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Abstract. This study introduces a novel approach to

enhancing energy efficiency by building a high-resolution 

dataset for Non-Intrusive Load Monitoring, addressing the 

challenges of monitoring a wide range of devices. To achieve 

optimal energy efficiency, it is essential to have advanced 

monitoring of electrical variables. In this context, the second 

version of openZmeter is presented, which supports up to 4 

devices, each capable of 160 measurements, including 

voltage, current and power harmonics on each channel. To 

carry out this purpose, the Non-Intrusive Load Monitoring 

Toolkit is adapted for the new openZmeter v2. The main 

objective of this study is to offer a new pragmatic approach to 

generating artificial intelligence models to optimise energy 

use, analysing the results through an exhaustive experimental 

analysis under various casuistry and conditions. Numerous 

comparative studies are provided using classical 

disaggregation algorithms with different requirements. 

Conclusively, the research emphasises the transformative 

potential of artificial intelligence for energy efficiency 

strategies, offering insights for scholars and practitioners. 
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1. Introduction

In the current energy transition scenario, Non-Intrusive 

Load Monitoring (NILM) [1] has seen an increase in 

demand compared to Intrusive Load Monitoring (ILM). 

NILM efficiently optimises energy consumption and makes 

it possible to estimate the individual consumption of 

electrical devices connected to an installation from a single 

centralised meter. It eliminates the need for individualised 

meters for each application, a feature in ILM techniques. 

The Non-Intrusive Load Monitoring Toolkit (NILMTK) [2] 

has been adapted to integrate the new oZm v2, an advanced 

three-phase power meter and power quality analyser with 

IoT capabilities. Therefore, implementing this technique is 

facilitated by using the NILMTK and the latest version of 
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the oZm, which can support up to 4 channels per meter, 

simplifying the acquisition process. 

 

This procedure may seem simple, thanks to the tools 

implemented at the software and hardware level. Still, it is 

crucial to consider the various variables that can influence 

the quality of the generated model [3]. This article aims to 

provide a clear overview of the generation of energy 

consumption disaggregation models, regardless of the 

algorithm used and its associated parameters. 

 

2. Related Work  
  

Many disaggregation algorithms and datasets are available 

for load disaggregation in the literature. Regarding the 

algorithms for NILM [4], these methods are categorised 

into three main groups: optimisation methods (such as 

SVM, OBSA [5], genetic algorithms [6] and PSO [7]), 

supervised methods (such as Bayesian Classifiers [8], SVM 

[9], DDSC [10], ANN [11] and their extensions) and, 

finally, unsupervised methods (including CO [12], HMM 

and its extensions such as FHMM [13]), the latter being the 

approach chosen for the present work. 

Datasets for power disaggregation can be diverse, with 

adequate sampling resolution, and accessible to the research 

community. Here are some of the most current datasets: 

 

• DEPS (Higher Polytechnic School of the 

University of Seville): Offers power, voltage, and 

current readings at 1 Hz through six devices 

present in a classroom, taken during a month [14].  

• DSUALMH (University of Almeria): offers up to 

160 data of electrical measurements captured with 

the oZm v1 of six commonly used devices plus the 

aggregate in about two hours [15]. 

• DSUALM10H (University of Almeria): offers up 

to 160 pieces of data referring to ten devices plus 

the aggregate with a time of about four hours. 

• iAWE (Indraprastha Institute of Information 

Technology): provides aggregated and submetered 

electricity and gas data from 33 household sensors, 

with a 1-second resolution for 73 days from a 

single household [16]. 

• UALM2 (University of Almeria): dataset 

generated with the measurements of the free 

OMPM hardware based on an RS485 bus that 

allows up to 127 devices. In this implementation, 

the design is carried out for six devices: five are 

low-power applications, and one corresponds to 

the aggregate [17]. 
 

3. Methodology  
 

This study takes advantage of the features of the new oZm 

v2 [18] that complies with standards such as IEC 61000-4-

30 and EN 50160 and can measure single or three-phase 

systems (85-264VAC) in a single device with an accuracy 

of 0.1%. Acquisition features include 12- or 13-bit 

resolution and 24 kHz sampling rate. Various current 

probes, such as current transformers, Hall effect, Rogowski 

and others, can be used as they comply with the input 

voltage levels. 

In the experiments between 2022 and 2023, three oZm v2 

were used to acquire data from twelve measurement 

channels, with one channel dedicated to aggregate 

measurements, as shown in Fig. 1. Ten electrical devices 

were used in different pseudo-random situations, such as 

different on/off sequences, different time intervals, different 

time slots, and other conditions.  

 

 
Fig. 1. oZm’s connections with the applications. 

 

The models use several hours of device operation logs 

obtained through the oZm API. The data collected by the 

oZm are stored in files consisting of 160 data fields with a 

13-digit timestamp mark, which will be used in successive 

stages of the NILM. 

 

A. NILMTK flowchart 

 

NILMTK is a popular free, open-source tool that simplifies 

NILM research using converters, evaluation metrics, 

algorithms, and essential resources. For this reason, in the 

disaggregation process, NILMTK was used together with 

the oZm v2. A flow diagram is shown in Fig. 2. 
 

 
Fig. 2. NILMTK flow diagram. 

 

New preconverters and converters have been developed 

specifically for the new oZm v2 measurements, and the 

associated metadata has been integrated into new HDF5-

formatted datasets. 

 

B. Generation of the DSUALM10H dataset 

 

The initial stage involves a preliminary analysis of the data 

files, decompressing measurement files from parquet 

format to CSV format, adding headers, and converting 
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angular values from harmonics to modules. The 

discrepancy in the date and time fields returned by the oZm 

is addressed. The CSV files are then rearranged, and extra 

characters are removed. 

 

The next step involves converting the pre-processed files 

and their metadata into a unified HDF5 file stored in the 

runtime directory. Due to the unique nature of oZm data, a 

new converter integrated into NILMTK is created, with a 

subdirectory for metadata in YAML format. 

 

Locating data files involves calling the converter, with the 

metadata path and the new name of the dataset as 

parameters. The converter performs several stages for each 

measurement: reading the numbered file, converting the 

timestamp field to date format, loading the remaining 

columns, sorting and indexing, resampling, and re-indexing 

the file. After processing all the files, an attempt is made to 

combine them in YAML format, add metadata, and 

generate a new dataset in HDF5 format. 

 

Fig. 3a shows the converter configuration, and Fig. 3b 

shows the directory structure. Each CSV file derived from 

oZm in the previous phase is numbered. The new function 

accesses measured data files in the "/electricity/" input 

folder using .csv file tags. 

 

 
(a) 

 
(b) 

Fig. 3. (a) Data file structure. (b) Metadata file structure. 

 

C-. Analysis, training, and validation 

After generating a new dataset, the initial diagnosis uses 

NILMTK implementations, focusing on the power profile. 

At this stage, the voltage profile is also determined, 

possible missing sections are identified, or samples with 

shallow values are filtered. After data analysis, the set is 

segmented into training, validation, and testing. 

 

D-. Disaggregation 

 

In the NILMTK framework, two disaggregation models, 

specifically the CO and FHMM algorithms, are employed 

to disaggregate new datasets based on the active power data 

of devices. This process entails, first and foremost, the 

loading of essential libraries, followed by the definition of 

the dataset structure, the association of labels with the 

respective devices, and the delineation of the training 

subset. Upon establishing the training model, the CO and 

FHMM algorithms are executed across various time 

intervals (10", 30", 60", 5', 10', 15') using three different 

methods (First, Mean, and Median), with the resulting 

models being saved in H5 format. The subsequent step 

involves deploying the highest-rated model in the 

validation phase to facilitate a comparison between the 

actual signal and the predictions made by the top-

performing model from each dataset. 

 

4. Results  
 

When disaggregating several applications, an evaluation is 

carried out with some NILMTK tools, considering metrics 

such as F1-score, EAE, MNEAP, and RMSE. Significant 

challenges are recognised with the increase of household 

appliances, in our case, up to 10 applications plus the 

aggregate, in contrast to DSUALMH, which, indeed, with 

only six more applications, the aggregate achieved 

excellent metrics [15]. 

 

Fig. 4 compares the key metrics with incremental 

improvements made over the measurements, including 

increased sampling time, reduction in electrical noise, 

change in transducers, and progress in the alignment of 

active phases in split-core transducers, revealing clear signs 

of improvement. 

 

 
Fig. 4. Evolution of metrics in successive experiments. 

 

When increasing the number of devices in training with the 

CO algorithm, there are few problems, even with minimal 

sampling times. Still, with FHMM, running the algorithm 

with the new dense dataset can be challenging, for which it 
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is necessary to reduce the training time or sampling time 

(or even the number of devices). 

 

A. Influence of sample time extension and harmonics 

inclusion 

 

On the other hand, extending the training period by two 

hours does not necessarily improve the basic metrics, as 

evidenced in Table I, where the results show a slightly 

lower F1-score (45.20), a much worse EAE value (mean 

0.477, while with less time we obtain a perfect value of 0), 

a worse MNEAP value (average of 2.444) and above all a 

much worse RMSE value (average of 431.515). 

 
Table I.- Metrics of CO for ten appliances with extended 

training. 

 
 F1-score EAE MNEAP RMSE 

Electric furnace 0.514 0.385 0.916 963.602 

Microwave 0.471 0.498 1.671 566.094 

TV 0.753 0.026 0.579 24.426 

Incandescent lamp 0.487 0.520 3.157 406.878 

Vacuum cleaner 0.229 0.514 2.403 322.363 

Electric heater 0.152 0.889 2.570 872.400 

Electric shoer heater 0.529 0.548 1.092 614.549 

Fan 0.662 0.049 0.686 22.566 

Fridge 0.406 0.431 5.639 273.104 

Freezer 0.317 0.412 5.724 249.175 

 

Excluding odd harmonics while retaining even harmonics 

has been tested, and the results suggest that this approach 

generally does not lead to improvements in overall 

performance across various applications (mean F1-score of 

44.01, EAE of 0, lower MNEAP of 2.2877, and RMSE of 

401.3312). 

 

While excluding just odd harmonics offers mixed results, 

removing all harmonics hurts performance across metrics 

(Table II). Despite similar F1-score (0.472), EAE (worse), 

MNEAP (much worse), and RMSE (slightly worse) 

suggest it's generally less effective. 

 
Table II.- Summary metrics without harmonics 

 
 F1-score EAE MNEAP RMSE 

Electric furnace 0.576 0.767 0.849 880.820 

Microwave 0.518 0.399 1.645 570.959 

TV 0.767 0.027 0.595 24.598 

Incandescent lamp 0.479 0.082 1.095 54.838 

Vacuum cleaner 0.261 0.594 2.617 333.217 

Electric heater 0.189 0.895 2.112 806.931 

Electric shoer heater 0.431 0.681 1.196 657.188 

Fan 0.651 0.054 0.713 23.501 

Fridge 0.434 0.422 4.893 269.037 

Freezer 0.423 0.351 4.400 201.280 

 

B. Influence of the number of samples 

 

The CO and FHMM algorithms were applied to the datasets 

using NILMTK for disaggregation to obtain the common 

metrics. Since significantly different results were observed, 

it is hypothesised that the number of samples per 

application could influence the metrics obtained. The 

average number of samples for each application in each 

dataset was calculated and related to the F1-score, EAE, 

and RMSE metrics to investigate this possibility. 

 

As shown in Fig.5, there is no clear trend in the relationship 

between F1-score and the number of samples, with F1-

score values in a relatively narrow range, between 0.4658 

and 0.5982. 

 

 
Fig. 5. Relationship between the number of samples and F1-

score. 

 

In most cases, the EAE metric shows a general downward 

trend as the number of samples increases, as shown in Fig. 

6. This indicates that the accuracy of energy disaggregation 

improves with more measurement points. 

 

 
Fig. 6. Relationship between the number of samples and the EAE 

metric. 

 

Regarding the RMSE metric, with the increase in samples, 

there is no clear trend in the relationship between RMSE 

and the number of samples (Fig. 7), oscillating the values 

from a minimum of 2.9964 to a maximum of 15.9096. 

 

 
 

Fig. 7. Relationship between the number of samples and the 

RMSE metric. 
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Table III- Summary of metrics in six datasets using the mean, the best or the worst value. 

 
 F1 

mean 

F1 

best 

F1 

worst 

EAE 

mean 

EAE 

best 

EAE 

worst 

MNEAP 

mean 

MNEAP 

best 

MNEAP 

worst 

RMSE 

mean 

RMSE 

best 

RMSE 

worst 

DSUALM10H 0.454 0.812 0.253 0 0 0 1.981 0.553 4.930 372.847 23.354 920.380 

DSUAMH 0.829 1 0.671 0 0 0 0.479 0.021 0.895 33.837 22.195 46.070 

UALM2 0.632 0.789 0.420 0.006 0.001 0.012 0.725 0.348 1.138 14.782 7.339 17.417 

DSUALM 0.851 0.996 0.679 0 0 0 0.666 0.660 1.815 33.490 20.600 62.253 

DEPS 0.845 0.915 0.463 1.001 0.608 2.556 0.558 0.155 0.937 105.706 108.786 193.970 

 

C. Influence of application type on metrics 

 

Considering the arithmetic mean of the measurements, the 

total will be significantly affected depending on the type of 

applications considered in the dataset. Therefore, in 

addition to considering the arithmetic mean, the best and 

worst values across different datasets are considered by 

using the public data available from these datasets (Table 

III). This approach aims to provide a more comprehensive 

analysis by evaluating performance under different 

scenarios.  

 

Examining F1-scores, a metric ideally valued at unity, 

analysing the best values yields superior metrics for 

DSUALM and DSUALMH datasets, in a similar way for 

the average value, which obtains worse values for 

DSUALM10H or iAWE datasets. On the other hand, 

selecting the worst values identifies iAWE, DSUALM10H, 

OMPM and DEPS as the least-performing datasets. For 

EAE values, these are excellent for all datasets (values 

close to zero) except for DEPS, which consistently 

performs poorly. 

 

In the MNEAP metric (Fig. 8), the highest values 

(MNEAP-WORST) above the average for all datasets stand 

out, the most striking being DSUALM10H (which takes the 

value of almost five points due to the fridge), but in any 

case, they are all very acceptable values below that 

threshold. 

 

 
 Fig. 8. MNEAP metric comparison using the mean, best or worst 

value. 

 

Finally, Fig. 9 shows the same analysis for the RMSE 

metric, where again, the DSUALM10H dataset does not 

obtain too good values, undoubtedly impacted by the worst 

value, which in this case is for the oven. Similarly, both the 

worst case and the mean are highlighted; however, they are 

very good for the best value at the same level as the rest of 

the datasets, except for DEPS, which obtains a worse value. 

 
Fig. 9. RMSE metric comparison using the mean, best or worst 

value. 

 

D. Only best values 

 

Taking into account all the previous results and selecting 

the most optimistic value (i.e. the best value), Fig. 10 

reveals a near uniformity in results, highlighting as better 

DSUAML and DSUALMH datasets (i.e. the dataset 

generated with oZm v1 and five applications), followed by 

DEPS and iAWE, and to end up with very acceptable values 

of 0.8 both DSUALM10H (taken with oZm v2) and 

UALM2 (generated with the OMPM meter). 

 

 
Fig. 10. F1-score results in the best case. 

 

 

Regarding the EAE metric (which ideally should be as low 

as possible), Fig. 11 indicates that nearly all datasets have 

excellent values (since their value is null or almost zero), 

except for the DEPS dataset, which takes the worst value 

for this metric. 

 

Regarding the MNEAP metric, the DSUALMH dataset 

(which includes harmonics) takes the best value followed 

by DEPS, UALM2 (generated with OMPM), 

DSUALM10H, and ends up as the worst, DSUALM 
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(without harmonics). The notable improvement in results 

with harmonics, as DSUALMH demonstrates superior 

values, is highlighted in Fig. 12. 

 

 
Fig. 11. EAE metric results in the best case. 

 

 
 

Fig. 12. MNEAP metric results in the best case. 

 

Finally, the RMSE metric analysis is depicted in Fig. 13. 

The best value is obtained for the UALM2 dataset, 

followed by DSUALM (dataset of five applications without 

harmonics) and DSUALM10H (dataset of ten applications 

with harmonics). The results obtained for DSUALMH 

(dataset of six devices with harmonics) are already very far 

apart, and finally, the worst result is the one obtained with 

DEPS. 
 

 
Fig. 13. RMSE metric results in the best case. 

 

Conclusions 
 

The analysis across different datasets (created with oZm, 

OMPM and others) highlights how the disaggregation 

algorithm, the sampling times, the filling method, the 

considered interval of the measurements, the number of 

samples, the composition of the meters, the sensors used, 

etc., influence as well as the inclusion or not of harmonics 

to offer an excellent disaggregation or not with the 

generated model. 

 

Additionally, it has also been demonstrated through the 

analysis of the best or worst metrics how it is very 

interesting to exhaustively study the type of appliance used 

to generate datasets because it has been confirmed how, 

depending on the algorithm used, it can seriously harm the 

result of specific metrics and thus distort the generated 

model. 

 

Only the oZm v2 meter has been used as a reference using 

the CO and FHMM algorithms in this work. In future 

research, it would be desirable to contrast the results with 

other disaggregation algorithms and use different open 

meters (such as the OMPM[17]) to capture the electrical 

measurements. 
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