
22nd International Conference on Renewable Energies and Power Quality

(ICREPQ’24) Bilbao (Spain), 26th to 28th June 2024 

Renewable Energy and Power Quality Journal (RE&PQJ)
 ISSN 2172-038 X, Volume No.22, September 2024 

SoC Profile Reconstruction in Residential EV Charging: 

Assessing the Degradation of V1G and V2G in Denmark 

M. Etxandi-Santolaya1,3, M. Secchi2, M. Marinelli2, L. Canals Casals3, C. Corchero4 and J. Eichman1

1 Department of Energy Systems Analytics 
Institut de Recerca en Energia de Catalunya—IREC 

08930 Sant Adrià de Besòs (Spain) 

2 Department of Wind and Energy Systems 
Danmarks Tekniske Universitet – DTU 

2800 Kgs. Lyngby (Denmark) 

3 Department of Engineering Projects and Construction 
Universitat Politècnica de Catalunya—UPC 

08034 Barcelona (Spain) 

4 Bamboo Energy,  
08018 Barcelona (Spain)   

Abstract. 

The development of Smart Charging (SC) strategies for 

Electric Vehicles (EVs) is on the rise, driven by the 

potential benefits for both customers and grid operators. 

While several studies have explored the impact of these 

strategies on battery degradation, there is a lack of studies 

based on real-world data. To overcome the limited 

information provided by the current EV-EVSE (EV Supply 

Equipment) communication protocols, a methodology to 

reconstruct State of Charge (SoC) profiles based on the 

charging power is proposed and used to reconstruct the 

profiles and analyse the battery degradation for three 

residential EVSEs in Denmark, comparing degradation 

trends in under Uncontrolled Charging (UC) mode, with the 

SC ones. Results show that the economic profits from 

unidirectional (V1G) SC strategies based on price, offer 

significant cost savings (10-22% annually) and reduce 

calendar ageing by up to 4% over a decade. V2G strategies 

entail modest increases in cost savings at the cost of a 

minimal additional degradation. 

 

1. Introduction

The Electric Vehicle (EV) market is experiencing 

unprecedented growth, driven by environmental concerns, 

government incentives, and advancements in battery 

technology. As the number of EVs on the roads continues 

to increase, there is a growing focus on exploring 

innovative Smart Charging (SC) solutions including (V1G) 

SC and Vehicle-to-Grid (V2G) SC. V1G involves the up or 

down-modulation, or the shifting in time of the charging 

power profile in response to an external signal, which 

provides economic benefit for consumers and, eventually, 

enhances grid stability [1]. V2G services take the concept 

further by allowing EV batteries to also feed excess energy 

back into the grid
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, providing grid operators with additional 

flexibility to manage fluctuations in both demand and 

supply [2].  

Quantifying the impact of SC on the battery degradation is 

an important part of analysing their feasibility. The most 

critical SC is V2G, as the Ah throughput compared to 

Uncontrolled Charging (UC) mode is increased and thus 

the cycling ageing of the battery is higher. Indeed, in some 

studies, V2G was found to create a significant degradation, 

forcing an early battery retirement (e.g. up to 0.06% 

capacity fade daily [3] or twice the amount of weekly 

degradation compared to the baseline [4]). Some studies 

pointed out that this lifetime reduction can be as high as 

35% for highly impactful grid services [5]. However other 

studies suggest that the impact of degradation is low, e.g. 

0.38-1.18% fade after 10 years [6]. Some studies even 

argue that the reduced calendar ageing produced by shifting 

the charging session start to a later time and reducing its 

power, can compensate the increase in cycling, leading to a 

reduced overall degradation [7], [8], [9].  The results 

strongly depend on the assumptions, including the EV 

model and the driving behaviour. This latter is generally 

obtained from driving surveys in the form of daily mileages 

and schedules. Depending on the study, the driving trip is 

assumed to be constant [3], [4], [7], to follow a normal 

distribution [10] or obtained from a random sample from 

surveys [6], [11]. The SoC is generally obtained assuming 

a specific energy consumption and full charges. 

None of the reviewed studies employs real-world charging 

profiles, assuming relatively uniform behaviours instead. 

When considering the use of real data an important 

challenge arises. Current communication standards (IEC 

61851) do not support essential information exchange 

required for SC, with OCPP 2.0.1 and ISO15118-20 still 

being mostly not implemented [12], [13]. Consequently, 

critical variables like the nominal battery capacity or the 

SoC are not available.  
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This study addresses this lack of information by 

introducing a methodology to reconstruct SoC profiles, 

based on real-world data collected from residential EV 

chargers in Denmark.  With the reconstructed profiles it is 

possible to evaluate battery degradation both from the UC 

behaviour and from the optimized SC profiles.  

2. Data description and selection of locations 

The dataset employed in this study comprises charging 

profiles from September 2021 to March 2023 measured at 

residential EV chargers installed throughout Denmark, and 

provided by Spirii, a local charging point operator. The 

dataset contains the timeseries of the AC power and the EV 

states (charging/idling/disconnected). This study focuses 

on a subset of the available locations, specifically targeting 

those that meet the following criteria: 

1) The data must contain one full year. 

2) The power profile must show a low correlation with 

the price. This allows filtering out EV owners who are 

already employing some form of SC. 

3) More than 90% of the charging sessions must be 

considered complete.  

4) No more than one consecutive incomplete charging 

session must be observed.  

Note that criteria 3 and 4 are imposed by the SoC 

reconstruction methodology. 

The selected chargers (C1, C2 and C3) show different 

charging power levels and usage characteristics, as 

presented in Table 1. Boxplots of energy charged per 

session are presented in Figure 1. 

• C1 shows low energy charged per session and high 

frequency. This charger most-likely belongs to a Plug-

in Hybrid EV (PHEV).  

• C2 shows slightly higher energy charged per session 

compared to C1, which suggest that it could belong to 

a PHEV or a short-range BEV (Battery EV).  

• C3 represents a user with a long-range BEV.  

 

3. Methodology 

The aim of this study is to compare, for the three selected 

locations, the degradation trends for the following charging 

strategies: 

• Uncontrolled Charging (UC): represents the baseline 

behaviour of the users captured by the dataset. 

• Unidirectional SC (V1G): represents the simplest 

form of SC not allowing the battery to be discharged. 

• Bidirectional SC (V2G): the battery is allowed to 

discharge to the power system as well. 

 
Figure 1. Energy per session for each charger. 

 

A. Capacity estimation 

The nominal capacity in this study is estimated by 

multiplying the median of energy charged per session by a 

factor of 2 (corresponding to an average use of 50% of the 

battery [14]). In addition, the capacity is selected to 

guarantee that users will always reach the destination even 

at 80% SoH. Considering available models in the market, 

capacities over 95 kWh are not considered. Based on this, 

the estimated usable nominal capacities are 14, 21 and 95 

kWh for C1, C2 and C3, respectively. Thus, C1 represents 

a PHEV and C2 and C3 a battery EV. Note how these 

values are “effective” battery capacities, so they consider a 

0-100% SoC range, which is assumed to be 20% lower than 

the full capacity, as explained in Section 3D.  

 

 

 

Table 1. Main characteristics of the selected charging locations. 
 

 C1 C2 C3 

Period Mar22-Mar23 Sept21-Sept22 Oct21-Oct22 

Number of sessions 233 113 44 

Usable battery capacity (kWh) 14 21 95 

Total energy consumed (MWh) 1.32 0.99 2.35 

Median of energy charged per session (kWh) 5.64 7.21 56.85 

Maximum energy charged in a session (kWh) 11.01 18.81 89.27 

Median charging power during CP phase (kW)  3.55 6.91 10.98 

Number of complete sessions (% of total) 98.7% 95.2% 97.7% 

Median charging session duration (h) 15.5 7.8 12.9 

Median SOC at connection 10 % 64% 46% 

Idle time (plugged without charging over total) 37.10% 8.45% 3.83% 

Connection time (plugged either charging or idling) 45.77% 10.27% 6.47 % 
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B. SoC profile reconstruction 

For the SoC reconstruction, the power profiles during the 

charging sessions are analysed. Firstly, the complete 

sessions are identified. This task is performed by assessing 

if the charging power gradually decays at the end, 

corresponding to the Constant Voltage (CV) phase of the 

session. This behaviour stems from modern battery 

management systems, limiting the charging voltage of the 

battery since charging at high SoC values requires 

overcoming a very high open circuit voltage. The first part 

of Figure 2 shows an example of a Constant Power (CP) 

phase followed by a CV phase. Conversely, incomplete 

sessions only show the CP phase and not the CV one. If less 

than 2 h are recorded between the end of an incomplete 

session and the beginning of the next one, it is assumed that 

they form a single session. Additionally, at the end of some 

sessions, during cold months, a distinct power profile is 

observed which most likely represents the preheating of the 

battery before driving (marked in green in Figure 2), and is 

thus excluded from the SC optimisation.  

 

Figure 2. Example power profile during a charging session. 

Once the charging sessions are classified as complete, 

incomplete, or complete with preheating, the SoC profile 

reconstruction is performed, according to the following 

steps.  

1. First, the SoC for complete sessions is obtained 

considering that the charge ends at 100% and applying 

Coulomb Counting, which consists of integrating the 

current flowing into or out of the battery over time.  

2. For the complete sessions with preheating, the point 

where the battery is fully charged is obtained and the 

SoC is assumed to be constant from that point until the 

end of the session, as the preheating is performed by 

drawing energy from the station. The SoC 

corresponding to the CP-CV charge is obtained as in 

the previous step.  

3. For the incomplete sessions, the initial or final SoC is 

unknown. Consequently, the assumption is made that 

the driving trip preceding the charging session adheres 

to the user's typical behaviour, with an energy 

consumption 𝑇 equivalent to the median of all 

documented trips. To minimize the impact of this 

assumption, criteria 3 was set in Section 2. The value 

of 𝑇 is iteratively modified until it meets the following 

constraints:  

➢ The initial SoC of the n-th charging session, which 

is defined considering the trip consumption, must 

be positive.  

➢ The final SoC needs to be below 90%. This upper 

limit is set considering that the charge is 

incomplete.  

➢ The final SoC needs to be higher than the initial 

SoC of the next session.  

4. The previous steps allow to obtain the SoC during 

charging. During driving the SoC is obtained by 

linearization between the end of a charge and the start 

of the next one. Following this assumption, the power 

during driving is assumed to be constant.  

5. Whenever the battery is idling the SoC is constant. 

 

Additionally, the daily mean temperature data are extracted 

from the Danish Meteorological Institute (DMI) website 

[15] based on the location and time. The power, SoC, and 

battery capacity, are the required inputs for the SC 

optimization algorithm.  

C. SC optimization algorithm  

The EV SC scheduling was formulated as a mixed-integer 

linear programming (MILP) problem, with the aim of 

minimising the total charging costs for the EV owners. The 

objective function can be written as in Eq. 1: 

𝐦𝐢𝐧
𝑷𝒄𝒉;𝑷𝒅𝒄𝒉
𝒀𝒄𝒉;𝒀𝒅𝒄𝒉

[𝒄𝒄𝒉
𝑻 ⋅ 𝑷𝒄𝒉 + 𝒄𝒅𝒄𝒉

𝑻 ⋅ 𝑷𝒅𝒄𝒉] ⋅ 𝚫𝒕    (1) 

where: 

• Pch and Pdch are the decision variables column vectors 

containing the AC power absorbed by or extracted 

from each EV battery at each of the charging session 

instants. 

• Ych and Ydh contain the binary variables which 

determine if the charging/discharging processes are 

ON (1) or OFF (0). They are not part of the objective 

function, but rather used in the constraints to limit the 

values of Pch and Pdch. 

• cch and cdch are the column vectors containing the EV 

charging costs (retail prices, including network tariffs 

and VAT) and the discharging compensation values 

(day-ahead market prices). 

• 𝚫𝒕 is the simulation timestep in hours (10 min = 1/6 h). 

Several constraints are imposed to ensure that the EV 

owner experience is not impacted by the smart charging 

strategies: 

• Min./Max. SoC: for the optimisation, the full 0-100% 

capacity is used, but in general 10% min. SoC is 

considered in case of unforeseen circumstances, while 

a 90% max. SoC is considered to avoid excessive 

battery wear [16]. The 10-90% range is used for the 

degradation model, which runs on the full battery 

capacity instead of the usable one. 

• Min./Max. charging and discharging power levels: 

the min. current is 6 A 1-ph (1.38 kW) [17], while the 

max. power is the highest power measured for each 

charger in the analysed period. 

• EV Battery Inverter Efficiency: set to 90% (81% 

round-trip) [18], to account for losses in AC/DC 

conversion. 
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• Energy at disconnection: the energy charged in the 

EV at the end of the session must be the same that was 

charged in UC mode by the EV owner. 

• Exclusivity: the EV cannot charge and discharge at the 

same time, so Ych + Ydch ≤ 1 at each timestep. 

Note that the V1G case is obtained by fixing Ydch=0 at each 

timestep. The problem is solved by making use of the 

Gurobi 10.0.0 solver for Python. The obtained SC (V1G 

and V2G) timeseries of charging/discharging power levels 

are used, together with the SoC and air temperature ones, 

for the battery degradation analysis.  

 

D. Battery degradation model 

The degradation model employed in this study is adapted 

from [19] and used to estimate the calendar and cycling 

ageing for the different charging strategies. The capacity 

fade due to calendar ageing (∆𝑪𝒄𝒂𝒍), i.e. the % of lost battery 

capacity w.r.t. the nominal value, depends on the battery 

temperature, SoC and the time, as expressed by Eq. 2: 

       ∆𝑪𝒄𝒂𝒍(𝝉) =
𝟏

𝟐
∫

𝒑𝒋(𝒕)

√𝒕

𝝉

𝟎
⋅ 𝒆

−
𝑬𝒂

𝑹⋅𝑻𝒃𝒂𝒕𝒕(𝒕) ⋅ 𝒅𝒕             (2) 

where: 

• 𝒑 is the pre-exponential factor, which depends on 

SoC variation in time, and varies between 300 h-

1/2 (SoC=0%) and 1500 h-1/2 (SOC=100%) [20]. 

• 𝑬𝒂 = 𝟐𝟒𝟓𝟎𝟎 𝐉/𝐦𝐨𝐥  is the activation energy of the 

battery chemical reaction [20]. 

• 𝑹 = 𝟖. 𝟑𝟏𝟒
𝐉

𝐦𝐨𝐥 ∙𝐊
  is the universal gas constant. 

• 𝑻𝒃𝒂𝒕𝒕 is the battery temperature in K, which is 

assumed to be 3-4ºC higher than the ambient 

temperature [19]. 

• 𝐭 is the time in hours since the beginning of the 

recorded period. 

Since the SoC value for the degradation model uses the real 

SoC, ranging from 10% to 90% of the nominal battery 

capacity, the reconstructed SoC profiles from the previous 

section are updated to never trespass those values. 

The capacity fade caused cycling ageing (∆𝑪𝒄𝒚𝒄) depends 

on the battery temperature and current, as per Eq. 3. 

∆𝑪𝒄𝒚𝒄(𝝉) = 𝝑 ∫ 𝑩𝟏
𝝉

𝟎
⋅ 𝒆𝑩𝟐(𝒕) ⋅ |𝒊(𝒕)| ⋅ 𝒅𝒕      (3) 

 
𝑩𝟏(𝒕) = 𝒂 ∙ 𝑻𝒃(𝒕)𝟐 + 𝒃 ∙ 𝑻𝒃(𝒕) + 𝒄 

 
𝑩𝟐(𝒕) = (𝒅 ∙ 𝑻𝒃(𝒕) + 𝒆) ∙ 𝝆𝑹(𝒕)  

 

where: 

• 𝝑 =
𝟏.𝟓

𝑪𝑨𝒉∙𝑵𝒑

 is a corrective factor to account for the 

battery cell size change from 1.5 Ah [19] to 𝑪𝑨𝒉 

Since the electric parameters of the EVs are 

unknown, it is assumed that the energy density of 

the single cell, and its nominal voltage level are 

fixed at 200 Wh/g and 3.65 V, and that the other 

electric parameters are the ones specified n the 

following table: 

 CkWh Ns Np CAh 𝑽𝒃𝒂𝒕𝒕
𝒏𝒐𝒎 𝒎𝒃𝒂𝒕𝒕 

C1 14 55 2 45.0 200 V 88 kg 

C2 21 55 4 32.5 200 V 130 kg 

C3 95 110 4 74.6 400 V 591 kg 

Where Np and Ns are the number of cells in parallel 

and series, CAh is the cell capacity in Ah, CkWh is 

the usable battery capacity in kWh, 𝑽𝒃𝒂𝒕𝒕
𝒏𝒐𝒎 is the 

nominal charging voltage of the battery, and 

𝒎𝒃𝒂𝒕𝒕 is the estimated battery weight. 

• a=𝟖. 𝟓𝟖 ∙ 𝟏𝟎−𝟔𝑨−𝟏𝒉−𝟏𝑲−𝟐,b=−𝟓. 𝟏 ∙
𝟏𝟎−𝟑 𝑨−𝟏𝒉−𝟏𝑲−𝟏, c=0.7589 𝑨−𝟏 𝒉−𝟏, d=−𝟔. 𝟕 ∙

𝟏𝟎−𝟑 𝒉 𝑲−𝟏, e=2.344 h are empirical coefficients 

[20]. 

• 𝒊(𝒕) is the current flowing through the battery, 

estimated by diving the power signal by the 

nominal voltage. 

• 𝝆𝑹(𝒕) is the C-rate of the EV battery under study, 

adjusted to consider a 𝑪𝑨𝒉  battery capacity, 

instead of a 1.5 Ah one. 

The SoH is thus obtained by combining calendar and 

cycling ageing (Eq. 4). 

𝑺𝒐𝑯 = 𝟏𝟎𝟎 − ∆𝑪𝒄𝒂𝒍𝒆𝒏𝒅𝒂𝒓 − ∆𝑪𝒄𝒚𝒄𝒍𝒊𝒏𝒈   (4) 

Assuming the EV charging profile to be constant along the 

10 years of EV lifetime, the reconstructed SoC profile is 

updated after every year by considering the capacity fade. 

This is done by 1) equally modifying the SoCmax and SoCmin 

values to reflect the SoH variation, and 2) increasing the c-

rate, since the usable battery capacity is smaller. In this 

way, both the calendar and cycling ageing values are 

updated to consider the yearly capacity fade. 

 

4. Results and Discussion 

The reconstructed SoC profiles for a year of charging are 

shown in Figure 3. The periods where the SoC slowly 

decreases represent the linearized driving sessions. As 

observed also from Table 1, C1 shows the highest charging 

frequency (once every 1.5 days) and duration (15.5 h), with 

the lowest charging energy per session (5.64 kWh). This is 

typical of an EV with a small battery (14 kWh usable), 

charging at low power (3.55 kW). C3 exhibits the opposite 

trend, performing the cycles with the deepest depth-of-

discharge and median charged energy (56.85 kWh), and a 

much lower frequency (one session every 8 days). 

The main outcomes from the EV scheduling optimisation 

are shown in Table 2. The results indicate there is minimal 

V2G activity, as evidenced by the negligible throughput 

increase compared to UC/V1G. This happens because the 

high difference between the charging/retail and 

discharging/day-ahead average electricity prices, e.g., 3.51 

vs. 1.56 DKK/kWh (0.47 vs 0.21 €/kWh), makes it easier 

to just charge the car when it’s cheaper (V1G), rather than 

pre-discharging it to make space for a longer session later 
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on (V2G). Considering other grid services or the inclusion 

of a vehicle-to-home policy could increase the V2G mode 

usage, but that is out of the scope of this article.  

Thus, the majority of cost savings stem from V1G 

operations (10-20%), even if higher cost savings (10-22%, 

i.e. 668-1142 DKK or 89-153 € per year) are observed in 

V2G mode. The analysis reveals a positive correlation 

between connection time and savings, since the EV with the 

highest savings potential is C1, and a negative correlation 

between charging power and savings since the EV with the 

lowest CP phase charging power yields the highest savings 

potential.  

The degradation results after 10 years for the UC and SC 

cases are presented in Figure 4. As shown by Eq. 2 and 3, 

calendar ageing exhibits an exponential trend with time, 

while cycling is linear with time, since the current profile 

is the same at each year. In all cases, the SoH after 10 years 

is above 83% and is mainly driven by calendar ageing. The 

highest degradation is estimated for C1 at 83.2%, followed 

by C2 and C3 at 85.2% and 87.6%, respectively. This is 

because C1 has both high calendar (13.1%) and cycling 

ageing (3.69%) since its battery is small and almost always 

full (75% percent of the SoC values are over 79% usable 

SoC). The opposite can be observed for C3, where 75% of 

the values are over 55 % usable SoC and the battery is 

larger, leading to a 1% cycling ageing, and 11.3% calendar 

one.  

UC results are employed as the baseline to compare the 

trends observed for SC. Figure 4 compares V2G with UC 

in terms of total SoH, cycling, and calendar ageing. Note 

that only V2G is presented since its V2G throughput 

increase compared to V1G is almost null.  

Figure 4 clearly shows that V2G generally decreases 

calendar ageing (due to the improvement from V1G), and 

only slightly increases cycling ageing. Significant SoH 

improvements are noticed in C2 only, a decrease of 3.86%, 

Figure 3. Reconstructed SoC Profiles for one year of usage in UC mode. 

Table 2. Results of the EV scheduling process on a yearly basis. 

Figure 4. EV battery capacity degradation for the three chargers after 10 years of lifetime. 
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associated to a calendar ageing reduction by 3.96%, and a 

cycling increase of 0.1%. The calendar decrease is due to 

75% of the usable SoC values being higher than 51% (in 

SC), instead of 77% (in UC), a 26% difference. This 

difference reduces to 13% and 3% for C1 and C3, 

respectively, hence the similar calendar ageing values. 

5. Conclusions 

This study examined real residential EV charging data from 

Denmark and evaluated the effects of various smart 

charging strategies on battery degradation. To overcome 

the issue of the limited information included in current 

communication protocols, the study proposes a 

methodology to reconstruct SoC profiles based on charging 

power data only. SoC profiles for three distinct chargers 

were reconstructed and optimized, considering both uni- 

(V1G) and bi-directional (V2G) smart charging.  

The analysis reveals that most of the cost-saving potential 

arises from V1G alone, primarily through shifting the 

charging sessions to low-cost periods, with savings up to 

10-22% (575-1075 DKK or 77-144 € per year). The effect 

of V2G is minimal for the considered services, resulting in 

only marginal increases in cost savings (up to 92 DKK or 

12 € in a year). Different types of services, such as such as 

frequency regulation, peak-shaving/valley-filling, or 

renewable energy sources following might yield more 

substantial cost savings and V2G activation, which will be 

explored in future works. 

Calendar ageing emerges as the predominant degradation 

factor, with V1G allowing for a reduction of the 

degradation by maintaining SoC at lower levels, 

consequently reducing calendar ageing up to 4% over a 

decade. The slight rise in cycling ageing due to V2G is 

generally offset by the decrease in calendar ageing, 

confirming the results of prior research works on the topic 

and indicating that smart charging does not necessarily lead 

to an earlier EV battery retirement. 
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