 

R2 SS ND NAR CV 

C1 SS ND NAR CV 

P1 SS ND NAR CV 

P2 SS ND AR CV 

P3 SS ND NAR CV 

P4 SS ND NAR NCV 

P5 SS ND NAR NCV 

P6 SS NND NAR NCV 

P7 SS ND NAR CV 

P8 SS ND NAR NCV 

P9 SS ND NAR NCV 

P10 SS ND NAR CV 

P11 SS NND NAR CV 

P12 SS ND NAR NCV 

 

 

 

The analysis of variance (ANOVA) carried out showed 

that, for all parks and complexes, the linear regression 

model used is statistically significant. The Shapiro-Wilk 

test revealed that the residuals for all the parks follow a 

normal distribution, except for wind farms P6 and P11. 

According to the Durbin-Watson test, there is no 

autocorrelation in the residuals for most of the wind 

farms, except wind farms E7 and P2. Finally, the Breusch-

Pagan test showed that there are eight parks (E4, R1, P4, 

P5, P6, P8, P9 and P16) that show evidence of non-

constant variances. Although some wind farms violate the 

assumptions of autocorrelation in the residuals and 

constant variances, it can be said that, in general, the 

methodology can be validated. 

 

To solve the problem of autocorrelation of the residuals, it 

would be necessary to assess whether there are other 

parameters influencing the dependent variable, in addition 

to the independent variable itself, and if there are, to 

include them in the linear regression model and perform 

the Durbin-Watson test again to analyze whether the 

problem has been solved. In the case of non-constant 

variances, it would be necessary to transform the equation 

representing the linear regression model to the logarithmic 

type and repeat the Breusch-Pagan test to see if the 

problem of non-constant variances has been eliminated. 

These solutions were not tested in this work because the 

assumptions were verified in most case studies. 

 

4. Conclusion 
 

The first analysis suggests that R² can serve as a reliable 

indicator for selecting the appropriate reanalysis series in 

the energy production estimation process, since the 

analysis carried out revealed that there is a high value of 

the determination coefficient, above 80 % for the wind 

farms under study, between the determination coefficient 

of the linear regression obtained for reanalysis series and 

the Long-Term Energy Yield Error. Overall, this indicates 

a strong relationship between these two variables, as the 

R² value increases for a reanalysis series, the percentage 

deviation from the Long-Term average tends to decrease, 

and vice versa. There are still some cases in which there is 

no significant improvement in the Long-Term Energy 

Yield Error, so it is possible to conclude that choosing the 

reanalysis series with the highest R2 is a good selection 

principle, since it improves or maintains the accuracy of 

the estimate. 

To verify compliance with the assumptions of the linear 

regression model, all wind farms underwent a set of 

statistical tests. The analysis of variance (ANOVA) 

conducted demonstrated that, for all wind farms, the linear 

regression model used is statistically significant. The 

Shapiro-Wilk test revealed that the residuals of all the 

wind farms follow a normal distribution, except two wind 

farms. According to the Durbin-Watson test, there is 

autocorrelation in the residuals of only two of the wind 

farms studied. The Breusch-Pagan test revealed evidence 

of non-constant variances in eight wind farms. Overall, 

the results obtained confirm the validity of the 

methodology.  
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