
22nd International Conference on Renewable Energies and Power Quality (ICREPQ’24) 
Bilbao (Spain), 26th to 28th June 2024 

Renewable Energy and Power Quality Journal (RE&PQJ) 

 ISSN 2172-038 X, Volume No.22, September 2024 

An Adaptive Secondary Control Based on Recursive Neural Networks 

for Isolated Microgrids  

L. Rodríguez1, A. Pantoja1, J. Revelo1, and J. Barco-Jiménez2,3,4 

1 Department of Electronics 

University of Nariño 
2 Program of Electronic Engineering 

University CESMAG 
3 Postgraduate Programs in Electrical and Electronic Engineering - PPIEE 

University of Valle 

4 Electrical Engineering Department 
University of Malaga 

Abstract. This work proposes a model reference adaptive

control based on recursive neural networks. This secondary-level 

controller corrects the deviations on the voltage and frequency 

setpoints of a simple primary control in an isolated microgrid 

(MG) with multiple distributed generators (DGs). The controller 

has two nonlinear autoregressive with external input neural 

networks to emulate the microgrid and guide the whole system 

according to an appropriate reference model. The networks are 

trained with synthetic data from a simulation MG and the order of 

the networks are obtained with a deterministic method. The 

method is tested with a three-units MG in a Matlab simulation 

under different working conditions. Results show the proper 

performance of the proposed controllers in comparison to a PI 

strategy. 
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1. Introduction

The inclusion of distributed generators (DGs) presents a 

challenge in isolated microgrids. The DGs are generally 

controlled and connected to the microgrid through on-grid 

and off-grid inverters. Therefore, the control loop of these 

devices must guarantee obtaining stability, satisfying the 

microgrid’s loads, and maintaining power quality in key 

variables, such as frequency and voltage [1].  

To ensure proper operation of microgrids, a hierarchical 

control scheme is proposed, achieving operation objectives 

by three main levels. The first level is given by local current 

and voltage control loops, used to ensure power sharing 

capability and achieve basic control of voltage and 

frequency of each generator [2]. However, when 

disturbances or anomalies appear, the local controller is 

unable to guarantee the setpoints of the main variables. The 

secondary control level is used to deal with frequency and 

voltage deviations by adjusting the preset values of the 

current setpoints at the first level. Finally, the tertiary level 

is used for the cost optimization and management of the 

energy flow in the microgrid. Normally, the primary and 

tertiary levels require decentralized and centralized 

controllers, respectively, while the secondary level can be 

implemented using both structures. 

On the other hand, it is well known that in real microgrids 

there exist transient phenomena due to abrupt changes in 

the loads, failures in the power units, and the incorporation 

of DGs with stochastic resources. Therefore, high 

variations in voltage and frequency are produced, 

including increases in harmonic distortions that affect 

system stability and power quality. These issues are 

addressed mainly by a secondary controller. 

Nowadays, several studies have focused on solving the 

aforementioned problems. For instance, [3] shows PI 

controllers, whose coefficients are determined by particle 

swarm optimization (PSO) to improve the dynamic and 

steady-state voltage and frequency dynamic and the 

steady-state behaviour of the system. Similarly, 

distributed controllers have been proposed, mostly reliant 

on consensus techniques. In [4], a distribution 

optimization problem is solved to achieve a convergent 

solution for all distributed units. In other studies, 

multiagent-based load restoration algorithms have been 

proposed [5], whose agents make decisions based on local 

information from direct neighbours and global 

information based on the average consensus method. 

For highly nonlinear and complex AC/DC microgrids 

(with switched power converters), control schemes based 

on machine learning techniques, such as adaptive neural 

networks (NN) and evolutionary algorithms are gaining 

widespread interest. Intelligent controllers are very 

promising because they can adapt to uncertainties and can 

also be used when the model of the system is not available. 
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Recently, recursive neural networks with learning 

capabilities have been widely applied to the control of 

complex power systems [6]. 

 

Additionally, microgrids with low inertia and high 

penetration of renewable sources require complex control 

structures to maintain frequency and voltage within an 

acceptable range. Alternatively, in [7], a novel secondary 

controller based on reinforced deep learning is presented. 

This controller offers advantages over traditional ones as it 

responds better to the nonlinear dynamics of the microgrid, 

outperforming droop controllers in some cases. Similarly, 

in [8], a reinforcement learning-based controller is 

introduced, which does not require model information but 

is trained under feedback control based on Lyapunov 

principles. Simulation results demonstrate that the neural 

secondary controller responds very well to changes in line 

impedance, resistive or inductive loads, and uncertainty in 

other parameters. In this regard, neural controllers show 

promising results in addressing various issues affecting the 

balance of frequency and voltage in microgrids. 

 

Based on the above considerations, this study proposes a 

secondary control into a microgrid composed of several 

distributed generators with a basic droop primary controller. 

The system must be able to guarantee the control of voltage 

and frequency at the point of common coupling (PCC) 

under conditions of load variation, failures in the power 

generation sources and changes on the resources of DGs. 

The main contributions are:  

• The proposal of an adaptive secondary control based on 

recursive neural networks capable of regulating the 

voltage and frequency. The design and calibration do 

not depend on an explicit model of the system. 

• A comparison of the implemented controller with a 

conventional centralized secondary control. 

• The validation of the controller in simulation scenarios 

that generate high variations in voltage and frequency. 

 

2. Hierarchical Control Structure for a 

Microgrid 

 

A microgrid can be modelled as several sources connected 

through lines and local loads in the nodes. A typical DG unit 

(e.g., a photovoltaic generator) consists of a DC main 

source, a DC/AC converter, and an LCL filter, as it is shown 

in Fig. 1. In an isolated microgrid with multiple DGs, the 

voltage and frequency are supported by the generators, and 

the load consumption is assumed to be distributed among 

the units according to their nominal power.  

 

 
Fig.1. Model of a DG in a microgrid. 

 

 

 

A. Primary Control 

 

The basic control strategy in a primary level is the droop 

controller. Based on the measured active and reactive 

power information, the droop relationship provides the 

operating frequency for the inverter as well as the voltage 

reference for the voltage controller. In this case, each DG 

has an appropriately tuned droop control. 

 

B. Secondary control 

 

The secondary control layer coordinates the operation of 

multiple DERs within the microgrid to optimize system 

performance and achieve specific objectives, such as 

reducing the voltage and frequency deviation. It includes 

a centralized control system that communicate with the 

individual DERs and adjust their output based on system 

requirements. This layer typically operates on a second-to-

minute time scale. 

 

To compensate for the voltage and frequency deviation 

caused by the droop control and to overcome the 

impedance impact of the transmission line on the power 

assignment, the secondary voltage and frequency control 

intervene to adjust the reference of the primary control 

through the inclusion of two control signals (𝑢𝜔, 𝑢𝑣), 

which are added to the control signals in the droop strategy 

as  

 

𝜔∗ = 𝜔𝑛 − 𝑅𝑝𝑃 + 𝑢𝜔 

𝑣∗ = 𝑣𝑛 − 𝑅𝑞𝑄 + 𝑢𝑣 , 

 

where 𝜔∗and 𝑣∗ are de desired values for frequency and 

voltage, 𝑅𝑝and 𝑅𝑞 are the tuned droop constants, and 

𝑃, 𝑄, 𝜔𝑛 , 𝑣𝑛 are the active/reactive power and the 

frequency and voltage measured in the generation node. 

 

3. A MRAC Secondary Control 
 

The architecture of the proposed Model Reference 

Adaptive Control (MRAC) uses a neural network for the 

main controller and a second neural network to emulate 

the plant (i.e., the microgrid model). Fig.2 shows the 

architecture, where 𝑦𝑟𝑒𝑓(𝑘 + 1) is the output of the 

reference model that the pair controller-plant must follow, 

𝑦𝑝(𝑘 + 1) is the microgrid output (voltage or frequency 

signals), and 𝑒𝑐(𝑘) is the tracking error to be reduced. In 

this structure, the neural network controller provides an 

appropriate control signal 𝑢(𝑘) to the system to keep the 

output as close as possible to the desired reference output, 

specified by the reference model with input 𝑟(𝑘). The 

tracking error is used to adjust the parameters of the neural 

network in the controller. The reference model establishes 

the expected performance of the closed-loop system and 

must be carefully chosen so that the real closed-loop 

system may be able to achieve a behaviour like the 

required one. 
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Fig.2. MRAC control structure. 

 

A. Nonlinear autoregressive with external input Neural 

Networks (NNARX) 

 

Given the complex dynamics of the microgrids and the 

expected controller, NNARX are interesting topologies to 

emulate nonlinear and hard-to-model behaviours. These 

networks are dynamic and recurrent, consisting of several 

layers with feedback. The main structure whose structure is 

shown in the upper (or bottom) schematics of Fig.3. They 

are based on the autoregressive model used to describe 

systems with inertia, where the predicted values depend on 

previous outputs and external input values on the dependent 

variable. The network’s outputs, their respective inputs, and 

the desired references are input data in the training process 

[9]. 

 

The controller (using both neural networks) can undergo 

either online or offline training procedures. In this scenario, 

offline training was employed. Fig. 3 illustrates the neural 

structure utilized in the offline training process, comprising 

four layers (two for each network) that represent a closed-

loop control system. 

 

 
Fig.3. MRAC training controller structure. The controller NN is 

presented in the upper schematic, while the model NN is in the 

bottom. 

 

The upper first two layers represent the neural controller, 

while the last two layers approximate the plant to be 

controlled. Here, 𝑚𝑟𝑒𝑓 and 𝑚𝑐 denote the delays associated 

with the desired references and the control signal, 

respectively. Moreover, 𝑛𝑜𝑢𝑡, 𝑛𝑐, and 𝑛𝑝 represent the 

number of delays related to the output signal of the neural 

network, the output of the controller layers, and the output 

of the layers representing the system. 

 

Notice that training can be performed independently if we 

have appropriate data for each network. Consequently, we 

first train the NN to emulate the dynamics of the system 

(NN model of the MG), and then, utilize this model to train 

exclusively the layers corresponding to the controller. 

 

The NN for control needs to learn an emulation of the 

reference model chosen to lead the behaviour of the MG. 

Then, the controller is trained to produce the proper input 

to the MG (𝑢) to a reference when the plant produces the 

output (i.e., another input of the controller). This training 

uses a “synthetic” closed-loop system, requiring data 

solely from the NN plant and a reference model. 
 

 

B. NNARX training and parameter tuning 

 

The first NNARX to be trained is the one corresponding 

to the microgrid emulation. The training is data-based, so 

the plant is simulated with random inputs and the outputs 

are measured to obtain the plant database. With an 

appropriate model, the control is trained with the pairs 

input-output obtained from the desired reference model (in 

this case, a two-order linear model, with unitary gain to 

avoid steady-state error, a damping factor of 0.8, and a 

natural frequency of 11.1 rad/s are used). The control and 

the model of the plant interacts in this second phase, but 

only the weights of the controller are tuned to achieve the 

response of the reference model. 

 

To train the neural network layers for the plant, the initial 

step involves selecting input and output variables 

capturing the microgrid dynamics. This study prioritizes 

secondary control signals, notably the park-transformed 

voltage signal and microgrid frequency, sampled at the 

common coupling point (PCC) every 0.5 ms. 

 

Obtaining the microgrid´s output data requires a 

simulation model to introduce the input signals. In this 

case, and based on simulation tests, the optimal intervals 

for voltages are in [6, 20] V and [1.1, 2] rad/s for 

frequency, with varying periods from 2 to 50 ms. Due to 

the MG's sensitivity, input signals undergo processing via 

a moving average filter. 

 

After signal acquisition, processing becomes essential. As 

in [22], signals are normalized to achieve a zero mean and 

a standard deviation of 1. The process for a voltage input 

is depicted in Fig. 4, displaying a pseudorandom input 

signal, their corresponding response, and its prepressed 

result. 
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Fig. 4. Response curves from top to bottom: (a) 𝑢𝑣, (b) the 

generated voltage response, and (c) the pre-processed voltage 

signal to train the model NN.  

 

C. NNARX model order calculations 

 

The model order (delays of inputs and outputs of the 

NNARX) is performed by the Lipschitz number method, 

which is a deterministic method that makes use of the 

geometrical information of the input-output data. The 

method can be used for all ARX model structures and linear 

or nonlinear systems. The method of Lipschitz numbers 

[11] is based on the continuity property of the functions 

representing the input-output models and does not depend 

on the approximation method or model structure. This 

method involves determining a Lipschitz constant, which 

quantifies the maximum rate of change of the function over 

its entire domain. This constant helps in establishing the 

stability and convergence properties of mathematical 

equations and optimization algorithms. 

 

After determining the model's order using the Lipschitz 

number method in [11], the next step involves identifying 

additional parameters such as the number of layers and the 

size of each layer. These hyperparameters are fine-tuned 

through trial and error until the optimal configuration 

within a predefined range is found. During training, only 

one parameter of the neural network is adjusted and 

calibrated at a time to maintain stability in performance. 

The remaining parameters are kept constant during 

calibration. It's worth noting that this procedure is repeated 

for each parameter of the network. 

 

4. Simulation Results and Analysis 

 

To test the effectiveness of the proposed approach, a 

standalone MG with three DG units with individual loads 

and transmission lines (Fig. 5) is simulated in MATLAB. 

To compare the response of the proposed controller, three 

secondary controllers are implemented: a PI simple 

controller, a MRAC with a simple database, and a complex 

MRAC with a database obtained with multiple events, 

failures, and changes in loads. Detailed parameters for the 

MG model and secondary control are provided in Table I 

and II, respectively. 

 

 
Fig. 5. General schematic of the MG test system. 

 

 
Table I. - Parameters of the test network 

 DG1 & DG3 DG2 

Model 

Rp1,3 9.4e-5 Rp2 12.5e-5 

Rq1,3 1.3e-3 Rq2 1.75e-3 

Rf 100 mΩ Lf 0.30 H 

Rc 30 Ω Lc 0.30 H 

Load RLoad 10 Ω LLoad 0.01 H 

 Z12 Z23 

Line 
Rl1 230 mΩ Ll1 0.32 µH 

Rl2 350 mΩ Ll2 1.84 µH 

 
Table II. - Controller parameters 

 Param Value Param Value 

Simple 

𝑚𝑟𝑒𝑓 6 𝑛𝑜𝑢𝑡 10 

𝑛𝑐 6 𝑁𝑖𝑛𝑐 6 

𝑚𝑐 10 𝑛𝑝 10 

𝑁𝑖𝑛𝑝 2 𝑵𝒐𝒖𝒕𝒑 1 

Complete 

𝒎𝒓𝒆𝒇 6 𝒏𝒐𝒖𝒕 10 

𝒏𝒄 6 𝑵𝒊𝒏𝒄 6 

𝒎𝒄 10 𝒏𝒑 10 

𝑵𝒊𝒏𝒑 2 𝑵𝒐𝒖𝒕𝒑 2 

 Voltage Frequency 

Reference 𝑉∗ 311 𝑉𝑝𝑒𝑎𝑘 𝑓∗ 60 Hz 

 

To analyse the performance of the controllers, we set up 

five operating scenarios: i) The system operates with only 

the primary controller in the time interval [0 0.5) s; ii) in 
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t=0.5 s, the secondary controller is activated; iii) in t=1 s, 

the load on node three is doubled; iv) in time 1.5 s, the load 

on node 3 is halved; and, v) at t=2 s, the DG3 is disconnected 

from the system and reconnected at second 3. 

 

Simulation results (Fig. 6 and 7) unveil performance 

disparities among controllers across stages. Initially (0 - 0.5 

s), all generators exhibit voltage and frequency deviations 

due to primary control. Upon secondary control activation 

at t=0.5 s, voltage deviations diminish, with the PI controller 

showing the lowest steady-state error, trailed by the simple 

and complex neural controllers. Similarly, the PI controller 

tracks frequency closely compared to neural controllers. 

 

During load fluctuations (1-2 s), the PI controller 

demonstrates accurate voltage tracking in DG1 and DG2, 

while the simple neural controller excels in DG3. However, 

the complex neural controller fares poorly across all 

generators. In terms of frequency, the PI controller yields 

optimal results with longer transients compared to neural 

controllers. 

 

During the disconnection and reconnection of DG3 (2-3 s), 

higher overshoot occurs due to system perturbations. 

Notably, the complex neural controller exhibits the best 

response during DG3 reconnection, while the PI controller 

shows the poorest performance. 

 

To compare the controllers, some indexes are calculated 

based on the responses in all the scenarios. The analysis of 

Table III reveals that the complex neural controller requires 

the least control effort (ISU), followed by the simple neural 

and PI controllers. However, graphical analysis alone is 

insufficient for determining controller performance. Other 

metrics indicate the complex neural controller performs best 

in frequency, achieving the lowest IAE (integral of the 

absolute error) and ISE (integral of the squared error). 

Conversely, for voltage, it fares poorly, while the PI 

controller exhibits the highest ISE. 

 
Table III. - Comparison Metrics 

 Index PI SIMPLE  COMPLETE 

Frequency 

IAE 0.325 M 0.685 M 0.310 M 

ISE 0.167 M 0.108 M 39.22 k 

ISU 6.497 M 10.25 M  4.172 M 

Voltage 

IAE 21.88 M 19.86 M 38.46 M 

ISE 0.879 G 0.964 G 1.037 G 

ISU 40.62 M 31.08 M 7.340 M 

 

Comparatively, the full neural controller demonstrates 

superior energy performance, evident in its lower ISU 

across all generators. These findings underscore neural 

controllers' superior performance, attributed to their 

excellent frequency response and overall energetic 

behaviour. 

 
4.  Conclusion 
 

This paper focuses on the secondary control layer for 

voltage and frequency restoration in autonomous MGs, 

using as an approach a centralized controller based on 

machine learning. Additionally, simulations of the 

controller in different scenarios and trained with a varying 

amount of data are presented. Simulations validate the 

effectiveness of the proposed method for secondary 

control under conditions with load disturbances and its 

plug-and-play operation. Moreover, the results show the 

efficiency of the proposed algorithm, and its simplicity are 

interesting for implementation. There is, however, an 

important tradeoff obtaining the database to train the 

NNARXs, although some parameters like the number of 

neurons can be obtained with deterministic methods. 
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Fig.6. Simulation results for voltage in all DGs of the microgrid. The results show the response to the test scenarios for the PI control 

(red), the simple MRAC (blue), and the complete MRAC (black). 

 

 
Fig.7. Simulation results for voltage in all DGs of the microgrid. The results show the response to the test scenarios for the PI control 

(red), the simple MRAC (blue), and the complete MRAC (black). 
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