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Abstract. This work aimed to develop methodologies for

analysing statistical correlations among wind data series using 
various Measure-Correlate-Predict (MCP) methods, with the 

goal of selecting the most suitable method for extrapolating 

long-term data with minimal associated uncertainty. It was 

analysed the minimum time required for a wind measurement 
campaign when applying this methodology. Fifteen local wind 

measurement stations were selected. The long-term wind data 

reanalysis series that exhibited the strongest correlation with the 

measured wind data at each station was then chosen. Multiple 

tests were conducted with different simultaneous periods 

between the measured data series and the long-term series. 

Fifteen correlation algorithms were tested for each concurrent 

period. The performance of each model was evaluated using the 
RMSE (Root Mean Square Error) and MBE (Mean Bias Error) 

associated with each MCP. Analysis of the errors identified 

measurement periods with the lowest associated error ranging 

from 1 to 5 years and a single-factor ANOVA analysis was 
conducted. Finally, t-significance tests were performed. The 

study concluded that the Neural Network was the most effective 

MCP method. Additionally, it was determined that the minimum 

number of years required for a local measurement campaign 
should be between 2 and 3 years. 
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1. Introduction

From the standpoint of wind energy, the variability of 

wind resources stands out as a significant characteristic. 

Wind conditions exhibit considerable variation both 

spatially and temporally [1]. This variability presents a 

particular challenge when assessing the long-term 

feasibility of wind projects, which typically have a 

lifespan of around 20 years. Wind data collected over 

short periods is inadequate for accurately representing 

average conditions over the project's lifespan due to year-

to-year fluctuations in wind speed [2]. 

To tackle this challenge, researchers have proposed the 

Measure-Correlate-Predict (MCP) methodology to 

evaluate the Long-Term characteristics of the wind 

resource. This methodology (Figure 1) involves utilizing 

concurrent wind data from a relatively short-term local 

measurement campaign and correlating it with 

simultaneous data from a reference long-term/historical 

data source. The correlation established between the two 

datasets allow for extrapolation of the short-term 

measurement data into a representative long-term time 

series of wind data [3]. 

Fig. 1. Example of MCP methodology. 

The MCP correlation procedure can be implemented using 

various methods [4]: 

A. regression method where each regression method may 

disaggregate the data into different sectors (e.g., 36 or 

360), seasons (e.g., all year, 2 or 4 seasons), and 
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diurnal/nocturnal periods - a linear regression is then fitted 

to each subset of the original data [5]. 

 

B. matrix method that describes the connection between 

two wind climates in a matrix form. It expresses the wind 

speed and direction at a particular site as a matrix of 

speed-ups (variations in wind speed) and deflections 

(variations in wind direction) relative to the reference site. 

[6]. 

 

C. artificial neural networks (ANNs) are another powerful 

tool commonly used. ANNs are computational models 

inspired by the structure and function of the human brain's 

neural networks. In the case of wind data analysis, ANNs 

can be trained to learn complex patterns and relationships 

between input variables (such as wind speed, direction, 

temperature, etc.) and output variables (such as long-term 

wind predictions). [7]. 

 

This work aims to develop methodologies for analyzing 

statistical correlations among wind data series using 

various MCP methods and select the most appropriate 

method for extrapolating long-term data with the least 

associated uncertainty. Furthermore, the study intends to 

investigate how the concurrent period used to build the 

correlation can affect the performance indicators of MCP 

methods.  

 

2. Methodology 

 

Initially, 15 wind measurement stations were selected, 

considering the widest possible extension of the 

measurement campaign period, and ensuring wind speed 

and direction data coverage above 90 %. Nine 

measurement stations were chosen in Portugal, two in 

Romania, two in Poland, and two in South Africa, as 

shown in Table I. This multinational selection aimed to 

broaden the scope of analysis through a broad database 

covering different terrain complexities, characterized by 

the Ruggedness Terrain Index (RIX), orography, 

roughness, and local wind regime characteristics.  

 

 

Table I. Characteristics of the 15 measuring stations. 

Station Location Orographie RIX (%) Roughness A (m/s) k Vmed (m/s) Heights (m) Years

A1 Little Complex 2.1 Low vegetation 7.2 1.71 6.4 40/60 5

A2 Medium Complex 4.7 Forest 8.1 2.74 7.8 40/60 5

PT1 Little Complex 1.5 Low vegetation 7.4 1.74 6.8 40/60 10

PT2 Flat 0.8
Villages,wooded.  

rural space
9.1 2.86 7.9 40/60/80 5

PT3 Medium Complex 4.1  Agrícultural fields 8.7 2.87 7.5 40/60/80 5

PT4 Complex 7.8 Vegetation 6.5 2.21 8.0 40/60 7

PT5 Complex 7.3 Vegetation 6.0 2.04 5.4 40/60 8

PT6 Complex 6.8 Forest 7.4 2.11 6.6 40/60 7

PT7 Complex 7.6  Agrícultural fields 6.2 1.80 5.6 30/60 7

PT8 Flat 1.1 Vegetation 5.6 2.28 5.1 30/60 3

PT9 Medium Complex 3.8 Forest 9.0 2.20 7.9 10/40/60 2

PO1 Flat 0.6 Vegetation 8.3 2.60 7.5 30/60 5

PO2 Medium Complex 3.1  Agrícultural fields 7.5 2.18 6.9 30/60 5

R1 Flat 1.9 Forest 6.5 2.06 6.1 20/40/60 6

R2 Medium Complex 4.0  Agrícultural fields 8.1 2.74 7.8 20/40/60 6

Shout Africa

Portugal

Poland

Romania

 
 

 

K is the shape parameter and A is the scale parameter of 

the Weibull distribution that characterizes the local wind 

regime. 

 

For each measuring station, the reanalysis series closest to 

the measuring location were selected: 

• ERA5: 4 sets at 100 m above ground level (a.g.l) and 4 

sets at 10 m a.g.l; 

• MERRA2: 4 series at 50 m a.g.l.. 

 

The reanalysis series for calculating MCP at each station 

were selected based on the best correlation obtained, 

measured by the coefficient of determination R2, between 

the long-term series and the measured data series, 

considering the total concurrent period of measured data. 

Several tests were conducted with different periods 

between the measured data series and the long-term series. 

For each measurement mast, tests were performed using 

periods ranging from 6 months to a maximum of 10 years, 

according to the available total measured data period.  
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The correlation algorithms were tested for each 

measurement period, including 13 regressions, 1 matrix, 

and 1 artificial neural network.  

 

Subsequently, the quality of the correlation obtained was 

evaluated by calculating errors such as RMSE and MBE 

between the wind speed data measured and predicted by 

the different MCP algorithms tested, on an hourly basis. 

 

For the years with the lowest associated errors, single-

factor ANOVA [8] analyses were conducted to understand 

the significance of the measurement year, considering as 

null hypothesis that there are no discrepancies among the 

errors of each model, while alternative hypothesis 

suggested that at least two models possess different error 

means. Additionally, t-significance tests were performed 

for the selected years to identify MCP algorithms with 

significantly different means. A significance level of 5 % 

was adopted for the analysis. 

 

3. Results and Discussion  
 

For each of the 15 measurement stations, ERA5 reanalysis 

data has been selected, following the defined criterion 

based on the value of the coefficient of determination R2, 

obtained for the correlation between the long-term series 

and the measured data series, considering the concurrent 

data period.  

 

The stochastic nature of the wind in different seasons of 

the year makes it important to determine the minimum 

period necessary for its correct characterization. To find 

this minimum period the correlation algorithms were 

tested, using the presented methodology, for each 

measuring stations using different simultaneous periods 

between the measured data series and the long-term series 

predicted. 

 

The analysis of results from the different study stations 

concerning the variation of RMSE and MBE errors with 

respect to the correlation time applied in the MCP 

algorithm indicated a reduction in errors over time. This 

reduction was particularly evident in the case of RMSE. 

 

Figures 2 to 4 show, for the 15 stations under analysis, the 

evolution of the RMSE and MBE values as a function of 

measurement time for the matrix, neural network and 4 

Seasons 360s DN methods. These three methods were 

chosen because they present the lowest error values as 

well as the same tendency for values to vary over time. 

The results highlight both the occurrence of the lowest 

error values and the consistent trend in their variation over 

time. 
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Fig. 2 RMSE and MBE as a function of time for the matrix method. 

 

 

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5 6 7 8 9 10

R
M

SE
(%

)

Time (years)

A1 A2 PT1
PT2 PT3 PT4
PT5 PT6 PT7
PT8 PT9 PO1
PO2 R1 R2

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0 1 2 3 4 5 6 7 8 9 10

M
B

E 
(%

)

Time (years)

A1 A2 PT1
PT2 PT3 PT4
PT5 PT6 PT7
PT8 PT9 PO1
PO2 R1 R2

 
Fig. 3. RMSE and MBE as a function of time for the 4 Seasons 360s DN method. 
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Fig. 4. RMSE and MBE as a function of time for artificial neural network method. 

 

RMSE evaluates the dispersion between the measured data 

and the data predicted by the MCP algorithm used. For 

wind data measured over periods shorter than one year, the 

neural network and matrix method showed RMSE errors 

ranging between 20 % and 40 %, and 25 % to 45 %, 

respectively (Fig. 2, 4). The 4 Seasons 360s DN model 

does not consider trials shorter than a year due to seasonal 

division constraints. Generally, for all three methods, there 

was an average decrease of approximately 10 % in errors 

from one to five years of data collection across all stations. 

However, both the matrix and neural network models 

exhibited a significant drop in RMSE values within the 

first three years of data. Subsequently, after five years of 

measurement, RMSE errors somewhat stabilized. 

 

Regarding the duration of measured data required for 

MCP, the results indicated that the minimum period of 

measured data should lie between 2 and 3 years. Further 

extending the measurement campaign beyond 3 years may 

not offer significant improvements in cost-effectiveness. 

 

Regarding the MBE, all three algorithms yielded positive 

error values, indicating a tendency to overestimate the 

models, suggesting that, on average, the predictions are 

higher than the actual measurements (Figures 2-4). 

Typically, a sharp decrease in MBE is observed from six 

months to one year of measurement. Subsequently, after 

the first year, MBE decreases more gradually and follows 

an approximately linear trend with increasing 

measurement time. 

 

Additionally, among the stations analysed, the neural 

network method exhibited the highest MBE value of 0.37 

% at station PT4. For the matrix method, the highest error 

value was 0.39 % recorded at station R01, while the 4 

Seasons 360s DN model showed the highest MBE value of 

0.36 % at station PT6, considering one year of measured 

data. 

 

To investigate the impact of measurement duration ranging 

from 1 to 5 years, a one-way analysis of variance 

(ANOVA) was conducted for each year. This aimed to 

compare the average errors of the 15 MCP models 

employed and ascertain if the differences are statistically 

significant.  

 

 

Both RMSE and MBE tests showed highly statistically 

significant results (p-value << 0.05). This means that the 

null hypothesis can be rejected and that all error means 

are equal. In other words, there are statistically 

significant differences between the models' error 

performances. 

 

Figures 5 and 6, the Boxplots for 1 and 5 years of 

measured data are depicted considering RMSE values, 

respectively. 

 

 
Fig. 5. Boxplots for 1 year of measured data relative to RMSE. 

 

Most MCP models displayed outliers-data points that 

diverge from the general trend. These outliers may persist 

due to subjective decisions regarding their elimination.  

 

Additionally, distinct average values were observed 

among algorithms. The neural network model, 4 Seasons 

360s DN, and the matrix exhibited the lowest RMSE 

values across the five years of data considered. 

 

Finally, to ascertain which algorithms exhibit statistically 

significant differences, t-tests for the difference of means 

were conducted between the neural network models, 4 

Seasons 360s DN, and the matrix for each of the five 

years analysed (Table II and III). Thus, for every year, 

three t-tests were performed to compare: Matrix versus 4 

Seasons 360s DN, Matrix versus Neural Network, and 4 

Seasons 360s DN versus Neural Network.  
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Fig. 6. Boxplots for 5 years of measured data relative to RMSE. 

 

Tables II and III provide the stat_t and p-values resulting 

from the one-sided t-tests of significance. These tests were 

conducted for the three combinations between the models, 

considering each year of measured data. 

 
Table II - RMSE stat_t and p_value values resulting from the 

left-sided t tests of significance for the three combinations 

between MCP models. 

 
Table III - MBE stat_t and p_value values resulting from the left-

sided t tests of significance for the three combinations between 

MCP models. 

 

According to Table II, there is a statistically significant 

difference (p-value below 5 %) between Matrix and Neural 

Network for up to 2 years of data. Similarly, there is a 

statistically significant difference (p-value below 5 %) 

between 4 Seasons 360s DN and Neural Network for up to 

5 years of data. Therefore, we rejected the null hypothesis, 

indicating significant differences between these models. 

Additionally, in both cases, the Neural Network model 

exhibited the lowest average RMSE value. 

 

However, the results presented in Table III showed 

statistically significant differences between 4 Seasons 360s 

DN and Neural Network, with a positive stat_t value, for 

up to 2 years of data. This suggests that the Neural 

Network model had the lowest mean MBE for this 

period. 

 

In summary, the t-tests suggest that the Neural Network 

algorithm is the most suitable model for MCP based on 

the given data. 

 

4. Conclusions 

 
A study was developed with the aim of selecting the most 

appropriate method for extrapolating long-term data and 

investigate how the concurrent period used to build the 

correlation between wind data series using different MCP 

methods can affect its performance indicators. Among 

the 15 models tested, matrix algorithms, neural networks, 

and the 4 Seasons 360s DN method exhibited the lowest 

error values. The analysis of errors revealed that the 

Neural Network was the most suitable MCP method due 

to its lowest RMSE and MBE values.  

Regarding the period of concurrent data to be used to 

perform an MCP, it was concluded that the minimum 

period of measured data should be between 2 and 3 years. 
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Y
ea

rs
 Matriz vs 4 

Seasons 360s 

DN 

Matriz vs 

Neural Network  

4 Seasons 360s 

DN vs Neural 

Network 

stat_t/valor_p stat_t/valor_p stat_t/valor_p 

1 -0.0555/0.4780 2.0657/0.02448 2.5436/0.0086 

2 -1.3282/0.0978 1.7130/0.04930 3.0167/0.0028 

3 -2.4752/0.0104 1.1091/0.1392 3.5452/0.0008 

4 -2.7288/0.0061 0.7711/0.2244 3.0526/0.0029 

5 -2.0739/0.0055 0.7343/0.2353 2.9767/0.0034 

Y
ea

rs
 Matriz vs 4 

Seasons 360s DN 

Matriz vs  
Neural network 

4 Seasons 360s 

DN vs Neural 

network 

stat_t/valor_p stat_t/valor_p stat_t/valor_p 

1 -1.4776/0.0757 1.4060/0.0858 2.7377/0.0055 

2 -1.2422/0.1126 0.9236/0.1821 2.0374/0.0259 

3 -0.8572/0.1999 0.4675/0.3222 1.2792/0.1065 

4 -0.9942/0.1654 -0.3219/0.3752 0.5333/0.2996 

5 -0.0125/0.4950 -0.2034/0.4204 -0.1995/0.4218 
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