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Abstract. This paper describes the optimization of an air 

core reactor using Particle Swarm Optimization (PSO) 

combined with the finite element analysis. The aim is to 

reduce material volume costs in manufacturing and 

maintenance. PSO is a nature-inspired optimization 

algorithm that simulates swarm behavior in search of the 

best solution in a multidimensional search space.  

This article employs the PSO optimization method as an 

initial contribution to the design of single-phase air-core 

reactors, suggesting the possibility of further studies 

comparing its efficacy with other heuristic algorithms on the 

subject in the future. 
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1. Introduction

This study proposes a methodology to optimize the volume 

of single-phase air-core reactors, aiming to minimize the 

use of material during their construction. The optimization 

is performed through the integration of the Particle Swarm 

Optimization (PSO) algorithm with electromagnetic 

calculations through the Finite Element Method (FEM). 

PSO, based on the collective behavior of particles in search 

of global optima, stands out for efficiently exploring 

solution spaces in optimization problems. By adapting to 

problem conditions, PSO seeks optimal solutions, 

considering the complexity of the variables involved in the 

design. This article combines PSO with FEM, formulating 

it as an optimization problem subject to a set of constraints, 

presenting a robust strategy for optimizing the volume of 

single-phase air-core reactors. 

2. Single-Phase Air-Core Reactor

Single-phase air-core reactors are devices employed in 

medium-voltage distribution systems and high-voltage 

transmission for various purposes, such as fault current 

limitation, load flow control, reactive power compensation 

(shunt reactors), and as an inductive component in tuned 

harmonic filters [1]. 

Essentially composed, the air-core reactor consists of a 

core surrounded by air and a winding, which can be 

composed of one or more concentric conductors. 

Typically, these conductors are made of aluminum due to 

its lower cost compared to copper and its low specific 

weight. This results in lower investment in winding for a 

comparable level of losses [2]. 

3. Finite Element Method (FEM)

In this work, the finite element method was employed 

to calculate the electromagnetic parameters of the air-core 

reactor. Finite elements provide more accurate 

calculations and allow addressing phenomena whose 

effects are challenging to visualize in conventional 

analytical methods, as they are calculated based on the 

mapping of magnetic potentials along space in two or three 

dimensions. 

The asymmetric cylindrical coordinate model is an 

approach to represent three-dimensional designs through a 

symmetrical plane concerning a vertical axis [3]. This 

plane covers all symmetrical rotations around the central 

axis, resulting in computational resource savings without 

compromising accuracy. 

4. Problem Formulation

In this model, four independent variables will be used 

as input for the reactor optimization process. These 

variables include the height (h), the base (b) of the 

conductor's cross-section, the average radius of each coil 

(R), and the quantity of conductors (N). Meanwhile, the 

volume (V), current density (𝐽𝑓𝑒𝑚𝑚), quality factor

(𝑄𝑓𝑒𝑚𝑚), and inductance (𝐿𝑓𝑒𝑚𝑚) will be the output

variables from the Finite Element Method (FEM). Among 

these design variables, the base, height, and average radius 

are considered continuous, while the quantity of 

conductors is treated as a discrete value. The 

representation of this model is shown in Figure 1. 
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Fig. 1. (a) Schematic of the Air-Core Reactor Dimensions and (b) 

Representation of a Solid in an Axisymmetric Coordinate System. 

 

The essential components of design optimization will be 

discussed next, covering parameters, constraints, limits, and 

the objective function. 

 

A. Limits of Design Variables   

 

The design variables in Figure 1 are constrained by the 

following inequalities: 

: 

 ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥 (1)  

 𝑏𝑚𝑖𝑛 ≤ 𝑏 ≤ 𝑏𝑚𝑎𝑥  (2)  

 𝑅𝑚𝑖𝑛 ≤ 𝑅 ≤ 𝑅𝑚𝑎𝑥 (3)  

 𝑁𝑚𝑖𝑛 ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥  (4)  

 

The labels "max" and "min" indicate the upper and 

lower bounds, respectively. 

 

B. Equality and Inequality Constraints 

 

This model aims to equate the inductance calculated by the 

FEMM software to the desired inductance of the reactor 

(𝐿𝑓𝑒𝑚𝑚  =  𝐿0), using a penalization technique. The 

inductance penalty 𝑃𝐿  is represented by: 

 

 𝐏𝐋  =  ((𝐋𝐟𝐞𝐦𝐦  –  𝐋𝟎) ·  𝐰𝐋)
𝟐
 

 

(5)    

Where 𝐿𝑓𝑒𝑚𝑚 is the obtained inductance, 𝐿0 is the desired 

inductance, and 𝑤𝐿 is an inductance weight constant. The 

variable 𝑤𝐿  ensures an appropriate balance in weighting the 

inductance in the penalty equation. 

 

Inequality constraints are applied for the current density and 

the quality factor. The current density 𝐽𝑓𝑒𝑚𝑚 must be kept 

below 𝐽𝑚𝑎𝑥   (𝐽𝑓𝑒𝑚𝑚  ≤  𝐽𝑚𝑎𝑥), with a penalty. 

 

𝐏𝐉  =  ((𝐦𝐚𝐱(𝟎, 𝐉𝐟𝐞𝐦𝐦  −  𝐉𝐦𝐚𝐱)𝟐) 

 

(6)  

Where 𝐽𝑓𝑒𝑚𝑚 is calculated through Equation (7). 

 
𝐉𝐟𝐞𝐦𝐦 =

𝐈𝟎

𝐡 ∙ 𝐛
 

 

(7)  

 

Where h and b represent, respectively, the height and base 

of the cross-sectional area of the reactor conductors, and 

𝐼0 is the nominal current of the reactor. 

 

The quality factor 𝑄𝑓𝑒𝑚𝑚 must be greater than or equal to 

𝑄𝑚𝑖𝑛  (𝑄𝑓𝑒𝑚𝑚  ≥  𝑄𝑚𝑖𝑛), with a penalty. 

 

𝐏𝐐  =  (𝐦𝐢𝐧(𝟎, 𝐐𝐟𝐞𝐦𝐦  −  𝐐𝐦𝐢𝐧))
𝟐

  (7)  

 
C. Objective Function 

 

In this optimization project of the dry-type air-core 

reactor, only the volume minimization objective function 

will be considered because the losses are a constraint that 

are related to the resistances, and these will be minimized 

according the reactor's quality factor. 

However, to meet this goal, it is necessary to consider a set 

of constraints defined earlier. To deal with these 

constraints, the penalty technique will be adopted [6]. In 

this context, the penalty function is defined as: 

 

 𝛟 =  𝐕𝐢  −  𝐫𝐩(𝐏𝐋  +  𝐏𝐐  +  𝐏𝐉) (8)  

 

The penalty coefficient 𝑟𝑝 controls the impact of the 

penalty function on the objective function, allowing for a 

balance between seeking an optimal solution and 

satisfying the constraints [4]. 

To find the volume 𝑉𝑖 in Equation (9), it is necessary to 

determine the conductor length 𝑙𝑖 [5], which is given by 

Equation (9): 

 

𝐥𝐢 = 𝐍√(𝛑 (
𝐑𝐢

𝟐
))

𝟐

+ (𝐩)𝟐 

 

 

(9)  

Multiplying the length 𝑙𝑖 by the cross-sectional area of the 

conductor (ℎ𝑖 ×  𝑏𝑖) , and knowing that the pitch p is the 

sum of ℎ𝑖  and 𝑠,  we find the volume 𝑉𝑖 in Equation (10): 

 

𝐕𝐢  =  𝐍𝐡𝐢𝐛𝐢√(𝟐𝛑𝐑)𝟐 + (𝐡𝐢  +  𝐬)𝟐 (10)   

 

Where, 𝑉𝑖 represents the volume of aluminum of the 

conductors, b and h represent the base and height of the 

cross-sectional area of the reactor conductors, 

respectively. R represents the radius of the reactor, and N 

represents the number of turns of the reactor. 

 

5. Particle Swarm Optimization 

 
Particle Swarm Optimization (PSO) is an 

evolutionary computing technique widely applied to 

various optimization problems across different domains. 

Proposed in 1995 by Kennedy and Eberhart [6], the 

inspiration for the PSO algorithm based in the social 

behavior of animals, such as birds and fish. The algorithm 

employs a set of particles to guide its search. Each particle 

has a velocity and is influenced by locally and globally 

found solutions. In each iteration, particles update their 

positions relative to both individual and the entire 

population, seeking promising solutions. Given its simple 

concept and effectiveness, the PSO has become a popular 
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optimizer and has widely been applied in practical problem 

solving[7]. 

There are diverse ways to use PSO; in this work, the 

updates of particle velocities and positions follow the 

standard PSO equations. The velocity update is determined 

by Equation (12). 

 

      𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡𝑖
− 𝑥𝑡) + 𝑐2𝑟2 (Gbesti

− 𝑥𝑖)              (12) 

 

Where 𝑣𝑖   is the velocity of particle i in the next iteration, w  

is the inertia coefficient,c1 and 𝑐2 are acceleration constants, 

𝑟1 and 𝑟2  are uniformly distributed random values between 

0 and 1,  𝑃𝑏𝑒𝑠𝑡 𝑖
 is the best local position achieved by the 

particle, 𝐺𝑏𝑒𝑠𝑡𝑖
 is the best global position achieved by any 

particle in the population, and 𝑥𝑖  is the current position of 

the particle. 

The value of the corresponding position is then updated by: 

 

 𝑥𝑖 = 𝑥𝑖 + 𝑣i 

 

(13)  
 

Where 𝑥𝑖 and 𝑣𝑖 are, respectively, the position and 

velocity of particle i in the next iteration. 

These updates allow particles to explore the search 

space in an ordered and adaptive manner, seeking 

increasingly better solutions throughout the iterations of the 

PSO algorithm. 

 

6. Proposal of Optimization Model 

 
The development of flowchart presented in Figure 2 

uses the PSO method applied to the Finite Element Method. 

 
Fig. 1. Flowchart of the proposed optimization model. 

 

In the flowchart presented in Figure 2, it can be 

observed that in the first stage, random positions and 

velocities are generated. These values serve as input to the 

finite element method, which produces the parameters 

V, 𝐿𝑓𝑒𝑚𝑚 , 𝑄𝑓𝑒𝑚𝑚 and 𝐽𝑓𝑒𝑚𝑚. These parameters are then 

evaluated through Equation (8), which represents the 

objective function. Subsequently, the best particles, 

𝑃𝑏𝑒𝑠𝑡  and 𝐺𝑏𝑒𝑠𝑡 , are identified, and the velocities and 

positions are updated using Equations (12) and (13). This 

process is repeated until the stop condition is reached, with 

the criterion of the number of generations being chosen in 

this work as the indicator to terminate the algorithm. 

 

7. Parameters and Optimization Criteria 

 
To define the constraints boundaries and achieve a 

solution closer to the desired one in the optimization 

method, the limit values are provided in Table 1 below. 

 
Table 1. Constraints of construction parameters. 

 

Parameters Minimum 

Value 

Maximum 

Value 

h 1 cm 4 cm 

b 1 cm 4 cm 

R 5 cm 50 cm 

N 1 turn 100 turns 

Spacing 5 mm 5mm 

 

For this simulation, the following parameter values were 

adopted as specified in Table 2 for the PSO algorithm. 

 
Table 2. Parameters used in PSO. 

 

Parameters Value 

Number of Particles 250 

Generations 100 

Inertia Weight (w) 0.4 

Cognitive Weight (𝑐1) 1.5 

Social Weight (𝑐2) 1.5 

Inductance Weight (𝑤𝐿) 106 

Penalty Coefficient 𝑟𝑝 100 

 

With the use of these parameters, we aim to obtain the 

corresponding values of inductance, quality factor, and 

current density as indicated in Table 3. The material used 

for this simulation was air and aluminum found in the 

FEMM software library. 

 
Table 3. Parameters used by the model. 

 

Parameters Value 

Inductance (𝐿0) 100𝜇𝐻 

Minimum Quality Factor (𝑄𝑚𝑖𝑛) 20 

Maximum Current Density (𝐽𝑚𝑎𝑥) 2 A/mm² 

Frequency 60 Hz 
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8. Results and Discussion 

 
Using the parameters described in Tables (1), (2), and 

(3), simulations of the model were conducted, resulting in 

the graphs presented in Figures 3 to 8. 

 

 
Fig. 3. Graph of the behavior of the objective function over 

generations. 

 

 
Fig. 4. Graph of the average of the objective function over 

generations. 

 

 
Fig. 5. Graph of the behavior of volume over generations. 

 

Fig. 6. Graph of the behavior of inductance over generations. 

 

 
Fig. 7. Graph of the quality factor over generations. 

 

 

 
Fig. 8. Graph of the current density over generations. 

 

 

Upon analyzing the graphs, we observe that the algorithm 

converged to the desired parameters by the 12th 

generation. In Figures 6, 7, and 8, we observe that the 

inductance approached 100μH significantly, the quality 

factor exceeded 20, and the current density remained 

below 1, as specified earlier. The detailed values of the 

parameters found are presented in Table (4). 
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Table 4. Table with the parameters found for the smallest volume 

reactor. 

 

Parameters Reactor with 

minimum 

volume 

𝜙 0.017879 

V 0.017424 m³ 

𝐿𝑓𝑒𝑚𝑚 100.002131 𝜇H 

𝑄𝑓𝑒𝑚𝑚 21.036159 

𝐽𝑓𝑒𝑚𝑚 0.302813 A/mm² 

h 2.347385 cm 

b 2.813654 cm 

R 38.167172 cm 

N 11 turns 

 

Thus, based on the results in Table (4), it was possible to 

create the visual representation of the air-core reactor 

simulation in Figure 9. 

  
Fig. 9. Simulation of the magnetic flux density of the reactor 

from Table (4) using the FEMM software. 

 

The simulations were conducted using an AMD EPYC 

7F72 24-Core Processor (48CPUs) ~ 3.2GHz processor 

together with an NVIDIA RTX A6000 graphics card. 

25,000 reactors were simulated using the finite element 

method, and the execution took 23 hours. The model 

computer code is in Python, and the FEMM software used 

for parallel processing with 48 cores. In this work, the 

research used the public domain PyFEMM, 

Multiprocessing, NumPy, and Matplotlib libraries. 

 

9. Conclusion 
 

This paper shows clearly that Particle Swarm 

Optimization, when associated with the finite element 

method, is an effective tool in the development of single-

phase air-core reactors. This approach allows for the 

determination of desired parameters and the reduction of 

material volume used, resulting in savings in expenses and 

operation and transportation costs. Furthermore, this 

methodology proves to be highly practical and accurate in 

modeling physical problems, especially when integrated 

with finite elements. The use of axial symmetry of the 

reactor in the 2D finite element model simplifies the 

process, reducing computational complexity. The 

conclusion is that particle swarm optimization applied to 

finite elements methods can significantly enhance the 

efficiency in the design and production of air-core reactors 

and many other electrical devices. 
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