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Abstract. 

This paper explores the application of the XGBoost machine 

learning model for forecasting the hourly thermal demand in 

District Heating Systems, aligning with the European Union’s 

ambitious sustainability targets as outlined in the Renewable 

Energy Directive (RED) and the Energy Efficiency Directive 

(EED). Accurate forecasts of thermal demand are crucial for 

enhancing the efficiency of district heating systems through the 

integration of renewable energy sources and the adoption of 

waste heat recovery, thereby contributing significantly to 

achieving climate neutrality by the year 2050. This study 

presents a dual approach to forecasting: at the individual 

building level, and at an aggregated level by considering the 

average characteristics of the served building stock. Through a 

comprehensive case study of the Turin district heating system 

(Italy), which comprises hourly data from approximately 200 

heat exchange substations across nine heating seasons, this 

research evaluates the comparative effectiveness of different 

forecasting approaches in terms of prediction accuracy and 

computational efficiency. The findings aim to guide district 

heating operators and planners in selecting the most suitable 

forecasting approach based on available input information, 

desired accuracy, and computational constraints, contributing to 

the strategic planning and development of sustainable and 

efficient district heating systems. 

Key words. District Heating Systems (DHS), XGBoost 

model, Thermal Demand Forecasting, Renewable Energy 
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1. Introduction

In the context of the European Union's commitment to 

environmental sustainability, legislative frameworks such 

as the Renewable Energy Directive (RED) [1] and the 

Energy Efficiency Directive (EED) [2] delineate 

ambitious objectives to transition towards a more 

sustainable and efficient energy system. These directives 

highlight the pivotal role of District Heating Systems 

(DHS) in achieving the EU’s climate neutrality goals. By 

facilitating the integration of renewable energy sources 

and waste heat recovery, DHS serve as a cornerstone in 

urban energy strategies aimed at reducing carbon 

footprints and enhancing energy efficiency. The flexibility 

and scalability of DHS allow for a more effective 

incorporation of diverse energy sources, underscoring the 

system's significance in meeting Europe's stringent 2030 

and 2050 sustainability targets. The role of DHSs is 

particularly central in densely populated urban areas 

where energy demand is particularly high and land 

availability for the installation of renewable technologies 

reduced. A critical aspect of optimizing DHS operations 

and facilitating the integration of renewable sources, as 

well as waste heat and storage systems, is the 

development of accurate hourly load profiles. Such 

detailed profiling enables the simulation of DHS 

functioning and sizing throughout the year, ensuring that 

the systems can effectively meet energy demands while 

maximizing the use of renewable and waste heat sources. 

The ability to predict thermal energy demand with high 

precision is essential for planning investments and 

operational strategies of DHS, thereby ensuring their 

alignment with the sustainability criteria set forth by 

European directives. 

In this context, the application of Artificial Intelligence 

(AI) in Energy Planning Models (EPMs) has gained 

prominence. Debnath and Mourshed (2018) [3] 

underscore the key role of forecasting in EPMs, noting the 

increasing reliance on AI and machine learning models to 

enhance prediction accuracy and system adaptability. 

Their comprehensive review identifies a wide array of 

forecasting methods, with a particular emphasis on the 

effectiveness of models such as Artificial Neural 

Networks (ANN), Support Vector Machines (SVM), and 

XGBoost in energy demand forecasting. Among these, 

XGBoost stands out for its superior performance in terms 

of computational efficiency and predictive accuracy, 

making it an invaluable tool in the context of DHS 

optimization.

Academic research has applied AI models to forecast 

thermal demand in DHSs, achieving favorable results in 

predicting load profiles for the subsequent 24 or 72 hours 

using hourly data. Gong et al. [6] compared various deep 
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learning and machine learning models for predicting 

thermal load in DHSs. These models, built using hourly 

data, were utilized to forecast the load profile for the 

following day. Results indicated that the deep neural 

network model performed the best followed by the 

support vector machine, recurrent neural network, 

multilayer perceptron, random forest, decision tree, and 

long short-term neural network. Additionally, parallel 

studies have applied these models to predict monthly data 

to obtain annual consumption values. Maljkovic et al. [7], 

in their study, examined regression tree models, random 

forest, and support vector machines applied at various 

levels of building feature knowledge, aiming to determine 

if simplifying the required model information maintained 

an accurate prediction level. Specifically, the random 

forest model demonstrated the most effective 

performance, even in scenarios with limited contextual 

knowledge of consumption data. The application of 

XGBoost in forecasting thermal demand within DHS has 

been notably explored in studies such as Runge and 

Saloux (2023) [4], which affirm the model's efficacy in 

achieving reduced forecasting errors and fast training 

times. Similarly, Xue et al. [5] demonstrated the 

applicability of XGBoost alongside SVR and DNN 

models, further validating the ensemble tree algorithm's 

capabilities in predicting thermal load profiles for 

subsequent hours and days with remarkable precision. 

Current research has therefore focused on identifying 

accurate forecasting models for predicting thermal 

demand within 24/72 h as a support tool in the operational 

phase. Equally important, however, is to define a planning 

tool that allows for the understanding of hourly variations 

in system thermal demand over the entire season. The 

ability to accurately forecast thermal demand on an hourly 

basis provides DHS operators with valuable information 

for dimensioning generation plants, selecting the most 

appropriate energy sources and planning maintenance 

activities. 

By leveraging the advanced predictive capabilities of 

XGBoost in conjunction with real consumption data, this 

paper aims to address the pressing need for demand 

modelling in the DHS for planning purposes. The paper's 

objective is to delve into the efficacious methodologies 

for forecasting the hourly thermal demand of a DHS 

adopting a data-driven approach [8]. This investigation 

will apply the XGBoost model in two distinct manners: 

firstly, at the level of individual buildings, assuming 

knowledge of the characteristics of each building, and 

secondly, at an aggregate level, considering the average 

characteristics of the building stock served. The paper 

aims to compare these forecasting approaches in terms of 

prediction accuracy and the computational time required. 

Each approach’s applicability is determined based on the 

availability of input information, the required accuracy 

level for specific purposes and applications. The paper is 

structured to provide a description of the XGBoost model, 

and the performance evaluation criteria used. This 

methodology is then applied to a case study of the Turin 

DHS, which comprises hourly consumption data from 

approximately 200 heat exchange substations over nine 

heating seasons. The case study serves as a real-world 

application to demonstrate the effectiveness of the 

proposed forecasting methodologies. 

2. Method 

 

This chapter delves into the application of the XGBoost 

machine learning algorithm (XGB) for the accurate 

prediction of hourly heat demand in DHS. It discusses the 

algorithm’s parameter optimization to enhance predictive 

precision, the evaluation of model performance through 

RMSE and R², and the structure of the dataset. 

Additionally, it outlines the multi-scale analysis 

methodology used to test the model's capability for 

generalization across various input management 

approaches, ensuring alignment with the broader goals of 

district heating management. 

 

A. XGBoost machine learning algorithm 

 

XGB is an advanced gradient boosting framework that 

improves predictive accuracy through the sequential 

construction of decision trees. Using the Python library, 

the algorithm is optimised with a careful selection of 

parameters, including 'n_estimators', 'learning_rate', 

'max_depth'. These parameters are calibrated to balance 

model complexity and prevent overfitting, while ensuring 

sensitivity to outliers and improving predictive efficiency.  

 

B. Performance Evaluation 

 

Root Mean Square Error (RMSE) is utilized as the 

primary metric to evaluate prediction accuracy, crucial for 

refining XGB in energy demand forecasting. The 

importance of RMSE as an effective performance 

indicator is highlighted in the work of Wei et al. (2019) 

[9], emphasizing its critical role in assessing predictive 

models within the energy sector. Through the targeted 

optimization of key parameters – 'n_estimators', 

'learning_rate', 'max_depth', etc. – aimed at minimizing 

RMSE, the model’s precision is enhanced while ensuring 

its reliability and avoiding overfitting. This methodology 

adheres to established best practices in model evaluation, 

striving for a balance between accuracy and 

generalizability in thermal demand forecasting. 

The performance of the trained Hourly Model XGBoost 

(HM) was assessed using two key metrics: the percentage 

relative error and the coefficient of determination (R²). 

The percentage relative error provides a direct measure of 

the deviation of the model's predictions from the actual 

values, offering an intuitive indication of the accuracy of 

the predictions. R² evaluates the model's ability to capture 

the variability of the data, with values closer to 1 

indicating a better fit of the model to the observed data. 

 

C. Dataset structure 

 

XGB is trained on a complex dataset that encompasses 

climatic, temporal, construction-related, and plant-specific 

variables: 

• climatic: hourly external temperature, and outdoor 

temperature of the previous 6 hours; 

• calendar: time of day, day of the week, and month are 

transformed into cyclic variables through sine and 

cosine functions, preserving the cyclic nature of 

energy consumption. Holidays are identified by a 
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boolean value. The thermal season is categorised 

through numerical values; 

• construction-related: data such as heated volume, 

number of dwelling units, number of floors, 

construction period, and the surface-to-volume ratio 

(S/V) define the physical characteristics of buildings; 

• plant-specific: the installed power of the thermal 

substation. 

 

D. Modelling methodology and XGB application 

 

As illustrated in the figure, the dataset was divided into 

two distinct subsets: one for training and one for 

validation (step 1). The stratification criterion was 

selected based on the year and identification code of each 

building, ensuring that both datasets maintained a varied 

and balanced representation of housing characteristics. 

This methodology ensured that the variability between 

buildings was consistent, allowing XGB to learn and 

validate itself across a several range of cases. XGB is then 

trained and calibrated (step 2).  

 
Fig. 1. Model’s architecture 

 

The goal is to maximize prediction accuracy, while 

maintaining the model's ability to generalize to unseen 

data. The HM is tested on a set of buildings not involved 

in the training dataset, with the aim of testing the 

generalization capability (step 3). 

 

1) Multi-scale analysis:  the performance evaluation 

of the hourly model was conducted through three 

different approaches: 

• Single approach (S): the inputs provided 

to the model are separated for each Test 

Building (TB). This results in an hourly 

heat load curve for each building; 

• Aggregate approach (A): similar to the 

Single approach, this approach starts 

with separate inputs for each TB. The 

data obtained from the forecast are 

aggregated to obtain an overall hourly 

heat profile for all buildings; 

• Weighted average approach (W): in 

contrast to the first two approaches, the 

model inputs are already aggregated, 

using weighted average values based on 

the thermal capacity of the district 

heating substation installed in the 

buildings. This approach directly 

provides the overall hourly heat profile 

without the need for further aggregation 

steps. 

This strategy is crucial as it allows us to assess 

the model's ability to harmonise individual 

errors, potentially improving accuracy in the 

aggregate. It also aligns the analysis with the 

operational objectives of overall district heating 

management, where the overall view prevails 

over the microscopic detail of individual 

buildings. 

 

3. Result and discussion 
 

A. Case study descriptions 

 

XGB was trained and validated on the basis of hourly heat 

consumption data from 205 heat exchange substations 

connected to the DHS in Turin (Italy), all of which were 

residential buildings. These records, initially detailed at 6-

minute intervals, were aggregated to generate an hourly 

thermal load profile.  

 

 
Fig.  2. Buildings' characteristics 

 

Information on the heated volume and the thermal 

capacity of the installed district heating substation is made 

available by the DHS operator. The construction 

information was defined during previous research work 

[10][11] and is based on elaborations of the ISTAT 

database of the last Italian national census [12]. There are 

potential inaccuracies in the information regarding the 

construction characteristics of buildings and heated 

volumes. The estimate of the heated volume is made by 

the district heating operator based on the gross dimensions 

of the building. This approach does not consider possible 

unheated interior spaces, such as common areas (stairs, 

entrances, etc.), which could significantly affect the 

accuracy of the estimate. Similarly, the information from 

the ISTAT database, being based on questionnaires filled 

in by citizens and not by experts, is subject to potential 

compilation errors. These factors introduce a level of 

uncertainty into the information used to predict thermal 

consumption, underlining the importance of considering 

these limitations in the analysis and application of 

predictive models. The ISTAT database is available 

nationwide and thus makes the application of the 

approach replicable both in Italy and in all contexts in 

which similar statistics are implemented. Approximately 

70% of the buildings involved in the analysis have heated 
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volumes between 1,200 and 5,700 m3 correlating to 

district heating substations with a thermal power capacity 

of 50 to 150 kW. The characteristic construction period of 

the buildings is between the 1950s and 1980s, featuring a 

transmission loss coefficient between 0.5 and 0.7 W/m3K. 

The dataset spans from November 2012 through April 

2021, offering a comprehensive view of consumption 

patterns over the years.  

After establishing the optimal parameters of XGB, which 

will be elaborated upon in the subsequent section, we 

move on to the testing phase. This phase involves 

applying the model to a set of entirely new buildings 

(TB). A total of 28 buildings are included, for which 

weighted average characteristics based on the DH 

substation installed capacity have been calculated (Table 

I). 
Table I. – TB parameters  

total heating volume m3 158,000 

total DH substation installed power kW 4’950 

transmission loss coefficient  W/m3K 0.604 

S/V m-1 0.338 

construction period - 1970 

number of dwellings - 38 

number of floor - 8 

 

TB were integrated into the DHS starting from the 

2018/2019 heating season. The model's hourly heat 

consumption forecast is extended across the three 

available thermal seasons. Concurrently, an analysis of 

the actual annual energy consumption of TB was 

conducted aiming to detect any consumption variations 

that might be attributed to the lockdown due to COVID-

19. Contrary to tertiary buildings, which experienced 

significant fluctuations in energy consumption due to the 

pandemic, TB exhibited no notable changes in 

consumption during the lockdown period. This step is 

critical to ensuring that the model's performance 

accurately mirrors consumption patterns under standard 

conditions, unaffected by exceptional events.  

 

B. XGB performances 

 

In refining the parameters of XGB, the GridSearchCV 

function from the scikit-learn library was employed to 

conduct an exhaustive search for optimal hyperparameter 

combinations. This method reviewed various 

configurations of n_estimators, max_depth, and 

learning_rate, seeking to identify the one that provided the 

best balance between a low RMSE and a high R² without 

excessively prolonging the execution time. The model 

was trained and validated using a substantial dataset of 2.8 

million hourly records, which was split into 60% for 

training and 30% for validation.  

As demonstrated in the Figure 3, increasing the number of 

estimators enhanced the R² value until reaching a plateau; 

beyond 5,500 estimators, further improvements in RMSE 

were marginal, while execution times significantly 

increased. Consequently, the selected parameters were set 

at 5,500 estimators, with a max_depth of 5 and a 

learning_rate of 0.1. These parameters were affirmed as 

optimal through a cross-validation process, ensuring that 

the model remained generalizable and reliable by 

avoiding overfitting or underfitting. 

 

 
Fig.  3. XGB performances 

 

C. HM Performances 

 
The test database for evaluating the performance of 

trained Hourly Model XGBoost on TB varied depending 

on the approach employed. In the Single (S) and 

Aggregate (A) approaches, the test database consisted of 

approximately 200,000 records each. In contrast, for the 

Weighted Average (M) approach, the number of records 

was reduced to around 6,400 due to the aggregation of 

inputs. Execution times were notably reduced for all 

approaches; the A and S approaches required an execution 

time of about 8 seconds, while the M approach, benefiting 

from the smaller volume of input data, achieved execution 

times of around 1 second. It is important to consider that 

the test dataset is composed of a small number of data, the 

application of the model to an entire building stock served 

by a medium to large DHS over a reference heating 

season would lead to higher runtimes. In this case, the 

application of a simplified model that reduces the time by 

almost 90% is the most suitable choice. 

 

 
Fig.  4. approach performances 

 

Figure 4 provides a detailed analysis of HM performance 

across three different input management approaches - 

Single (S), Aggregate (A) and Weighted (W) - in 

predicting the heat demand for a DHS. 

The model shows excellent performance in all three 

approaches. Specifically, Approach S proved to be able to 

keep the relative percentage error within ±5% for 39% of 

the records. However, this approach tends to overestimate 

consumption, exceeding 100% error in 10% of cases. 

These errors are particularly concentrated during the 
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changeover periods of the heating season and during the 

evening hours, when buildings can stop consuming heat 

beforehand and the model is unable to simulate it. The 

variety of non-technical or climatic behaviours, such as 

times and dates of switching on and off of the systems 

that may change from period to period or from season to 

season, is a challenge for the model, which is less accurate 

to reality in a minority of cases. However, through post-

processing that corrects errors by knowing the dates and 

times of the start and end of heating service for each 

building, it would be possible to improve the accuracy of 

the model. 

With Approach A, by aggregating the hourly consumption 

of all buildings, errors tend to be smoothed out. This is 

particularly advantageous since the objective of the study 

is to define the hourly demand of a DHS; having optimal 

performance at the aggregate level is therefore more 

important than at the level of individual housing units. 

The relative percentage error remains within ±5% in a 

slightly smaller percentage of cases (32%), but the 

percentage of events with an error within ±20% increases 

to 68% of cases.  

Approach M shows a narrower error distribution: 43% of 

cases fall within ±5% error, and 90% within ±50%. In 

contrast to the other two approaches, Approach M 

overestimates more frequently, with less than 3% of cases 

showing overestimation. This type of error mainly occurs 

between 9pm and 11pm, when some buildings still show 

thermal consumption, but the model considers them to be 

zero. 

Looking at part (b) of the graph, which represents the 

aggregate consumption on a daily basis, all three 

approaches show very good performance, with 

coefficients of determination (R²) above 0.9. Of these, 

Approach A stands out as the best performing. 

1) Analysis of feature importance: one of the 

significant capabilities of XGBoost is its feature 

importance classification, which identifies how 

each variable influences the final output. 

Analyzing the importance of variables in the 

XGB for predicting hourly heat demand, a 

marked preference for the cosine of the month 

over the sine is evident. This distinction can be 

attributed to the ability of the cosine to provide a 

more cohesive and direct representation of 

typical heating months. The cosine peaks in 

January and December, maintaining positive 

values above zero in the autumn and winter 

months, which correspond to the period of 

greatest heating demand. Furthermore, the cosine 

value is the same in October and April, 

corresponding to the start and end months of the 

season. This characteristic makes it particularly 

suitable for signaling the continuous need for 

heating energy during the cold season. On the 

contrary, the sine shows an oscillation that 

causes it to assume positive values between 

January and April and negative values between 

October and December. This variation implies a 

less intuitive representation of the heating 

months, as the signal changes from positive to 

negative precisely in the critical period for 

heating demand. This discontinuity could make 

the sine less effective in indicating a uniform 

heating need. 

 

 
Fig.  5. Model features importance 

 

The cosine of the month is followed by the 

importance of the average hourly outdoor 

temperature and the power of the installed 

heating substation.  

Building parameters appear to have less weight, 

which could indicate a limitation of the training 

dataset due to the relative homogeneity of the 

residential building sample considered. This 

suggests that the variability within the dataset 

may not be large enough for the model to 

effectively learn the impact of these 

characteristics on energy demand. 

In contrast, variables such as the day of the week 

and the distinction between weekdays and 

holidays are of marginal importance. This is 

consistent with the residential context of the 

analysis: the buildings being primarily permanent 

dwellings in a non-tourist area. The constancy in 

residential patterns, regardless of the type of day, 

shows that the thermal behavior of buildings is 

moderately influenced by these factors in an 

urban context not linked to seasonal fluctuations 

in tourism. 

 

4. Conclusion 
 

In this study, the XGBoost machine learning algorithm 

was used to predict the hourly heat demand within district 

heating systems (DHSs). The algorithm was trained and 

validated with hourly heat consumption data from 205 

residential substations of the Turin DHS (Italy) over nine 

heating seasons. The hourly model was tested on a subset 

of 28 buildings for three heating seasons. The primary 

objective was to accurately simulate the hourly load 

profile for effective DHS management, which is crucial 

for the integration of renewable energy sources, waste 

heat and thermal storage optimisation. The types of input 

needed by the model to predict demand are climatic 

(outdoor temperatures), calendar (month, day, hour), 

construction-related and plant-specific of the building. 

The information on construction characteristics is derived 

from analyses of ISTAT databases whose data were 

collected nationwide through census questionnaires. This 

makes the application of the model replicable throughout 

the country and in countries where census data are 

similarly available. 
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Three distinct approaches were used to evaluate the 

performance of the model. In the Single (S) approach the 

construction and plant characteristics of each of the 28 

test buildings were provided as input to the model. The 

Approach S produced high accuracy, with approximately 

39% of the records falling within an error range of ±5%. 

However, high over-estimates occurred in 10% of the 

records, particularly during seasonal transitions and 

evening hours, when heating is used with variably logic. 

In the Aggregate Approach (A) the inputs to the model 

coincide with those used in Approach S. Aggregating the 

data from all buildings improved the distribution of errors 

and resulted in more accurate daily heat consumption 

predictions. This approach aligns well with the objective 

of managing the overall hourly demand of a DHS, thus 

being the most effective strategy demonstrated in this 

study. Finally, with the Weighted Average (M) Approach, 

the required input data coincide with the average 

construction and plant characteristics of the building stock 

considered. This method also gave promising results, with 

a narrower error range, but showing an understated 

percentage of underestimation of the hourly demand. 

Approach A therefore appears to be the one with the best 

performance. Approach M proves its usefulness when 

detailed information on the building stock is less 

available. Approach M also appears to be the most 

appropriate choice in the case of forecasting data on an 

extensive building stock of a medium to large DHS where 

model run times are reduced by almost 90% compared to 

approach A 

XGB made it possible to weight the importance of the 

inputs provided to the model. Specifically, the model gave 

higher priority to the cosine of the month, the outdoor 

temperature, and the thermal capacity of the substations. 

The lesser emphasis on building characteristics, and on 

the building's transmission loss coefficient, is a limitation 

of the model for estimating the impact of energy 

efficiency measures in reducing thermal demand.  

The study focuses exclusively on residential buildings, 

which tend to have more predictable energy consumption 

patterns than tertiary structures. In order to generate a 

comprehensive hourly heat demand profile for a DHS, it 

is essential to incorporate different building categories. 

Future research aims to expand the application of the 

model to include different building types, ultimately 

creating a heat load profile that reflects the entire DHS. 

This research successfully demonstrated the applicability 

of XGBoost to predict hourly thermal energy 

consumption at various levels of detail on the building 

stock. The study offers a significant hourly thermal 

demand forecasting tool for energy planning. The hourly 

forecast is crucial for planners and operators of DHSs to 

design generation plants and select the most appropriate 

energy sources in order to plan investments and 

decarbonization strategies. The tool can also be used in 

operations to plan maintenance activities. 
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Nomenclature 

 
DHS District Heating System 

HM trained Hourly Model XGBoost 

R2 coefficient of determination  

RMSE Root Mean Square Error  

S/V loss surfaces to heating volume ratio 

XGB XGBoost machine learning algorithm 

A Aggregate Approach 

S Single Approach 

W Weighted Average Approach 
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