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Abbreviation Description
API Application Programming Interface
CO2 Carbon-di-oxide
DL deep learning
ISO Independent System Operator
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MPCE Mean Percentage Classification Error
NMAE Normalized Mean Absolute Error
RELU Rectified Linear unit
RMSE Root Mean Square Error
RNN recurrent neural network
TSO Transmission Service Operator
WSU Wind-Storage Unit

Abstract. With the growing attention of the global population
towards renewable energy sources such as wind power derived
from natural resources such as Solar, Geothermal, and Wind
energy, there is a growing need for genuine estimation of wind
energy. Wind energy is important in the supply of electricity in
the global energy markets because of its enormous importance in
the delivery of renewable energy. As such, it is crucial for
accurate appreciation of the power of the wind to ably respond to
issues that relate to the trading of power while at the same time
addressing issues to do with planning, scheduling and strategic
positioning of wind power generation. Therefore, the present
work aims to develop a new model known as the Association
Rule with DL-based Wind Power Generation and Price Prediction
(ARDL-WPGPP). It utilizes two datasets: An Energy dataset
includes various columns like tie, wind onshore forecast, and
price actual, whereas the weather features dataset includes only
wind speed. These datasets are combined to create a dataset
where each transaction represents 2 hours of wind generation. A
data mining approach is employed to uncover hidden patterns,
rules, concepts, and correlations within these datasets, operating
on various types of data including quantitative, textual, and
multimedia formats. To efficiently extract rules from the dataset,
an improved Apriori algorithm is introduced. Subsequently, the
generated rules incorporating wind speed are passed into an

improved LSTM model, which learns by comparing the label data.

The price actual value serves as the label data, assigning labels to
data points based on their actual price value. High price actual
values indicate high wind power prices, while low values indicate
low wind power prices.
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1. Introduction

At present, the most extensive and profitable renewable
energy is the wind energy. The amount of CO, emissions
during wind power generation is very low compared with
other coal or natural gas-based power generation methods.
However, due to the wind source’s fluctuations over
monthly or daily seasonal scales, the wind power supply
has been great. The generated electricity can be either
utilized to fulfil the on-site energy requirements or sold and
transmitted over the grid [9]-[11].

From the grid, a part of electricity which is purchased by a
customer is displaced by on-site or distributed generation.
Furthermore, the state net metering enables the production
of on-site load that can be sold to the local utility. Over the
electricity grid, the scales can be conducted by an ISO,
which controls the wholesale market for ancillary services,
electricity and its capacity. This ISO can organize the spot
markets, where the wind energy can be sold by the wind
generators. Sometimes, they even provide to the wholesale
buyers [12]-[14].
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In markets having a higher amount of wind generation, low
market prices are induced by the high wind outputs and
under low wind output conditions, high prices often occur.
A wind power facility displays significant variability and
stochasticity over time, which includes the asset level
volume risk, which is a crucial concern for both investors
and operators. As a merchant plant, some assets are
operated, which are also exposed to wholesale price risk. In
such circumstances, due to the variability of market prices
and output volumes of products, the wind asset operators
face daily revenue risks [15], [16].

Furthermore, predicting wind asset revenues is indeed a
challenging task and, in these revenues, available market
instruments for managing the risks are underdeveloped. In
an energy generation company, higher wind energy
availability merged with a low market price leads to
surplus energy production. As a result, this should be sold
at a lower price. If the wind availability is low and the
market price is high, then the situation might be the
opposite of this. This proves that the price of wind power
has a great impact on the wind sales system [17]-[20]. This
paper proposes a novel Association Rule with a DL-based
Wind Power Generation and Price Prediction (ARDL-
WPGPP) model.

2. Literature Review

Recently, a few research are available related to wind
power and its price ratings. Notably, the wind power’s
influence on the hourly day-ahead prices of Western
Denmark was explored by Grohnheit et al. [1]. This work
considered electricity generation via diverse technologies,
area prices, electricity demand and trade among areas.
From, the Danish TSO data, this work was analyzed from
2009-2021. Furthermore, a new data-driven approach was
developed and validated by Thakur ez al. [2] for predicting
the hedges which take the binary options form. This work
leverages the ML classifiers for the probability prediction
of binary options being exercised. Moreover, Durakovic et
al. [3] analyzed the effect of green hydrogen production on
the investment of transmission and generation. The power
price was increased considerably by the hydrogen in
Europe since the power price is very low there. However,
in high-demand periods, the stress for the grid was relieved
by the hydrogen flexibility. In addition, offshore wind
energy’s effects on wholesale electricity prices were
estimated by Hosius et al. [4]. This work utilized Great
Britain, Western Denmark and Germany’s electricity prices
from 2015-2018. For wind agents, a regression market was
proposed by Han et al. [5], which monetizes the data
traded between themselves. This described the importance
of wind data and its trades.

Furthermore, WSU was proposed by Chabok et al. [6],
which includes a tri-level optimization problem, this was
considered an effective wing storage allocation system, and
this has a great impact on the wind power sales system. For
balancing the power market during the lower-than-
expected power generation time, Soini [7] explored the
price of balancing power. During this time, balancing
power prices are significantly high. This approach utilized
the nonlinear regression method. One of the applications of
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wind energy is an electric vehicle charging station and its
sales prices are provided by Santos ef al. [8]. The outcomes
indicated its cost-effectiveness and efficiency. Although
many techniques are developed for wind power pricing and
forecasting, there is no method available for wind power
generation and price prediction data using Association
Rule and DL models.

3. An Overview of Wind Power Generation:
Framework of ARDL-WPGPP Model

Renewable energy sources like solar, wind, geothermal,
biomass, and hydropower are gaining global attention due
to their clean, sustainable, and widely available nature.
They offer a low-carbon alternative to traditional energy
sources, helping to meet the increasing global energy
demand while reducing environmental pollution and
preserving ecosystems. Among these, wind energy stands
out as a particularly valuable resource due to its ability to
generate power consistently and cleanly. Wind turbines
play a crucial role in electricity generation worldwide,
offering a popular and efficient means of harnessing wind
energy for sustainable power generation.

Wind power producers frequently engage in energy
markets where prices are dictated by the interplay of
supply and demand. The fact of price forecast enables them
to make rational decisions on buying and selling electricity,
balancing their actions on the electricity market and
receiving the maximum profit. Further, price volatility is a
key aspect, which is important for the companies in the
wind power industry to obtain the maximum revenues from
electricity sales with the help of accurate price prediction
during the sales of electricity. Such foresight allows them
to properly position the sale of energy by guiding the use
of favourable energy price environments. In addition, the
unpredictable movement in the price of energy poses
another financial risk to the producers of wind power. The
risks caused by volatility in prices are the reasons why
price prediction can be used as a tool to help minimize
such risks. Predicted price movements can be effectively
used in various activities like protecting against
unfavourable prices or varying the sources of income. In
addition, because wind power generators can expect a
proliferation of energy prices, they can: From this
perspective, they can effectively change the generation
schedules to keep the grid balance and fulfil the demand
levels. Wind power forecasting and its related price
behaviours are important to energy planning, trading, and
decisions. Wind power generation forecasting is one of the
most vital prerequisites for ensuring the efficiency of
energy production and supply. Since it is known when the
wind will be strong, the energy producers can more
accurately adjust for issues of when to integrate into the
grid, when to do maintenance and resource demands.
Therefore, market predictions enable the participants in the
market to make sound market trades, manage risks, and
exploit the available opportunities. Price prediction allows
the stakeholders to come prepared for the shift in the
energy market helps in managing the revenue and
promotes the market efficiency.



Forecasting of wind power is a complex process because
the wind speed varies and fluctuates depending on the
weather conditions. Fluctuations and uncertainties affect
the wind flows due to which the wind generation and
demand are not well balanced. This has a consequent effect
on cost volatility for the users of wind energy. It will be
appreciated that the prediction of wind power is very
important in energy management ranging from generation,
distribution, transmission, planning and scheduling [22].

DL techniques are increasingly being utilized in the energy
sector to interpret historical data and improve prediction
performance for wind power generation forecasting,
ultimately enhancing the utilization rate of wind energy.
Thus, this proposed work aims to design a novel
Association Rule with a DL-based Wind Power Generation
and Price Prediction (ARDL-WPGPP) model, as illustrated
in Figure 1. Consider, two datasets as Energy dataset and
the Weather features dataset. From the Energy dataset,
columns like tie, wind onshore forecast, and price actual
are selected; conversely, wind speed is chosen from the

Energy dataset

()

weather feature dataset. Subsequently, the selected
columns are combined to generate a dataset where each
transaction represents 2 hours of wind generation.
Following this, a data mining approach is introduced that
involves searching for hidden patterns, rules, concepts, and
correlations within large datasets. It scans through
extensive data collections to discover meaningful insights
and relationships. It operates on various types of data,
including quantitative, textual, and multimedia formats.
Through data mining, valuable knowledge is extracted
from raw data, facilitating informed decision-making and
understanding of complex phenomena within diverse
domains. To extract efficient rules from the dataset, a new
data mining strategy called the improved Apriori algorithm
is proposed. Consequently, the generated rules with wind
speed are passed into the improved LSTM, which it learns
by comparing the label data. The price value is considered
as label data that assigns the labels to data points based on
their actual price value. If the price actual value is high,
then the price of the generated wind power is indicated as
high; else indicated as low.

Wind onshore
forecast

-

[ Tie ]
> Improved Apriori Improved LSTM
< Algorithm model
Weather feature > Label: Price
dataset value

——/

[ Wind speed

Electricity

Figure 1. Framework of ARDL-WPGPP Model

A.  Apriori Algorithm for Generating Rules

Association rule mining is a data mining technique used to
discover interesting relationships, patterns, or associations
among items in large datasets. Association rule mining
algorithms include Apriori, FP-Growth, Eclat, and many
others. Among that, the Apriori algorithm [23] is a classic
data mining technique used for association rule learning in
transactional databases or datasets containing items
purchased together. It aims to discover frequent patterns,
associations, or relationships among items based on their
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co-occurrence in transactions. This algorithm follows a
two-stage process to discover frequent itemsets. The
flowchart of the conventional Apriori algorithm is depicted
in Figure 2.

1) Step 1-Initial Stage

Frequent items with a growth rate of 1 are identified and
recorded as It [1].

2) Step 2-Candidate Generation Stage



(i) Candidate item sets C[q+/t] are generated based on

the frequent itemsets found in the previous stage It[q] .

(i1) Each candidate item set is constructed by joining pairs
of frequent itemsets from It[q] .

(iii) The resulting candidate itemsets must have subsets
that are already frequent.

3) Step 3-Database Scanning

(1) The transaction database Tr, is scanned, and each

candidate item set's support is calculated.

(i1) If the support of a candidate item set is greater than the
minimum support threshold (minsup), it is added to the list

of frequent itemsets /t[q+1] .

4) Step 4-Termination or Continuation

(1) If the list of frequent itemsets It[q+1] is empty, the
algorithm terminates, and the desired outcome is the union
of all frequent itemsets found so far ( /¢[1] union /7[2] ...).

(ii)) Otherwise, the process continues by generating
candidate item sets based on the frequent itemsets found in
the current iteration.

Express minconf and minsup

A\ 4

Scan database as well obtain
item set 1

]
v

g=2

I

Set C ,is obtained

No

Yes

End

Scanned database

A

qg=q+1

Figure 2. Flowchart of Conventional Apriori algorithm

The Apriori algorithm requires multiple passes over the
dataset to generate candidate itemsets and calculate support
counts. As the size of the dataset and the number of distinct
items increase, the computational cost grows exponentially,
making it inefficient for large datasets. Hence, a new
strategy for the Apriori algorithm is proposed and the steps
to be followed in the improved Apriori algorithm are as
follows:

Step 1: Collect the dataset

Step 2: Convert it into a Boolean matrix

Step 3: Convert the Boolean matrix into binary form
Step 4: Evaluate 2’s complement for the binary form
Step 5: Further, convert it into a decimal number.
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Step 6: Check the redundant dataset with the original
dataset. If it is the same remove the dataset using
transaction compression; else, scan the database and obtain
itemset1.

Step 7: Let g=2.

Step 8: Set C, is obtained.
Step 9: If C, =0, remove using transaction compression;

else scan the database.
Step 10: Further, reiterate g =g +1.

The flowchart of the proposed Apriori algorithm is

illustrated in Figure 3. Thereby, the rules generated from

the improved Apriori algorithm are denoted by Gen®™" |
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Figure 3. Flowchart of Improved Apriori Algorithm

For enhanced performance to handle large databases, the
conventional Apriori algorithm adopted a significant part
called the modified Apriori Algorithm with features such
as transaction compression and use of the 2’s complement.
Transaction compression is one of the methodologies that
involve condensation of certain transactions to eliminate
similar transactions. This reduction in data volume, in turn,
reduces the number of database scans needed during
candidate generation and the supporting counting, which
boosts the algorithm’s speed. For example, if there are
similar transactions that are virtually identical, it is better
to store a few of them, where one is stored with a count
attribute rather than storing all of them separately in the
database. Furthermore, the 2’s complement that is used in
the improved Apriori algorithm is very important when it
comes to the task of converting the resulting Boolean
matrix for easier computation in its binary form. It is a
binary representation of transactions that enables the
algorithm to work with bitwise operations that are far more
efficient in comparison to arithmetic ones. Thus, the 2’s
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complement of the binary forms is evaluated to effectively
neutralize useless bits to fasten the process of contrasting
forms and merging of item sets in the candidate generation
stage. Such binary manipulation serves not only the
purpose of increasing processing velocities but also
minimizes the burden on calculations when dealing with
big amounts of information.

These modifications make the Apriori algorithm useful and
compatible with big data as well. The algorithm appears
highly efficient in practising bitwise operations using 2’s
complements to compress transactions and hence run
concurrently and faster especially where vast amounts of
data present a challenge when using other methods. These
improvements not only strengthen the theory of the
algorithm but also expand the scope of use that the
algorithm should be tested in more complicated and
challenging real environments to serve the existing and
emerging data mining applications in the modern world
better.



B, LSTM

LSTM [24] is an RNN architecture tailored to mitigate the
vanishing gradient problem prevalent in conventional
RNNs. Its design is particularly geared towards sequential
data modelling and predictive tasks, owing to its adeptness
at capturing prolonged dependencies and retaining
information across extended periods. The conventional
LSTM layer includes an input layer, forward layer,
backward layer and output layers. As an improvement, we
added additional layers to the LSTM framework, as
depicted in Figure 4. Multiple LSTM layers boost the
model's ability to learn from data, which is very useful
when working with challenging tasks or datasets.

Batch normalization: It is a technique for normalizing the
distributions of intermediate layers. It allows for smoother
gradients, quicker training, and higher generalization
accuracy.

Drop-out layer: It randomly changes input units to 0 at a
rate at each step throughout training to minimize
overfitting.

RELU: It is an activation function that adds non-linearity
to a deep learning model and addresses the vanishing
gradients problem.

Max pooling: The fundamental goal of this layer is to
decrease the quantity of data in an image while still
retaining the important elements required for effective
classification.

LSTM

Average pooling: It is a pooling procedure that computes
the average value of patches in a feature map and utilizes it
to generate a down-sampled (pooled) feature map.

Flatten layer: It makes it easier to transfer data from
convolutional layers to fully linked layers. It removes the
requirement to manually reshape data or handle
dimensionality changes in network design, making it easier
and error-free.

The conventional RELU activation function is shown in Eq.
(.

Leaky RELU ={x’ fxz0 (1)

ax, otherwise

To improve the accuracy of classification, we have
improved the activation function by introducing a new
condition as shown in Eq. (2), where, a =0.01.

X, if x>0
X 1 .
£(x)= [ 1 }/2 F0>x21 ()
I+ 1+e*
ax, otherwise

The final RELU activation function is obtained as shown in
Eq. (3), in which, softsign is modelled as in Eq. (4).

f(x)zsoftsign (f'(x)) 3)
softsign = f (x)= (M%J 4)
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Figure 4. Architecture of Improved LSTM Model



4. Results and Discussion

A.  Simulation Procedure

The proposed ARDL-WPGPP method was executed using
Python. Specifically, the simulation was conducted on
“Python 3.7.” Moreover, the processor employed was
“AMD Ryzen 5 3450U with Radeon Vega Mobile Gfx
2.10 GHz”. Additionally, the system was equipped with
“16.0 GB” of RAM. The prediction of price from wind
power generation is analysed using the Wind Electricity
Price Rose dataset [21].

B.  Dataset Description

The dataset comprises four years' worth of data on
electrical consumption, generation, pricing, and weather
conditions in Spain. The given Kaggle dataset (Wind
Electricity Price Rose) contains the energy dataset and
weather feature dataset. In the energy dataset, the column
contains attributes like tie, wind onshore forecast, and price
actual. While the weather feature dataset contains the wind
speed attribute. The consumption and generation data were
sourced from ENTSOE, a public portal for TSO data, while
settlement prices were obtained from the Spanish TSO Red
Electric Espafia. Weather data, collected for the five largest
cities in Spain, was acquired as part of a personal project
and purchased from the Open Weather API before being
made publicly available.

C. Comparative Analysis of Error Metrics

From Figure 5 onwards, a detailed analysis of error metrics
has been undertaken to assess the efficacy of our proposed
ARDL-WPGPP method via conventional models such as
LSTM, MobileNet, GoogleNet, SVM, EfficientNet, and
CNN for predicting the price from wind power generation.
The primary aim is to minimize error rates, which are
pivotal for improving detection reliability. Remarkably,
our ARDL-WPGPP method consistently demonstrates
lower error rates across various training percentages
compared to traditional methods. In this proposed ARDL-
WPGPP method, the error metrics considered include
MAE, NMAE, MPCE, and RMSE.

1) Comparative Analysis on MAE

Primarily, our proposed ARDL-WPGPP method attained
an MAE score of 0.115 with 80% training, outperforming
conventional methods which exhibited higher MAE scores:
LSTM=0.351, MobileNet=0.302, GoogleNet=0.358,
SVM=0.334, EfficientNet=0.356, and CNN=0.351,
respectively (Figure 5). Similarly, at a training data
percentage of 90, the proposed ARDL-WPGPP method
achieves the lowest MAE of 0.099, surpassing the
performance of LSTM, MobileNet, GoogleNet, SVM,
EfficientNet, and CNN. Moreover, the MAE achieved a
score of 0.141 in 70% of training while the conventional

methods outperformed higher scores against MAE,
LSTM=0.359, MobileNet=0.353, GoogleNet=0.348,
SVM=0.332, EfficientNet=0.359, and CNN=0.333,

respectively. Additionally, at 60% training data, the
proposed ARDL-WPGPP method obtained better MAE
with a score of 0.170.
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Figure 5. MAE Error Analysis for Proposed and Conventional Methods

2) Comparative Analysis on NMAE

In evaluating the NMAE metric as illustrated in Figure 6,
our proposed ARDL-WPGPP method achieves a notably
lower NMAE rate of 0.391 at a training percentage of 90
(Figure 6). Furthermore, the NMAE attained the lowest
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rate of 0.646 at a training percentage of 70 when compared
with conventional methods. Similarly, at a training data
percentage of 80, the proposed ARDL-WPGPP method
attains the lowest NMAE of 0.476, outperforming LSTM,
MobileNet, GoogleNet, SVM, EfficientNet, and CNN in
terms of performance. Likewise, the NMAE reached a



score of 0.747 in 60 percent of training whereas the
conventional methods outperformed higher scores against
NMAE, LSTM=1.356, MobileNet=1.420,

GoogleNet=1.243, SVM=1.466, EfficientNet=1.565, and
CNN=1.225, respectively.

1.6

144

L7

1.0

NMAE

0.6 1

0.4 4

0.2 1

0.0 -
70

80

Training Data(%)

I STM
I Mobilenet

I Googlenet
Em svMm

[ Efficientnet

[ ARDL-WPGPP

EE CNN

Figure 6. NMAE Error Analysis for Proposed and Conventional Methods

3) Comparative Analysis of MPCE

When assessing the MPCE metric as depicted in Figure 7,
the proposed ARDL-WPGPP method achieved a
significantly lower MPCE rate of 8.916 at a training
percentage of 90. Furthermore, the MPCE reached the
score of 9.845 in 60% of training where the conventional
methods outperformed higher scores against MPCE,
LSTM=17.672, MobileNet=19.611, GoogleNet=13.967,
SVM=29.366, EfficientNet=21.968, and CNN=16.696,

respectively. Similarly, the proposed ARDL-WPGPP
method reaches the lowest MPCE of 8.989 at a training
data percentage of 80, surpassing the performance of
LSTM, MobileNet, GoogleNet, SVM, EfficientNet, and
CNN. Also, the MPCE reached a score of 9.590 in 70% of
training but the conventional methods outperformed higher
scores against MPCE, LSTM=16.857, MobileNet=18.061,
GoogleNet=11.925, SVM=28.557, EfficientNet=18.700,
and CNN=15.780, respectively.
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Figure 7. MPCE Error Analysis for Proposed and Conventional Methods

4) Comparative Analysis on RMSE

The RMSE attained by the proposed ARDL-WPGPP
method stands at 0.228 (at a training percentage of 90 in
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Figure 8), whilst the LSTM, MobileNet, GoogleNet, SVM,
EfficientNet, and CNN exhibited minimal RMSE values of
0.416, 0.394, 0.396, 0.380, 0.417, and 0.404 respectively.
Also, the RMSE reached a score of 0.250 in 80% of



training, but the conventional methods outperformed

higher scores against RMSE, LSTM=0.413,
MobileNet=0.371, GoogleNet=0.438, SVM=0.406,
EfficientNet=0.430, and CNN=0.426, respectively.

Similarly, at a training data percentage of 70, the proposed

ARDL-WPGPP method achieves the lowest RMSE of
0.272, surpassing the performance of LSTM, MobileNet,
GoogleNet, SVM, EfficientNet, and CNN. At the same
time, in 60% of training the RMSE attained the lowest
score 0.293 when compared with traditional methods.
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Figure 8. RMSE Error Analysis for Proposed and Conventional Methods

5) Comparative Analysis of RMSE in terms of Wind
Generation

In Figure 9, the proposed ARDL-WPGPP method achieved
a least RMSE score of 0.650 in terms of wind generation,
surpassing conventional methods LSTM, MobileNet,

GoogleNet, SVM, EfficientNet, and CNN with higher
RMSE scores. Likewise, the SVM method attained an
RMSE score of 0.776. Similarly, the highest RMSE score
was attained in the CNN method with a score of 1.191.
Also, the RMSE score in the EfficientNet method achieved
1.187.
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Figure 9. RMSE in terms of Wind Generation Error Analysis for Proposed and conventional Methods

D.  Statistical Evaluation of Error

To comprehensively assess the efficacy of these methods,
an exhaustive statistical analysis is conducted, with a
primary emphasis on optimizing accuracy across diverse
metrics. Each method is subjected to meticulous evaluation
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procedures to guarantee the generation of exceedingly
precise results. This thorough assessment is committed to
attaining accuracy and entails a detailed examination of
essential statistical indicators. The evaluation encompasses
fundamental statistical measures such as Mean, Median,
Standard Deviation, Minimum and Maximum providing a



comprehensive understanding of the model's accuracy in
price prediction in wind power generation. Table 1
provides a detailed statistical analysis comparing the
ARDL-WPGPP method with LSTM, MobileNet,
GoogleNet, SVM, EfficientNet, and CNN for price
prediction in wind power generation. When evaluating the
lowest statistical metric, the proposed ARDL-WPGPP
method showcases a notable error rate of 0.024, whereas

the LSTM is 0.008, MobileNet is 0.015, GoogleNet is
0.019, SVM is 0.014, EfficientNet is 0.012 and CNN is
0.012, respectively. Additionally, for the mean and median
statistical metric, the ARDL-WPGPP method achieved a
minimal error rate of 0.061. In contrast, traditional methods
such as LSTM, MobileNet, GoogleNet, SVM, EfficientNet,
and CNN resulted in higher error values.

Table 1. Statistical Assessment of Error

Statistical metrics LSTM MobileNet GoogleNet SVM EfficientNet CNN Proposed
Mean 0.416 0.393 0.416 0.401 0.433 0.409 0.261
Median 0.414 0.393 0.415 0.403 0.432 0.407 0.261
Standard Deviation 0.008 0.015 0.019 0.014 0.012 0.012 0.024
Minimum 0.408 0.371 0.396 0.380 0.417 0.395 0.228
Maximum 0.429 0.415 0.438 0.419 0.450 0.426 0.293

5. Conclusion [4] E. Hosius, J. V. Seebal3, B. Wacker, and J. Chr. Schliiter,

This study proposed a novel model called Association Rule
with DL-based Wind Power Generation and Price
Prediction (ARDL-WPGPP). It utilized two datasets: an
Energy dataset containing columns such as tie, wind
onshore forecast, and price actual, and a Weather features
dataset containing wind speed. These datasets were
combined to create a dataset where each transaction
represents 2 hours of wind generation. A data mining
approach was employed to uncover hidden patterns, rules,
concepts, and correlations within these datasets, operating
on various types of data including quantitative, textual, and
multimedia formats. To efficiently extract rules from the
dataset, an improved Apriori algorithm was introduced.
Subsequently, the generated rules incorporating wind speed
were passed into an improved LSTM model, which learns
by comparing the label data. The price actual value served
as the label data, assigning labels to data points based on
their actual price value. High price actual values indicated
high wind power prices, while low values indicated low
wind power prices.
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