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Abstract. The increase growth and adoption of electric
vehicles (EVs) are playing a crucial role in advanced
transportation system, helping to minimizing the emissions of
harmful greenhouse gases and enhancing environmental
sustainability. The need for EVs to be charged immediately has
gained significant attention due to the rise in EVs sales over the
last years. As a result of this, need for electric car charging is
important to reducing the impact of electric network and
providing minimum charging fares. In order to calculate the
demand for charging EVs, a novel Deep Learning (DL)-based
Long-Short Term Memory (LSTM) recurrent neural network
predictor model is attempted to be developed in this research
study. The Modified Aquilla Optimizer Algorithm (MAOA) is
used to optimizing the parameter of the new Deep LSTM
(DLSTM) neural predictor models and Independent Component
Analysis (ICA) is utilized to solve the input time series data while
conserving its properties. In this research, a novel ICA—AOA—
DLSTM neural predictor model was developed to addressed the
challenges of vanishing and exploding gradient in basic recurrent
neural learnings. The predictor model was tested on the EV
charging dataset from Georgia Tech, Atlanta, USA, indicating its
performance. During simulation, the predictor achieved a
prediction accuracies of 96.24% with a mean absolute errors of
0.1083 and a RMSE errors of 3.0629 × 10^-5, outperforming
previous techniques. Additionally, the mean absolute error was
found to be 0.2083, with a mean square error of 3.25516 × 10^-
10. These results highlight the effectiveness of the novel deep
learning LSTM neural predictor for this dataset compared to
existing techniques.

Key words. Charging Station, Power System, Data
Prediction, Deep Learning Model, EV (Electric Vehicle).

1. Introduction

The auto industry has been concentrating on electric
automobiles in recent years to combat the constant climatic
condition found across the world and to reduce gas
emissions as much as feasible. The jobs, economy, and
power sectors have all benefited from the explosive rise of
EV technology. Essentially, IC engines that use fuels are
replaced with electric motors in EVs. These electric cars
run on electricity generated from sources outside of the
vehicle or include built-in solar panels or batteries for self-
charging. There are many different types of electric
vehicles (EVs): plug-in EV, airborneEVs, EVs, offroad

electric vehicles, range extension of range EVs, and so
forth. The most widely produced types of electric vehicles
are plug-in hybrids and battery-powered EVs, or plug-in
electric vehicles. Plug-in hybrid electric vehicles are those
in which an on-board module or an external power source
is used to charge the batteries. Pure electric cars (EVs) are
powered by battery cars without an internal combustion
engine that use the chemical energy stored in rechargeable
batteries. Regarding the many benefits of electric vehicles:
lower greenhouse gas emissions, air pollution health risks,
less need for diesel or gasoline, reduced energy
consumption while stationary, improved tank-wheel
efficiency of EVs, reduced vibrations and production of
noise, no need for gearboxes for conversion of torque,
straightforward designing of mechanical equipment’s ,
increased output power for the total range of speed, and so
forth. According to this condition, the world's utility rate
has been maximized by the quick delivery of millions of
electric automobiles. In 2024, there were 7.9 million
battery-powered vehicles in use worldwide, and about
three million battery-electric vehicles were produced
brand-new.

Currently, the charging of EVs is a serious concern
because to the global increase in population and the
millions of EVs on the road. EVs need to have a direct
current (DC) supply to charge their batteries. Since the
distribution of electric power is AC, a converters is
necessary to provide the DC powers to the battery sources.
The general rating of power and charging options for
electric vehicles are shown in Table 1. EVs will receive
conductive charging in both AC and DC modes.

When charging with AC power, an on-board chargers takes
the power and transforms it into DC. DC charging
eliminates the requirement for an on-board charger by
converting power outside and supplying DC power straight
to the battery source. Thus, for the electric car to work
efficiently, it is imperative that the battery source be
charged as needed. This helps both the company and the
consumers by providing information on the amount of time
and distance needed for charging an EV. When the battery
runs out, customers will be able to find additional charging
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stations nearby and plan their journey distance thanks to
the EV charging demand prediction.
Since electric vehicles don't use fuels to run, they produce
no gas emissions, which attests to their environmentally
favorable characteristics. These cars are often powered by
electricity, which makes them a renewable energy source
as opposed to standard vehicles that use gaseous fuels.
When Photovoltaic power is used at house and by
businesses, the cost of energy is low compared to that of
gasoline and diesel, and the cost of battery recharging is
economical. Compared to conventional vehicles, electric
vehicles require less maintenance because their auto parts
experience less wear and tear. The cost of maintenance is
less complicated than with combustion engines. First, they
are more expensive than conventional vehicles, and there
aren't as many charging stations as there are in a given area.
Recharging takes longer than filling up with gas or diesel,
which is finished in a matter of minutes. The electric
vehicle's operating ranges are limited, and unlike
conventional combustion vehicles, it is not appropriate for
long-distance travel.

The primary goal of this work is to designing and
developing a predictive model for predicting the charging
demands for EVs, taking into account the necessary
demand for EV charging. By doing so, it will be easier to
maintain equilibrium between the amount of money spent
and the time, distance, and time spent traveling and
charging. Predicting the demand for EVs charging is
necessary due to the growing need for electricity and the
installation base of electric vehicles (EVs). This helps both
the company and the consumers by providing information
on the amount of time and distance needed for charging an
EV.

2. Literature Review

Shanmuganathan, J., et al. [1] investigated a novel DL
based LSTM recurrent neural network predictor models for
predicting the demand of EV Charging. They tuned the
model parameter utilizing the AOA and decomposing the
input time series data using EMD.

Koohfar, S., et al. [2] investigated using the transformer
model for forecasting EVs charging demand, compares it
with conventional time series methods and other DL model.
The Transformer model overcome RNN, LSTM, ARIMA,
and SARIMA in both minimum-period and long-period EV
charging prediction, signifies its effectiveness in
addressing time series forecasting for EV load charging.

Van Kriekinge, G., et al. [3] presented an improved DNN
for prediction of the day-ahead charging demand of EVs,
adding new features such as indication of exact dates and
weather Data of weather.

Chang, M., et al. [4] proposed a LSTM neural network-
based prediction models to analyzing and prediction the
compiled charging power demands from one or more fast-
charging station. The model surpasses other DL approach
in prediction of power demands of fast-charging power,
addressing the challenge of by the different nature of
instant-charging demand of power.

Boulakhbar, M., et al. [5] examined the performances of
four DL model in forecasting of the charging demand for
EVs after a charging session begins. The GRU regression
models demonstrated the best performances, with an
RMSE and MAPE of 2.80% and 0.76% in the testing stage,
respectively, showing its potential for supporting in grid
reliability and planning additional charging stations.

Wang, S., et al. [6] developed a LSTM neural network to
predicting the minimum-term EV charging at the stations
levels. They also found that the LSTM model's prediction
accuracy was more regulated by the time span and interval
than by input data structures and sample sizes.

Dabbaghjamanesh, M., et al. [7] proposed a Qlearning
techniques to forecast PHEVs charging station load,
improving upon traditional AI techniques such as RNNs
and ANNs. The Q-learning techniques demonstrates the
exact prediction under smart, uncoordinated, and
coordinated charging situations, validating its effectiveness
in managing EV load profile.

Yi, Z., et al. [8] proposed a Sequences to Sequences
(Seq2Seq) deep learning approach for forecasting the
monthly commercials EV charging demands, addressing
the challenges of insufficient charging infrastructure. The
model demonstrated superior performance in multi-step
prediction comparing to several time periods and ML
model, indicating its effectiveness in managing EV
charging demand and supporting grid reliability.
Eddine, M.D., et al. [9] proposed a novel DL-based
approach, Temporal Encoders-Decoders + LSTM (T-
LSTM-Enc) integrated with Temporal LSTMs (T-LSTM-
Ori-TimeFeatures), for predicting EVs charging energy
demands.

Zamee, M.A., et al. [10] proposed a novel online
forecasting model for electric vehicle (EV) charging
demand, addressing data inadequacy issues in newly
installed EV stations. The model, based on General
Regression Neural Network (GRNN) and detailed feature
engineering, outperformed traditional Artificial Neural
Networks (ANN) and sophisticated models and
demonstrating its effectiveness in forecasting EV charging
demand with limited historical data.

Zhu, J., et al. [11] compared ANNs and LSTM model for
forecasting EVs charging loads from the charging stations
point of view. The LSTM model overcome traditional
ANNs, demonstrating maximum accuracies in short-term
EV load forecasting, which is important for maintaining
stable and effective power system operations amidst the
increasing usage of EVs.

Shen, X., et al. [12] investigated a GAN-based data
generation methods to improve the accuracies of EVs load
for prediction utilizing scarce dataset from very new
operates EV charging station.

Zhou, H., et al. [13] investigated an LSTM-based ML
algorithms for effective energy management in commercial
buildings with EV charging pile and integrated solar panel,
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addressing challenges in conventional optimization-model-
based systems.

Xin, F., et al. [23] studied the prediction of EV charging
load using a hybrid approach combining clustering and
deep learning techniques. Spectral clustering was placed to
identify distinct patterns in the various dataset, providing
the construction of cluster-specific CNN-LSTM models for
exact load predictions. Outputs shows the good prediction
accuracy compared to other methods, signifying the
method's efficiency in improving grid load dispatch and
management of EV charging infrastructure.

Qu, H., et al. [24] investigated the challenges in accurately
predicting EV charging demand in urban areas,
emphasizing the limitations of existing data-driven deep
learning methods in understanding complex factors such as
charging prices. They highlighted the potential
misinterpretation of pricing signals during peak times,
which can lead to erroneous demand predictions.

Jayaraman, R. et al. [25] investigated the challenge of
accurately predicting the state of charge (SOC) in lithium-
ion batteries used in electric vehicles (EVs), highlighting
the critical role of SOC in suggesting the vehicle reliability
and safety. They proposed a novel approach combining
deep learning and dimensionality reduction techniques to

enhance SOC prediction accuracy. The research study
outcome shows that it utilized current, voltage, and
temperature data from a publicly available dataset,
applying normalization to standardize the data.

Xiong, X., et al. [26] investigated methods for accurately
estimating the State of Health (SOH) of lithium-ion
batteries in Electric Vehicles (EVs), addressing challenges
posed by random charging-discharging behaviour and
incomplete data. They proposed an efficient data
preprocessing algorithm for handling data slicing, cleaning,
alignment, and recombination to improve SOH estimation
accuracy.

Kumari, P. et al. [27] investigated the development of
estimation models for State of Charge (SoC), State of
Health (SoH), and State of Temperature (SoT) in lithium-
ion batteries, emphasizing the critical role of Battery
Management Systems (BMS) in ensuring optimal
performance and safety of electric vehicle batteries. They
proposed an improved EP-based R110-BLSTM approach,
combining Emperor Penguin based Residual Network-110
with Bidirectional Long-Short Term Memory (BLSTM).
This hybrid model was designed to accurately estimate
SoC, SoH, and SoT while offering fast estimation speed
and strong generalization capabilities.

Table 1. Summary of Literature Review

Sl.No Author and
Citation Techniques Advantages Disadvantages

1. Shanmuganathan, J.,
et al. [1]

DL-based LSTM
RNN

Achieved high prediction accuracy,
improved forecasting compared to

previous techniques

Requires tuning of parameters
using AOA, decomposing
input data using EMD,

computationally intensive

2 Koohfar, S., et al.
[2]

Transformer
Model

Outperformed RNN, LSTM,
ARIMA, SARIMA in shortterm and
longterm EV charging predictions

Limited interpretability of
Transformer model, requires
large amounts of data for

training

3 Van Kriekinge, G.,
et al. [3]

Deep Neural
Network

Reduced MAE and root-mean-
square errors (RMSE), effective in
forecasting day-aheadcharging

demand of EVs

Prone to overfitting, may
require significant

computational resources

4 Chang, M., et al. [4] LSTM Neural
Network

Outperformed other deep learning
approaches in prediction of fast-

charging power , addressed
challenges of fluctuating nature of

demand

Vulnerable to vanishing
gradient problem, sensitive to

hyperparameter tuning

5 Boulakhbar, M., et
al. [5]

ANN, RNN,
LSTM, GRU

GRU regression model
demonstrated best performance,
potential for assisting in grid

reliability and planning additional
charging stations

Limited generalization to
unseen data, complex
architecture may lead to
longer training times

6 Wang, S., et al. [6] LSTM Neural
Network

Outperformed ARIMA and MLP
models, influenced by time span and
interval for prediction accuracy

Susceptible to noise in data,
requires careful preprocessing
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Sl.No Author and
Citation Techniques Advantages Disadvantages

7 Dabbaghjamanesh,
M., et al. [7]

Q-learning
Technique

Accurate forecasting under smart,
uncoordinated, and coordinated
charging scenarios, validating its
effectiveness in managing EV load

profiles

Limited scalability to large
datasets, complex
implementation

8 Yi, Z., et al. [8]
Seq2Seq Deep
Learning
Approach

Superior performance in multi-step
prediction, effective in managing

EV charging demand and supporting
grid reliability

High computational cost,
potential for overfitting due to

complex architecture

9 Eddine, M.D., et al.
[9]

Temporal LSTM
Models

Promising performance in managing
EV charging stations' energy

consumption and grid utilization

Limited interpretability of
LSTM models, potential for

overfitting

10 Zamee, M.A., et al.
[10]

GRNN, Detailed
Feature

Engineering

Outperformed traditional ANN and
sophisticated models like RNN,

LSTM, Bi-LSTM, GRU, and DNN,
effective in forecasting EV charging

demand

May require expert domain
knowledge for feature

engineering, sensitive to noise
in input data

11 Zhu, J., et al. [11] LSTM neural
network

Outperformed traditional artificial
neural networks, higher accuracy in
short-term EV load forecasting

Vulnerable to vanishing
gradient problem, training
time increases with dataset

size

12 Shen, X., et al. [12]

GAN-based Data
Generation,
LSTM with
Mogrifier

Improved accuracy of EV load
prediction using scarce datasets,
enhanced LSTM performance

GAN training can be unstable,
Mogrifier mechanism adds

complexity to model

13 Zhou, H., et al. [13] LSTM Neural
Network

Effective energy management in
commercial building with EV
charging pile and solar panel,
addressing challenges in
conventional systems

Limited flexibility in handling
dynamic environments,
potential for over-fitting

3. Problem Statement

The research study aims to address the pressing need for
accurate and efficient prediction of EV charging demand.
With the rapid expansion of EVs, there is a critical
requirement for effective management of charging
infrastructure to alleviate strain on electric networks and
ensure affordable charging rates [14]. Existing prediction
techniques often encounter challenges such as diminishing
and exploding gradient in basic recurrent learning.
Consequently, there is a clear necessity for innovative
approaches, like the proposed DLSTM neural predictor, to
enhance the accuracy and reliability of EV charging
demand forecasts.

4. Proposed Methodology

Charging prediction of the Automobile is the crucial
parameter for the any automobile in case of the Electric
vehicles, In this proposed data’s are collected from the
datasets of the charging stations of the Nevada region and
these datasets contains the cumulative data’s of how the
charging demands may vary at different climatic conditions
etc., Because while considering the Datasets all these
parameters are very crucial and important, because the
learner and end-user want to ensure that how the charging
rate may varying. Data are taken during the rainy period,
sunny periods so that datasets are taken from the inclusive
of all data for accurate predictions. Deep learning concept
was introduced which is LSTM RNNs, A RNNs is a type
of ANNs commonly used in prediction and forecasting and
some other deep-learning based prediction methods. RNNs
will recognize data's sequential characteristics and identify
the usage of patterns to forecast the next likely scenarios.
Consideration of this particular neural network is due to its
best ability to predict the charging scenarios with so much
exactness and with precise manner.
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Figure 1. Proposed Architecture for Charging station Power System Data Prediction

As we know that optimization is the needed steps in any
prediction operations, because it finds a best outcome to
the problem, LSTM Recurrent neural networks is
optimized using the modified Aquila optimizer algorithm.
The LSTM module's hyper-parameter adjustment in this
study can be accomplished through the application of the
MAO method. The AO is primarily dependent on the
Aquila's ability to capture prey [15]. The population-based
method known as AO quickly demonstrates its efficacy in
the realm of complex and nonlinear optimization. And ICA
was considered for the assigning the input parameters for
the best training session and finally all these are validated
and trained and best model was obtained.

A. Independent Component Analysis (ICA)

The raw time series data’ s from the integrated plant at
Georgia Tech, Atlanta, GA, USA, will undergo
Independent Component Analysis (ICA) to be divided into
various sub-series. These sub-series will then be
individually predicted before being reconstruction to
determine the overall forecasted demand value [16]. The
electric vehicle charging data’ s are initially represented
as a single series, which will be decomposed and processed
as described. Additionally, ICA can be used to further
decompose the data into statistically independent
components, enhancing the prediction process. The
objective function formulation is carried out by,

 21 ,RSRSMinRS  (1)

Here, 1RS indicates the first defines active power losses

minimization and 2RS indicates the second represent the
minimization power of tie-line.
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Here, MG active power loss at period j for current state l

can be denoted as
j

lLossA , , period instant counts as ji ,

state counts as li , merged probability of PV irradiations,
WT speed and load demands as BA , total number of line

can be denoted as HG , conductance’ s of the lines in-

between buses m and bus n can be denoted as mnx ,

lmnUhb , can be represented as the instant Tap Changing
(OLTC) tap position of the lines between buses m and bus
n .
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j
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Here, tie-lines power between MG and utilities as
j

llineTieA , .
ICA plays an important role in preprocessing the input time
series data for the DLSTM neural predictor model which
focuses at prediction of EV charging demand. By
encompassing the raw data into statistically component,
ICA preserves the original structure and temporal
dependency is very crucial for exact and correct prediction.
This selection of this method is justified by ICA's ability to
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solve non-Gaussian and non-linear relationships in the data,
which are very common in EV charging pattern for
demands. PCA or wavelet-based methods, ICA provides
the extraction of meaningful feature while minimizing
noise, thus improving the robustness and definable of the
DLSTM model. This preprocessing section contributes to
achieving the fine prediction accuracies compared to
normal technique, shows the vital importance of data
preprocessing in advancing predictive analytics for EVs
infrastructure management.

1 Constraints

The equation (5) to (19) signify about the constraint of the
recommended systems and are formulated in (5(;
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Here, mnY can be denotes as line susceptances between bus,
j
lmd , can be denotes as the magnitude of voltage

magnitude at
thm

node,
j
lmn,
can be denoted as the

differences of voltages angles at bus,
j

lmaA ,, denotes the

peak load demands,
j

lmAHA ,, can be denoted as the parking
lot powers, wind turbines generated power at buses m can

be denoted as
j

lmDUA ,, , PV generation power at buses

m can be denoted as
j

lmAEA ,, , total numbers of node can
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Here, power load demand can benoted as
j

lmaM ,, , power
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Here, total number of systems branches can be indicated

as q .

lilai SOCSOC min,,,,  (19)

Here, SOC of
thi

batteries at time of parking can be

denoted as laiSOC ,, , calculated SOC with low values can

be noted as liSOC min,, .

B. Load Demand Probabilistic Modelling

In microgrids where the power demand is uncertain, a
common approach is to use a Probability Density Function
(PDF) to model the load at each bus. The formulation for
modeling the load demand as a normal PDF is represented
by the following equation.

 


















 











 22

exp
2
1

s

s

l

j
G

ssg




(20)
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Here, demand for normal load PDF can be denoted as
 sg j

G , load demand mean can be signifies as s , load

demand standard deviations can be denoted as s .

  2

1

.,

s

s

j
G

j
ms dlsgprob (21)

Here, load demand limit in the intervals m can be denoted

as 1s and 2s .

C. Modelling of Charging Station Integrated with
Batteries

The State of Charge (SOC) of a battery varies based on the
power used for charging and discharging at charging
stations. This relationship can be represented by an
equation for each time instant.
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Here,
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Here, iku , can be denotes as the EV charging stations

capacities,
j
liSOC , can be denotes as the EV current SOC,

ihqU , can be termed as the EV arriving period, EV parting

period can be denoted as iaU , . The EV daily arrival time
is described by the equation below, which may be written
as follows:
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Here, daily arrival time mean can be indicated as
j
U hq


,
daily arrival time standard deviation can be specified as

j
U hq


.

D. Proposed Modified Aquila Optimizer (mAO)
Algorithm

In this part, the Modified Aquila Optimizer (mAO)
scheduling’s for source generations optimizations in MG
combined with EVCS is di. AO (Aquila Optimizer)
simulate the natural predating techniques of Aquila birds .
At the stage of exploitations, the CLS techniques improve
the abilities to search. At the exploration stages, the OBL
and RS methods improve the abilities to search.

1 Fitness Function

The fitness functions is derived by minimize the tie-line
power as well as active power losses in the systems using
the equation (1).

2 Notation Definition

The notation definitions for the equations given in the
Pseudo codes are shown in the following: agent positions
can be denoted as X ,different AO motions can be

denoted as 1G , chasing prey slope can be termed as 2G , is

a constants,
thi
generation mean position can be denoted as

 tXM , found Aquila best positions in iterations can be

denoted as bestX , random generations can be denoted as
rand , exploitations parameter can be termed as  and
 , high and minimum boundary can be indicates as UB
and LB , values produced by CLS in iterations i as Cs ,
shrinkings factors can be denoted as  , maximum and

minimum boundary can be denoted as lbandub ,
random number in the values of [0, 1] can be denoted as
rand , x is denoted as a vector with number of values.

Table 2. Pseudo Code of mAO Technique

Pseudo Code for mAO Techniques
AO Population initialization X

Calculate the of X & select finest N from XUX
AO parameters initializations

while  Tt  do
Objective function values computations

Best agents bestX selections

149



for  Ni ,,2,1  do
Current solution mean Updations

)(,,,, 21 DLevyGGxy computations

if














 Tt
3
2

then
if 5.0rand then

Current position updating using
        randtXtX

T
ttXtX bestMbest 





  111

else

Update current position using           randxytXDLevytXtX Rbest 12

Compute opposite position using jjjj xlbubx 

if Fitness 5.0rand then
else

Update current position using          1214 1 GrandDLevyGrandtXGtXQFtX best 

Compute opposite position using jjjj xlbubx 

end if
end if
end if
end for

Apply RS strategy using    lbubrandlbtX  .1 and      tXlbubrandtX  .1
end while
Return best solution

E. LSTM Recurrent Neural Networks

The LSTM neural network is a type of recurrent neural
network that incorporates an additional memory
components. Within the LSTM architecture, there are
distinct components for long-term memory and short-term
data handling. This design allow the models to assign
weight in a manner that enables it to incorporate new

information, forget unnecessary data, and generate outputs
based on previously stored information from data samples.
LSTM models are particularly well-suited for tasks
requiring the retention of input data over extended periods
and for performing operations on that memory effectively.
This network employs a memory configuration in the form
of gated cell, which determine whether to retain or discard
data within the networks [18].

Figure 2. Gated Structure of LSTM Recurrent Neural Networks
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The LSTM neural network utilizes back-propagation with
gradient descent learning to address issues like diminishing
and limitation of gradient. Figure 2 provides a visual
representation of the Gated Structure LSTM neural
network architectures. Within the LSTM framework, the
memory modules is expanded, with units forming the RNN
models [19]. The recurrent LSTM is essential in this
context for several reasons:
- Addressing the saturations of the training models to
ensure convergence.

- Ensuring balanced and biases during training.
- Selecting appropriate activation functions for evaluating
network output.
- Preventing premature termination of the training process.
- Improving the gradient for more efficient training.
- Expanding memory cells and organizing data
classification for enhanced training and testing.
- Preventing instability in the designed recurrent neural
network model.

Figure 3. Architecture of LSTM Neural Network Predictor

The algorithmic steps of the training of the LSTM
networks are as given below.
Step 1: The networks establishes the initial weight and
learning parameter. Through its sigmoidal functions, the
networks decides which data to retain from gated cell and
which to discard during a specific timeframe. The current

input ‘ tZ and the previous state ),1( tY compute the
function and is defined by,

)][( ),1( ogtttgtgt LZYMK   (28)

In Equation (1), gtK
denotes the forget gates, ‘α’ is

the learning rates metrics, gtM
denotes the weight of the

models and ogtL
denotes the biasing of the neural models.

Step 2: During this stage, memory units are integrated into
the existing state along with activation functions, namely
tangential and sigmoidal, which facilitate the addition of
memory units. The decision on whether to pass data (0 or 1)
is determined by the sigmoidal functions and is determined
by following equations

)][*( ,)1( itttitgt MZYMH   (29)

)][*(tan ,)1( MoctZYSjY ttctgt   (30)

Where, gtH
denotes the input gates and itM assign the

weight to the datas through the sigmoidal functions.
Step 3: During this phase, the determination of the memory
cells states from which the outputs is to be extracted takes
place [21]. The sigmoidal layer is engaged to activate and
identify both the outputs and the specific segment of the
memories cell responsible for its computation.

octttotgt MZYMG   ][*(* ),1(

)((tan* gtgtt XjGY  (31)

In the Equation (31), gtG
represent the output gates and

this gates present the outputs from the memory cell and tY
denotes the current states from which the outputs is
collected.

F. Proposed ICA–MAOA–Deep LSTM Recurrent
Neural Predictor
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Proposed ICA–MAOA–Deep LSTM Recurrent Neural
Predictor investigates into the development of the
innovative DLSTM neural networks, integrates the ICA
and Modified Aquila Optimizer (MoA) for time-period

EVs data decompositions of data and neural parameter
optimizations, respectively [22]. The DLSTM model
proposed employs deep and dense layer stacking to
construct a robust deep learning framework, aimed at
creating a pivotal predictor model [20].

Figure 4. Proposed Architecture of DLSTM Neural Predictor Model

This research investigates to forecast EVs demand of
charging, where the charging period is important. To
ensure steady output from convolutional layer, padding
zero to the input data’s is much needed. The DLSTM

models comprise of convolutional layer, a pooling layers, a
dense layers, an LSTM layers, a dropout layer, and a soft-
max layer for output representation.

Figure 5. Proposed Architecture of DLSTM Neural Predictor model
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During the reconstruction process, the auto-encoder and
decoder-equipped deep learning layers adjust to decrease
the error criterion and produce improved prediction metrics.
The new DLSTM's loss function is provided by,

)))((,1)_(
1

dataencodedecoder

N

j
data XGGX

N
functionlossg 



 (32)

During the process of deep learning, the existence of non-
linearity is determined using,

)(_)( 0 KxKencodefgXGencode  (33)

)(_)( 0
T
Xdecode KKdecodefgXG  (34)

In Equation (34), encodefg _ and
decodefg _ specifies the encoder and decoder

activation function of the deep learnings predictor models,

‘ 0K ’ represents the bias element and the weight

matrices are ‘ Kx ’ and ‘
T
XK ’ . The error is

evaluated during deep training process of deep training
using. The final predicted output from the DLSTM neural
model is,

)(1__ vectornencodeDLpredicted EnNGM
out

 (35)

In Equation (35),
1_ NGencode represent the training

value at the LSTM layer and the new weight based on the
gradient are determined to be,

denew

DLSTM
deolddenew W

Error
WW

_
__ 


  (36)

Figure 5 depicts the overall process flows of the
recommended ICA – AOA – DLSTM neural predictor
model. The approaches of AOA tuned to obtaining the
optimization weights and biasing components to be
demonstrated as starting value during the deep learnings of
training phases of LSTM.

2
_

max

1
,_

max

)(1
dataOriginal

Iter

i
predictedDLprediction YY

Iter
MSE 



 (37)

The evaluated steps are repeated for the proposed DLSTM
predictor model until the error value comes to the most
possible minimal values.

5. Results and Discussions

The novel EMD–AOA–DLSTM predictor models was
evaluated for its effective in predicting EVs charging
energies demands at the Georgia Tech charging station in
Kentucky, USA. The simulations were conducted in
MATLAB R2021a on an Intel dual-cores i5 processor with
8GB of physical memories. It resulting in extracted
residual and other intrinsic mode functions (IMFs). These
sub-series were then used as input for the deep long short-
term memory (LSTM) neural network model. Table 4
depicts the parametric values utilized during the training
process of the proposed EMD–AOA–DLSTM neural
predictor. Dataset is taken from
(https://www.kaggle.com/code/meisenbach/electric-
vehicle-charging-eda)

Table 3. Input Data Parameters

Energy (kWh) GHG Savings (kg) Gasoline Savings (gallons) Cost Incurred USD

1.569 0.659 0.197 0.36
21.311 8.951 2.675 4.9
17.40999 7.312 2.185 0
5.666 2.38 0.711 1.3
6.605 2.774 0.829 1.52
18.955 7.961 2.379 4.36
7.988 3.355 1.003 1.84
45.916 19.285 5.762 0
3 1.26 0.376 0.69

6.64 2.789 0.833 1.53
3.401 1.428 0.427 0.78

2.600952 1.092 0.326 0

153



Figure 6. Comparison of Testing Phase – Actual Vs Predicted

Figure 6 demonstrates the comparison between the
predicted and actual charging energy level at the EV
charging station. The plot denotes a close relation between
the predicted and actual values, indicating the
recommended EMD–AOA–DLSTM predictor models

effectively capture the charging patterns of energy demand.
This alignment is very important for maintaining efficient
management of the EV charging stations, as it allows
operator to predict and respond to fluctuation in energy
demands accurately.

Figure 7. Convergence Plots for the Proposed Predictor Models during DL Training

Figure 7 indicates the convergence curves obtained during
the DL processes of the recommended predictor model.
The convergence curve was reached at the 251st epochs
during the period training, with a MSE of 5.2516 × 10−10.

For testing and validations, the measured MSE value were
6.36333 × 10−10 and 7.5317 × 10−10, respectively. This
denotes a maximum level of accuracy in the model's
prediction, with less errors.
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Figure 8. Testing Error Analysis

Figure 8 indicates the testing error analysis of three various
models used for predicting charging station power system
data’ s: the recommended LSTM models, ARIMA, and
SVR. The x-axis represent the number of EV charging data
sample utilized to train the models, while the y-axis
denotes the error rates. Testing error analysis is important

for measuring a ML model's performances of hidden data,
providing valuable insight into its generalizability.
Predicting charging station power system data’ s, this
experiment help to assess that a model can predict future
power demand based on historical datas.

Table 4. Parameters of Testing Phase

Actual Predicted
(proposed) LSTM ARIMA SVR

10.618 10.666 11.238 10.536 11.586

8.413 8.386 8.789 7.935 9.962

7.55 7.625 6.977 7.454 6.958

7.794 7.845 8.046 8.845 10.431

6.448 6.505 5.881 8.134 10.135

3.559 3.607 3.366 4.036 8.272

2.825 2.835 3.474 1.977 6.381

4.061 4.058 3.218 4.672 7.737

7.492 7.469 7.26 7.33 7.939
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Figure 9. Testing Phase - Actual Vs other comparison parameters

Figure 9 depicts the testing error analysis of four various
models for forecasting charging energy in a charging
station power system Actual model, proposed models,
LSTM-ARIMA models, and SVR models. The graph

indicates that the proposed model performs better than the
other three models in terms of MSE, with a lower MSE
indicating a good fit.

Figure 10. Comparison of Training Phase – Actual Vs Predicted

Figure 10 depicts the performance of a deep learning-based
charging station power system data prediction model. The
graph shows a comparison between the actual charging
energy (in kWh) and the predicted charging energy based
on the number of EV charging data samples. The training
phase involves feeding the models with data to learn and

improving its prediction accuracies. The close relation
between the predicted value and the actual value suggests
that the model is performing well in predicting future
power consumptions based on charging station usage
patterns.
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Figure 11. Loss v/s RMSE

Figure 11 indicates the training progress of a DL models
for forecasting charging station power system data. The
graph shows the losses and RMSE value change as the
model is trained on more data. Decrease in these values

over iteration, indicates the model is improving in its
ability to predicting charging stations power system data
exactly.

Figure 12. Distribution of Time between the end Time of the Last Journey of the Day and the Start Time of an Overnight
Charging Event

Figure 12 illustrates the distribution of times between the
end time of the last journey of the day and the start time of
an overnight charging event. Approximately 70% of the
time a vehicle is plugged-in immediately at the end of the
last journey of the day but approximately 30% of the time
there is a relatively evenly distributed delay in plugging-in

between 15 minutes and 5 hours. This was accounted for in
the model by simulating a value from this distribution and
adding it to the end time of the last journey of the day to
simulate the starting time of a charging event.
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Table 5. Comparison with Various Optimization Algorithms

Optimization
Algorithm

Mean Absolute
Error (MAE)

Root Mean Square Error
(RMSE)

MAOA (Proposed) 0.1083 3.0629 × 10-5

Genetic Algorithm
(GA) 0.1456 4.2712 × 10-5

Particle Swarm
Optimization (PSO) 0.1321 3.8921 × 10-5

Simulated
Annealing (SA) 0.1589 5.0012 × 10-5

Ant Colony
Optimization

(ACO)
0.1623 5.4398 × 10-5

Differential
Evolution (DE) 0.1378 4.0123 × 10-5

The increase of EVs makes a vital impact on the rapid
development of charging infrastructure, influencing the
charging adoption rate and societal benefits. Extensive and
wide networks of EV charging stations are trying to pacify
the range anxiety, inhibits the widespread adoptions as
seen in cities like Oslo and Luxembourg. Rural areas
would be benefitting much from strategically placed
charging stations along the tourist route, boosting local
economy and minimizing the dependence on fuels alleviate,
given by initiatives in regions of Scandinavia and Canada.
Combining these infrastructures with smart grid
technologies enhances the energy usage, improving the
stability of grid, and supports integration of renewable
energy. Societal gains include improved air quality and
minimized emissions, which is very important for public
health and urban liabilities. Advancements in battery
technology and policy framework are given to further
acceleration of the transitions towards a fully electric
transportation future, EV infrastructure's important roles in
sustainable development.

6. Conclusion

In this study, a novel predictor model, ICA–mAOA–
DLSTM, was developed to forecast EV charging demand
using EV datasets. The model combines ICA to decompose
signals into sub-series without data loss, and MAOA for
better exploration and exploitation, LSTM recurrent model
for retaining past information, and DL to improve
architecture depth and intensive trainings for more exact
prediction. Simulation using the proposed model on EV
datasets demonstrated its superiority over existing
prediction models, achieving training and testing
efficiencies of 97.72 and 96.03, respectively, which
outperformed other techniques. The prediction accuracy of
98.24% with minimal mean squared error (MSE) in the
order of 10^-10 further validates its effectiveness. The
EMD–AOA based DLSTM predictor offers superior

accuracy and minimal error in forecasting EV charging
demand.

7. Future Scope and Challenges

A. Recommendations for Future Research

Future research of the EV Charging prediction must focus
on combining the external factors such as weather (Rainfall,
wind, Sun Intensity) conditions and charging station
utilization rates into the accurate prediction models to
improve the accuracy and robustness. Exploring the
various method for very long-term performances for
monitoring to maintenance needs for based on utilization
pattern for and environmental factors could enhance the
operational efficiencies. Improvements in data collection
technique, such as real-time IoT sensor integrations and
data fusion systems, will also be very important for
capturing extensive datasets.

B. Challenges in Implementing the Proposed Model

DL-based prediction model for charging station power
systems faces several challenges. Qualities of Data and
reliability to overcome the impact of missing data is very
important for maintains the accuracy prediction.
Scalabilities of the multiple charging stations and different
infrastructure environment needed careful considerations to
give the consistent performance. Improving the model
output to give the insights and navigating regulatory and
standard compliances associated to privacy of data and
interoperability are additional challenges that must be
addressed for successful real-world deployment.
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