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Abstract. The forecasting of electric load plays an essential
role in the effective management of electric power systems. 
Specifically, short-term models, which predict hourly load over 
the 24 hours of the subsequent day, hold significant value for 
applications within the realm of electricity markets. In this 
context, research efforts have predominantly concentrated on the 
development of point load forecasting models. These models 
provide solely the estimated value of hourly load, omitting any 
information regarding its associated uncertainty. Probabilistic 
forecasting models aim to address this limitation by offering 
comprehensive information on forecasted values, including their 
associated uncertainty, thereby enabling their more effective 
utilization in risky decision-making environments. This paper 
presents a parametric probabilistic model designed for hourly load 
forecasting. The model is refined through a multi-objective 
genetic algorithm optimization process that identifies explanatory 
variables from a specified set. The selected variables are 
combined linearly to predict the parameters of a probability 
distribution function for the hourly load. The process also selects 
the type of distribution from among those characterized by two 
parameters. The model is applied to data from a real distribution 
substation, yielding superior forecasting evaluation indexes 
compared to those achieved by two benchmark probabilistic load 
forecasting models.
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1. Introduction

Short-term load forecasting models are essential tools in the 
management and operation of electric power systems, 
primarily due to their ability to predict future energy 
demand accurately. The main objective of these models is 
to forecast future electricity demand over a short term, 
spanning from the next few hours up to the forthcoming 
week. This forecasting is indispensable for various 
operational and strategic applications, including generation 
dispatch planning, grid operation, scheduled maintenance, 
balance supply and demand, minimize production costs and 
the effective management of power purchases and sales 
within electricity markets [1,2].  

Most of the short-term load forecasting models presented 
in the international literature are categorized as 
deterministic or point models. Such models solely provide 
the expected load value for the future instant. It is evident 
that every forecast is subject to an error, a factor that 
deterministic models fail to assess. On the contrary, in 
recent years, a new category of load forecasting models has 
emerged. These models are designed to furnish information 
for assessing the uncertainty associated with the forecasted 
value. Specifically, they are known as probabilistic load 
forecasting models. Probabilistic models can provide 
forecasting intervals, which define the range within which 
the real value is expected to lie at a specified confidence 
level, quantiles, or a probability density functions [3]. In 
decision-making contexts characterized by uncertainty, this 
type of information offers significantly more value than 
that derived from deterministic forecasting models [4]. 
Probabilistic models that yield the probability density 
function of the variable to be predicted as a result of the 
prediction process offer the most comprehensive 
information.  

In the development of probabilistic forecasting models, two 
distinct approaches can be adopted: parametric and non-
parametric. The parametric approach presupposes the 
distribution type that the variable to be predicted will 
follow, whereas the non-parametric approach does not rely 
on such an assumption. The parametric approach primarily 
utilizes a technique known as “dressed model”, which 
involves superimposing a probability density function over 
the value provided by a deterministic forecasting model. In 
this technique, the deterministic model’s prediction serves 
as the mean of the distribution. In general, models based on 
the non-parametric approach often provide better 
forecasting results than those based on parametric models. 
However, we believe that the parametric approach, 
improved with the application of optimization techniques, 
can provide results comparable to those obtained with non-
parametric approach models in the probabilistic short-term 
load forecast. 

In the early research works focused on analysing 
probabilistic forecasting models within the electric power 
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sector, researchers identified the three primary properties 
that must characterize these models: Reliability, sharpness 
and resolution [5]. The reliability property is also known as 
calibration. Reliability measures the alignment between the 
observed and predicted distributions of the forecast 
variable, indicating the accuracy of the forecast. Sharpness, 
on the other hand, assesses the concentration of the 
forecasted distribution; a more concentrated (narrower) 
distribution signifies greater sharpness, reflecting reduced 
forecast uncertainty. Resolution describes the model's 
ability to produce distinct forecasts for different conditions 
while ensuring each forecast remains conditionally reliable. 
 
In the majority of studies focused on probabilistic 
forecasting models for the electricity sector (load 
forecasting, wind or photovoltaic power production, and 
electricity market price forecasting), there is a notable lack 
of emphasis on reliability. This is despite the widely 
acknowledged principle that these models should aim to 
optimize sharpness while being subject to proper 
calibration [6].  
 
In this paper, we present the results obtained in the 
development and evaluation of probabilistic short-term 
load forecasting models for a distribution substation. Our 
methodology adopts a parametric approach, presupposing 
the probability density function (PDF) that the predicted 
variable, hourly load, will follow. The prediction horizon 
of the models includes the 24 hours of the day following to 
the one on which the predictions are carried out, enabling 
the use of the forecasts in day-ahead electricity markets. 
The models utilize data comprising forecasts of principal 
weather variables related to the substation's location, hourly 
load data over the previous days and a set of dummy 
variables related to the type of day for which the forecast is 
carried out. A multi-objective genetic algorithm guides an 
optimization process with a particular focus on the 
reliability of models, aiming to identify the optimal model 
that balances accuracy with calibration effectively. This 
process facilitates the selection of the most suitable 
probability density function (PDF) and the determination of 
parameter values for these PDFs, drawing from a pool of 
available explanatory variables. The forecasting results 
obtained with the optimized models are compared to those 
obtained with two benchmark probabilistic forecasting 
models, proving the superiority forecasting performance of 
the proposed model.  
 
2. Selected parametric models 
 
The family of models selected for this task are the 
Generalized Additive Models for Location, Scale, and 
Shape (GAMLSS) [7]. GAMLSS represent a sophisticated 
class of statistical models. They provide exceptional 
flexibility by enabling the modelling of data across multiple 
distribution parameters (mean, variance, shape, among 
others) through smooth additive functions. These functions 
effectively capture non-linear relationships between 
variables. Unlike traditional models, GAMLSS facilitate 
the fitting of a diverse range of distributions to the response 
variable. This capability is particularly beneficial for 
analysing data characterized by complex behaviours, such 
as heteroscedasticity (varying variance) or asymmetries. In 

a GAMLSS model with two parameters, the first parameter, 
denoted as μ, represents the conditional mean of the 
response variable, which is contingent upon the set of 
predictors incorporated within the model. The second 
parameter, σ, signifies the dispersion or scale of the 
distribution of the response variable, a factor directly 
associated with its variance. While more sophisticated 
GAMLSS models can incorporate distribution functions 
with additional parameters to account for skewness and 
kurtosis, thus offering more sophisticated distributive 
characteristics, these elements have not been considered 
within the scope of this current study. 
 
In this study, we specifically focused on selecting a two-
parameter probability distribution function, characterized 
by parameters μ and σ, through the exclusive use of linear 
functions for both parameters. This approach entails that μ 
and σ of the distributions are modelled as linear functions 
of the selected explanatory variables. Our analysis did not 
incorporate the use of smoothers for these variables. The 
restriction to linear models was deliberate, aiming to 
elucidate the direct linear relationships within the data, 
thereby simplifying the interpretation and application of the 
results.  
 
Thus, the GAMLSS models with two parameters used in 
this study can be defined by equations (1) to (3), 
 

𝑦 ∼ 𝑫(𝜇, 𝜎) (1) 
𝑔ଵ(𝜇) = 𝛽଴ଵ + 𝛽ଵଵ𝑥ଵ + 𝛽ଶଵ𝑥ଶ+. . . +𝛽௠ଵ𝑥௠ (2) 
𝑔ଶ(𝜎) = 𝛽଴ଶ + 𝛽ଵଶ𝑥ଵ + 𝛽ଶଶ𝑥ଶ+. . . +𝛽௡ଶ𝑥୬ (3) 

 
where 𝑦  represents the dependent variable (hourly load), D 
represents a family of distributions parametrized by μ and 
σ, which, in turn, represent the parameters of location and 
scale, β represent the linear coefficients, xi the explanatory 
variable i, m and n the number of explanatory variables 
selected for each parameter, and 𝑔ଵ and 𝑔ଶ represent the 
link functions. These latter functions can be identity, 
logarithmic or logit functions, depending on the modelled 
distribution.   
 
3. Evaluation indexes 
 
The main index for evaluating a probabilistic forecast is 
known as the Continuous Ranked Probability Score 
(CRPS). The CRPS serves as a comprehensive metric that 
simultaneously assesses both reliability and resolution in 
probabilistic forecasting models [8]. The CRPS, which 
mathematical calculation is expressed in equation (4), 
quantifies the discrepancy between the cumulative 
distribution function (CF) of forecasted probabilities and 
the CF of the observed value by integrating across the entire 
range of possible outcomes for the forecast variable. In 
situations where the variable to be forecasted is represented 
by empirical distributions, as in the case of forecasts 
derived from non-parametric approaches that provide a set 
of quantiles, the CRPS can be computed using equation (5), 
where y represents the real values, qi the value of the 
quantile i and M the number of quantiles per forecast [9]. 
Equation (4), applicable to forecasts presented as CFs (or 
PDFs), and equation (5), relevant for forecasts articulated 
through a set of quantiles, both yield the instantaneous 
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value of the CRPS. From the instantaneous values recorded 
during the evaluation period, the average CRPS is 
computed. This average CRPS serves as an indicator of the 
model's probabilistic forecasting performance and is used 
to compare models. A lower average CRPS indicates a 
more accurate probabilistic forecast. 
 

CRPS(𝐶𝐹, 𝑦) = ∫ [𝐶𝐹(𝑥) −
 

ℝ
 𝟙(𝑥 ≥ 𝑦)]ଶ𝑑𝑥 (4) 
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(5) 

 
Although the CRPS allows a probabilistic prediction to be 
correctly evaluated, another indicator is needed to assess 
the reliability or calibration of the forecast. Reliability 
refers to the statistical consistency between forecasted 
outcomes and actual observations. The reliability of a 
forecasting model can be evaluated by means of the 
Probability Integral Transform (PIT) histogram. The PIT 
value is derived by computing CF(x) at a specific 
verification point x, which corresponds to an observed 
value of the dependent variable. The obtained PIT value 
varies from 0 to 1, representing the quantiles of the 
distribution. By comparing the PIT values with their 
corresponding verification points, one can assess the level 
of calibration or statistical consistency between the 
forecasted probabilities and the observed outcomes. In an 
ideal scenario, perfect calibration is attained when the PIT 
distribution is uniform, culminating in a flat histogram 
when utilizing evenly spaced intervals, also known as bins. 
In our analysis, we employ the Reliability Index (RI) [10], 
which is calculated based on the frequency with which the 
actual value of the variable to be predicted falls within one 
of the intervals represented in the PIT histogram. The RI is 
determined using equation (6), where K denotes the number 
of evenly spaced intervals, or bins, utilized in the 
histogram, and 𝜿𝒌 represents the frequency of instances 
where the value of the outcome variable falls within the 
range specified by bin k. A lower value of the RI suggests 
a model that is better calibrated.  
 

RI = ෍ ฬ𝜅௞ −
1

𝐾
ฬ

௄

௞ୀଵ

 (6) 

 
In addition, to evaluate the deterministic (point) forecasts 
provided by the models, we will use the root mean square 
error (RMSE), mean absolute error (MAE) and mean 
absolute percentage error (MAPE). These indexes are 
defined by equations (7) to (9), where,  𝑷෡(𝒕) represents the 
load demand point forecast for hour 𝒕, 𝑷(𝒕) the actual value 
and N indicates the total number of hours in the evaluation 
period. The values for the load demand point forecast 
corresponded to the mean of the distribution corresponding 
to each hour for the case of GAMLSS models or to the 
quantile 0.5 value for the case of non-parametric models. 
 

RMSE = ඨ
1

𝑁
෍൫𝑃෠(𝑡) − 𝑃(𝑡)൯

ଶ
 

 

 (7) 
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 (9) 

 
4. Case Study 
 
The objective is to obtain a probabilistic forecasting model 
of the hourly load in a power substation 66/13.2 kV feeding 
a small town of about 5000 inhabitants located in the north 
of Spain. The consumption fed from this substation is 
mainly industrial, although the number of residential 
customers is near 3000. The forecast horizon includes the 
24 hours of the next day, day d, with the forecast being 
carried out in the first hours of day d-1. The dataset, 
comprising hourly consumption records spanning 30 
consecutive months, serves as the base for the forecasting 
models' development. The hourly load dataset was 
expanded with the values from a set of potential 
explanatory variables.  
 
A set of 55 explanatory variables was employed in the 
analysis, encompassing a diverse range of factors as shown 
in Table I. These include the forecasted values of seven 
weather variables (V1 to V7), a logical indicator reflecting 
the official time for the forecast horizon, distinguishing 
between summer and winter time (V8), and the hourly load 
values at the same hour on the preceding six days (V9 to 
V14). Additionally, the model incorporates dummy 
variables to represent the hour of the day (V15-V37), the 
day of the week (V38-V43), the month of the year (V44 to 
V54), and a national, regional, or local holiday (V55). 
 

Table I. – Available explanatory variables 
 

VARIABLE DESCRIPTION 
V1 Temperature (K) 
V2 Global horizontal irradiance (W/m2) 
V3 Wind speed (m/s) 
V4 Relative humidity (per unit) 
V5 Total cloud cover (per unit) 
V6 Rainfall (kg/m2) 
V7 Snow (kg/m2) 
V8 European summer time (logical) 

V9–V14 Load (kW) lag_i hourly load lagged “i” hours, i  
V15-V37 Dummy variables for the hour of the day 
V38-V43 Dummy variables for day of the week 
V44-V54 Dummy variables for the month of the year 

V55 Dummy variable for holiday 
 
The forecasts for weather variables (V1 to V7) were 
sourced from Meteogalicia, the meteorological service of 
Galicia. Utilizing a numerical weather prediction model, 
Meteogalicia issues daily forecasts in the early hours for 
these variables for all hours in the following three days. 
These forecasts are distributed across points of an analysis 
grid, which spans the entire Iberian Peninsula with grid 
points approximately 12 km apart. The values of variables 
V1 to V7 were determined by calculating the weighted 
average of the forecasts for the four points on the analysis 
grid nearest to the urban centre of the considered town. The 
weighting factor was based on the distance between the 
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urban centre and each point on the analysis grid. Variables 
V9 to V14 represent the hourly load recorded at the 
corresponding hour for which the forecast is generated, 
covering the period from days d-2 to d-7. It is important to 
note that data for the same time on day d-1 are not available 
when the forecasts are carried out, as these forecasts are 
conducted in the early hours of day d-1. 
 
The complete dataset was partitioned into a training dataset 
and a testing dataset. The training dataset encompassed the 
data of the initial 24 months, while the testing dataset 
included the data of the subsequent 6-month period. 
 
The aim of the research presented in this paper was to 
develop a probabilistic model able of predicting hourly load 
using a parametric approach. Eight two-parameter 
distributions were considered for model selection: Gamma, 
Inverse Gamma, Logistic, Log-Normal, Normal, Gumbel, 
Reverse Gumbel, and Weibull. All these distributions are 
characterized by two parameters, the location parameter, μ 
and the scale parameter, σ. Clearly, the objective is to 
identify the model that yields the most accurate 
probabilistic forecasts. This involves selecting from among 
eight possible distributions and determining the optimal 
linear combinations of the explanatory variables for both 
parameters. 
 
To determine the most accurate probabilistic forecasting 
model for the hourly load demand across each of the 24 
hours of the subsequent day, a selection process was 
implemented, controlled by a multi-objective genetic 
algorithm aimed at optimizing two objectives: the 
minimization of the average CRPS and the minimization of 
the RI in the evaluation period. Model selection is 
exclusively based on data from the training set, employing 
a 5-fold cross-validation procedure. This approach involves 
dividing the training dataset into five distinct subsets. In an 
iterative process, each subset is alternatively used as the 
evaluation period while the GAMLSS models are fitted 
using the data from the remaining four subsets. This 
process yields five values for the average CRPS and for the 
RI. The fitness function's output values are the means of 
these five obtained values for CRPS and RI, respectively. 
 
In the genetic algorithm, each individual or potential 
solution was represented by a 110-element vector of real 
numbers in the range 0 to 1, with each element signifying 
the contribution of the corresponding variable to the model. 
Specifically, these elements indicated the exclusion (value 
under 0.5) or selection (value equal to or greater than 0.5) 
of each variable for constructing the linear combination of 
explanatory variables involved in the value of the μ 
parameter (the first 55 elements) and in the value of the σ 
parameter (the last 55 elements). 
 
The multi-objective genetic algorithm used was the NSGA-
II [11], with a total of 200 generations and 100 individuals 
per generation. The optimization process was conducted for 
each of the eight distributions, resulting in eight sets of non-
dominated solutions after the iterative processes. These 
solutions represent linear combinations of the explanatory 
variables for the two parameters that characterize each 
distribution.  

The optimization process for each distribution yielded a set 
of 100 non-dominated solutions. The eight sets were 
brought together to form a single consolidated set. From 
this consolidated set, the global non-dominated solutions 
were then identified. This process resulted in a reduced set 
of 131 non-dominated solutions, exclusively corresponding 
to three of the eight distributions: Gamma, Inverse Gamma, 
and Log-Normal. The selection of the model from the 131 
candidates identified as non-dominated global solutions 
was based on the normalization of the CRPS and RI 
between their respective maximum and minimum values in 
the consolidated set of non-dominated solutions. The model 
that exhibited the lowest aggregate value of these two 
normalized indexes was chosen, indicating an equitable 
weighting between the two indexes. This optimal 
(proposed) model was a Gamma distribution-based model 
which used reduced sets of the explanatory variables for the 
calculation of the two parameters. Specifically, it used 51 
of the explanatory variables to obtain the value of the μ 
parameter and only 30 to obtain the value of the σ 
parameter.  
 
Based on the t-statistic, the assessment of the significance 
of the explanatory variables reveals that the load from the 
same hour seven days prior and the dummy variable for 
holidays are the two most crucial variables in calculating 
the μ parameter. Conversely, for the sigma parameter 
calculation, the most significant variables are the holiday 
indicator and relative humidity. Temperature and dummy 
variables denoting the hours of the day also significantly 
influenced both parameters. Notably, the dummy variable 
for Sundays exhibited a peculiar pattern; it was the fourth 
most significant variable for the μ calculation but was the 
ninth for σ. 
 
After selecting the model characteristics, specifically, the 
distribution and the linear combinations of explanatory 
variables for determining the values of the two parameters, 
based on the outcomes of the 5-fold cross-validation 
procedure, the model was fitted using the entirety of the 
data from the training set. Subsequently, this final model 
was applied to the testing dataset, which had remained 
unused until this stage. Figure 1 shows the PDFs associated 
with probabilistic forecast of the hourly load for two 
distinct hours within the testing period. These two functions 
illustrate the different forecasting uncertainty level for each 
hour. Specifically, the forecast corresponding to the PDF 
represented in blue exhibits a higher degree of uncertainty 
compared to its counterpart in red. This heightened 
uncertainty correlates with a diminished sharpness in the 
blue PDF's curve. Additionally, the figure includes circular 
markers on both PDFs, denoting the actual hourly demand 
values for the respective hours. 
 
To evaluate the effectiveness of the forecasts generated by 
the proposed model, two benchmark models were 
developed for comparative analysis. The first benchmark 
model, REF1, shares similar characteristics with the 
proposed model in the sense that it uses the same technique, 
that is, it is a GAMLSS model characterized by two 
parameters, μ and σ, but the optimization process is 
restricted to the selection of the distribution function. 
Specifically, REF1 uses linear combinations of all the 
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available explanatory variables for the formulation of both 
parameters. The second benchmark model, REF2, utilizes 
a non-parametric approach, using the quantile regression 
technique and incorporating all available explanatory 
variables. Quantile regression involves the estimation of 
parameters for functions that correlate the quantiles of a 
dependent variable with its explanatory variables. When 
these functions assume a linear form, the resulting model is 
referred to as a Linear Quantile Regression model [12]. 

 
Fig. 1.  PDFs corresponding to the probabilistic forecasts of two 

hours of the testing dataset. 
 
The development of the REF1 model involved the selection 
of one of the eight possible distributions. The selection was 
carried out with a 5-fold cross-validation procedure using 
the training dataset. The selected model had a gamma 
distribution function. So, REF1 corresponded to a 
GAMLSS model with gamma distribution and used all the 
available explanatory variables in the formulation of the 
values of the two parameters. The REF2 model was also 
developed with the data of the training dataset using all 
available explanatory variables. This model facilitated the 
derivation of linear combinations of these variables to 
estimate the values for 99 quantiles of the dependent 
variable, ranging from 0.01 to 0.99 in 0.01 increments. 
Both benchmark models were subsequently applied in the 
probabilistic forecast in the test period.  
 

Table II. – Forecasting results with the testing dataset 
  

OPTIMIZED 
MODEL 

REF1  
MODEL 

REF2 
MODEL 

CRPS (kW) 161.17 161.88 164.44 
RI 0.06261 0.06409 0.1023 
RMSE (kW) 299.47 307.78 313.59 
MAE (kW) 226.35 229.21 231.46 
MAPE (%) 6.3219 6.3399 6.4099 
Explanatory 
variables 51(μ) - 30 (σ) 55(μ) - 55 (σ) 55 

 
Table II presents the forecasting results obtained with the 
optimized GAMLSS model and the two benchmark models 
in the probabilistic forecast for the testing dataset. The 
average CRPS value for the three models was calculated 
using 99 quantiles (from 0.01 to 0.99) and the RI value was 
calculated with 19 quantiles, from 0.05 to 0.95 in 0.05 
increments, which represents a total of 20 intervals or bins. 
For the deterministic prediction (punctual value of hourly 
load), the mean of the gamma distribution was used for the 
first two models, and the 0.5 quantile value for the REF2 

model. The optimized GAMLSS model outperforms the 
two benchmark models across all five evaluation indexes 
for the test period. Notably, the most significant 
enhancements were observed in the RI and RMSE indexes 
when compared to the REF2 model. While the distinction 
between the optimized GAMLSS model and the REF1 
model is less marked, the optimized model demonstrates a 
better performance across all indexes. 
 
Moreover, the two GAMLSS (the optimized one and 
REF1) can be considered calibrated, in contrast to the linear 
quantile regression-based model, REF2, which is not 
calibrated. The calibration of a model is determined by its 
ability to produce a flat PIT histogram, an evaluation 
performed using the RI index. It is important to note that, 
due to the inherent randomness and the finite length of the 
data series, a perfectly calibrated model (statistical 
consistency between the distributions of observed and 
predicted values) will exhibit an RI value exceeding 0. This 
phenomenon is well-documented in the international 
literature, which has established a critical RI index value 
[13]. This value delineates whether a model can be 
considered calibrated at a specified significance level. For 
instance, in the case of the testing dataset containing 4344 
records, the critical RI index value at a significance level of 
0.05 is identified as 0.06797. Accordingly, this criterion 
confirms the calibration of the two GAMLSS models. 
 
Figure 2 presents the PIT histogram for predictions during 
the testing period. The histogram's intervals are determined 
by quantiles, ranging from 0.05 to 0.95, creating a total of 
20 intervals of equal width. Ideally, in a completely flat 
histogram, the probability of the dependent variable's true 
value falling within each interval would consistently be 
0.05. However, as illustrated in the figure, the observed 
relative frequencies of these intervals exhibit slight 
variations around this target value. Despite these 
deviations, based on the previously outlined critical value 
for the RI index, the model can be considered to be 
calibrated. 

 
Fig. 2.  PIT histogram for the forecasts with data from the testing 

dataset. 
 
Figure 3 illustrates the probabilistic forecasts of hourly load 
for a winter week within the testing period. The figure 
shows the observed (actual) hourly load values in black, 
alongside five quantiles depicted in varying shades of grey. 
Notably, the median quantile (Q0.5) closely mirrors the 
actual load values, with this accuracy most pronounced on 
the five working days. The occurrence of actual values 
falling beneath the expected value of the 0.05 quantile is 
observed, aligning with the statistical anticipation that this 
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would happen in 5% of cases. Furthermore, the graph 
reveals an increase in predictive uncertainty during the 
weekend. This is indicated by the broader interval between 

the 0.05 and 0.95 quantile values, suggesting a greater 
range of possible load values compared to the weekdays.

Fig. 3.  Probabilistic hourly load forecasts for a week in winter. 
      

5. Conclusions 
 
This study details the development of a short-term 
probabilistic load forecasting model, focusing on a 
GAMLSS framework. Our methodology optimizes the 
selection of explanatory variables for modelling the 
distribution parameters, enhancing the precision of 
GAMLSS type models. Applied to a case study of 
electricity consumption at a 66/13.2 kV substation feeding 
a small town of 4500 inhabitants, our approach employs a 
dual-objective optimization strategy. This strategy 
facilitates the identification and linear combination of 
explanatory variables that most effectively model the 
distribution's location and scale parameters. Compared to 
two benchmark models, the optimized model demonstrates 
superior forecasting accuracy, as evidenced by a 
comparative analysis. 
 
Our research efforts are presently focused on applying the 
proposed methodology to the development of probabilistic 
short-term net load forecasting models. These models are 
designed to predict the electricity consumption for 
customers who utilize photovoltaic generation systems 
installed behind the meters. These models will become 
critically important for marketers and distribution system 
operators. Their importance is expected to grow in parallel 
with the increasing penetration of photovoltaic power 
generation in distribution grids. 
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