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Abstract.  Nowadays, it has become increasingly imperative

to pursue energy systems independent of centralized production, 

instead by employing decentralized resources such as renewable 

energy and responding promptly to localized demands, as 

microgrids exemplify. The concept of microgrids presents a 

promising solution to the challenges posed by traditional grid 

systems, offering resilience, sustainability, and efficiency. 

Despite the growing interest in microgrids, achieving their full 

potential requires a deep understanding of their diverse structures 

and design considerations. This paper contributes to the existing 

body of knowledge by thoroughly exploring various studied 

microgrid structures, conducting qualitative assessments to 

discern their strengths and weaknesses, and ultimately proposing 

a robust framework for designing and implementing microgrids 

in real-world scenarios. Through the analysis of a case study, this 

research aims to shed light on the most effective strategies for 

leveraging microgrids to meet the energy needs of modern 

societies while promoting sustainability and resilience. 

Key words. Microgrids, rural energy solutions, 

sustainable design, remote area electrification, renewable 

energy integration.  

1. Introduction
Microgrids (MGs) have become central to discussions 

about electrical networks in contemporary discourse. Their 

localized and decentralized nature marks a departure from 

traditional centralized power systems. This shift is driven 

by their ability to utilize distributed generation, primarily 

sourced from renewable resources [1]. Sustainability and 

resilience are inherent in MGs and underscore their 

importance in future electrical networks [2]. 

MG design hinges on carefully considering multiple 

components, each vital to enhancing overall system 

performance. The urgency of MG design arises from the 

imperative to fully exploit distributed energy resources, 

notably renewable sources. Unlike conventional power 

systems, MGs require a nuanced comprehension of the 

optimal sizing of their components to guarantee smooth 

integration and operational efficiency [3]. 

Designing a MG involves a comprehensive, meticulous 

planning process beyond mere hardware selection. The 

multifaceted nature of MG design requires a slight 

approach to selecting and sizing components such as 

generation units, storage systems, and load management 

mechanisms. The goal is to strike a delicate balance, 

ensuring efficient energy utilization while 

accommodating the dynamic nature of renewable 

resources. 

The design philosophy of MGs centers on cooperative 

management. A well-designed MG is characterized by an 

intricate energy transition process, where various 

components synergistically operate to meet the energy 

demands of the local community or facility. Cooperative 

management facilitates optimal resource utilization, 

minimizes wastage, and ensures the stability and 

reliability of the MG [4]. 

By delving into the intricacies of MG configurations, this 

study shows pathways for tailoring MGs to meet specific 

energy demands, enhance sustainability, and bolster 

resilience across diverse settings. Its aim is not merely to 

catalog existing designs but to synthesize a coherent and 

actionable guide bridging the gap between theoretical 

research and practical application. 

Through an exhaustive examination of diverse MG 

structures informed by a rich tapestry of scholarly work, 

this document seeks to equip stakeholders—from 

engineers to policymakers—with the knowledge and 

tools necessary to navigate the complexities of MG 

development. This highlights the need for a holistic 

approach to making MG systems efficient, reliable, and 

adaptable to keep up with the evolving demands of the 

energy landscape in which we live. This approach must 

incorporate technical, economic, environmental, and 

social considerations. 

Moreover, this paper demonstrates how to effectively 

leverage the insights provided in this guide to apply them 

in real-world scenarios. A qualitative case study 

illustrates translating theoretical underpinnings into 

actionable strategies, ensuring readers grasp the 

principles behind MG design and how to implement these 

concepts in tangible projects to achieve sustainable and 

resilient energy solutions. 

The paper is organized as follows. Section 2 presents all 

available categorizations related to MG design, and a 

qualitative comparison of the options offered for each 

category is outlined. Then, Section 3 presents the 

selection of the most suitable design for establishing MG 

potential in a rural area as an example of the data 

examined in the previous sections. Finally, some 

conclusions are drawn in Section 4. 
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2. Microgrids Classifications and Qualitative 

Assessment 
In the domain of MGs, a diverse array of scholarly 

research exists, encompassing a variety of themes, 

reflecting the rise of diverse MGs and a growing demand 

for resilient energy solutions [5]. However, the plethora of 

MG options prompts questions about deployment criteria. 

Understanding the reasons behind this diversity and the 

decision-making process is vital for energy stakeholders. 

This section delves into the various classifications 

proposed for MGs, the factors driving this variety, and the 

criteria guiding deployment decisions, aiming to offer 

insights into energy system design and implementation. 

Figure 1 presents a diagram that illustrates the various MG 

classifications based on different criteria.  
Microgrids 

Classification

Size
Small scale

<10 kW

Medium scale

10 kW – 1MW

Large scale

> 1 MW

Architecture Radial gridRing grid Mesh type

Application Residential IndustrialCommercial

Operation On-gridOff-grid

Configuration DC coupled AC Coupled
Hybrid AC/DC 

design

Weakly meshed

 
Figure 1. Classification of MGs from several perspectives. 

The decision between off-grid and on-grid MGs relies on 

location, energy needs, budget, and environmental 

considerations. Off-grid MGs offer energy independence 

and resilience, while on-grid MGs provide grid integration 

and scalability. 

Reliability, fault tolerance, scalability, and operational 

complexity are crucial in determining a suitable MG 

architecture. Ring grids offer high redundancy and 

resilience, while radial grids are simpler and better suited 

to less critical applications. Mesh-type grids, including 

weakly meshed configurations, provide superior 

redundancy and self-healing capabilities, making them 

ideal for mission-critical and large-scale applications. 

Figure 2 illustrates diverse options for energy generation 

[6]. Renewables offer advantages like environmental 

sustainability, long-term cost stability, and resilience to 

fuel price fluctuations. However, their intermittent nature 

challenges MG integration, necessitating energy storage 

and grid management solutions. Non-renewables, while 

more reliable, have significant environmental and 

economic drawbacks, emphasizing the importance of 

transitioning to cleaner energy sources. 

Notably, various energy generation options can be 

combined within MG systems. 
Energy 

Sources

Renewables Photovoltaic
Wind 

turbines
Hydro

Biomass

Geothermal

Fuel Cell Tidal

Non-

Renewables

Micro-

turbine

Combustion-

turbine
Gas-turbine

Internal 

combustion engine
Wave Energy

 
Figure 2. Different options for energy generation. 

The generation side merges with various energy storage 

components [7] and sophisticated demand loads [8], 

distinguished by their energy consumption carriers and 

importance. Figures 3 and 4 represent options for energy 

storage systems and load segmentation types, 

respectively. 

Energy Storages

Batteries Lead-acid Lithium-ion

Supercapacitors

Superconducting 

Magnetics

Hydrogen 

Systems

Nickel-

Cadmium 

Hydraulic 

storage

Fly-wheels
 

Figure 3. Various energy storage options. 

Loads

Type AC Loads DC Loads

Variability Constant Variable

Importance Critical Hospital
Nursing 

Facility

Non-critical

Washer and 

dryer

HVAC

Discretionary

Water heating

Data centers

Commercial 

facility

Emergency 

load shed

Residential 

customers

Electricity HeatCarrier

Electrical 

vehicles

 
Figure 4. Load classifications. 

Different energy storage technologies have unique 

strengths and weaknesses. Batteries offer flexibility and 

high energy density but may have durability and safety 

issues. Supercapacitors provide high power and a long 

lifespan but store less energy than batteries. 

Superconducting magnets and flywheels offer high power 

and almost unlimited lifespans but can be costly and have 

limited capacity. The choice of energy storage 

technology depends on factors such as energy 

requirements, response speed, lifespan, and budget. 

Batteries have varied characteristics, benefits, and 

limitations, making them apt for diverse applications [9]. 

Lead-acid batteries are economical and dependable but 

offer restricted energy density and cycle life. Lithium-ion 

batteries boast high energy density, swift charging 

capabilities, and prolonged cycle life, albeit requiring 

sophisticated safety protocols. Nickel-cadmium batteries 

demonstrate exceptional durability and reliability and are 

suitable for extensive applications. Battery type selection 

hinges on energy needs, spatial limitations, weight 

restrictions, and cost factors. 

Categorizing loads by electrical or thermal nature, AC or 

DC operation, and variability involves understanding 

their energy usage patterns and operational needs. Loads 

may operate steadily or vary over time. This 

understanding is essential for designing and optimizing 

energy systems to enhance efficiency and reliability.  

Furthermore, the demand-side management concept, 
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especially demand response programs, has been the subject 

of significant research [10]. Figure 5 presents various 

demand-side management strategies.  
Demand side 

management

Peak shaving

Valley filling

Flexible loads

Strategic 

conservation

Strategic load 

growth

Peak shifting

Demand response Price based Time of use Real time pricing

Critical peak 

pricing

Incentive based
Classical 

programs

Direct load 

control

Interruptible or 

curtailable service

Market based 

programs
Emergency DR

Demand bidding
Capacity market 

programs

Ancillary services 

market programs

Energy efficiency 

 
Figure 5. Various demand-side management strategies. 

Many studies focus on the operational aspects of MGs, 

specifically examining various control strategy 

classifications [11], as shown in Figure 6.  

Mode

Level Primary

Master slave

Control

Architecture Centralized Decentralized Multi-agent

Distributed 

autonomous

Hierarchical 

structure

Peer to peer Combined

Secondary Tertiary

Method
With 

communication

Without 

communication

Voltage 

stability

Primary frequency 

regulation

Current 

varriation
Functionality 

Power 

management
 

Figure 6. Different classifications of control strategies for MGs. 

Centralized control ensures precise management of current 

variation, voltage stability, and power distribution. 

Decentralized strategies enhance adaptability and 

resilience locally by distributing decision-making. Using 

multi-agent control, autonomous agents can collaborate on 

decision-making through collaborative decision-making. 

Distributed control enables autonomous management of 

individual elements, promoting flexibility. Hierarchical 

control organizes functionalities into tiers for coordinated 

operation. Based on the system complexity and 

performance requirements, hybrid approaches are often 

preferred when developing MG systems to ensure 

comprehensive functionality. 

Various techniques are used in MGs sizing and energy 

managing methods [12], as shown in Figures 7 and 8, 

respectively. There is considerable interest in using multi-

criteria methods to find optimal solutions for both MG 

design and synergic management. This highlights the need 

for comprehensive strategies that address multiple facets 

of MG operation. 
Sizing 

methodologies

Mathematical 

methods

HOGA HYBRID2

HYBRIDS HOMERTRNSY

Metaheuristic 

methods 

Software tools

LINGO
Hybrid 

methods

 
Figure 7. Different methods and software of MG sizing. 

Mathematical 

methods

Linear 

programming

Non-linear 

programming

Dynamic 

programming

Mixed integer 

linear programming 

Stochastic 

programming

Meta-heuristic 

methods
Genetic algorithm

Particle swarm 

optimization

Simulated 

annealing

Backtracking 

search algorithm

Ant colony 

algorithm

AI methods

Others

Mixed integer non-

linear programming 

Artificial neural 

networks
Fuzzy logic model

Support vector 

machines

Deep reinforcement 

learning

Other methods

Deep learning 

machines

Heuristic-inspired 

machine learning

Data based Rule based
Unified resilience 

evaluation

Others

Energy 

management

 
Figure 8. Various typical methods of energy management. 

Generally, mathematical optimization offers precise 

solutions but needs help with scalability. Meta-heuristic 

algorithms provide efficient solutions but do not 

guarantee optimality. AI techniques like machine 

learning forecast energy consumption but may lack 

interpretability. Rule-based programming offers real-time 

decision-making but may lack flexibility. Selection 

depends on problem complexity, resources, and desired 

optimality, with hybrid approaches promising improved 

performance. 

When comparing meta-heuristic optimization methods, 

evaluating their strengths, weaknesses, and applicability 

across diverse problem domains is crucial [13]. Genetic 

Algorithms (GAs) emulate natural selection, evolving 

solutions through mutation, crossover, and selection. 

GAs are versatile for complex search spaces but may 

encounter premature convergence and high 

computational overhead. Simulated annealing (SA) 

mimics metallurgical annealing, exploring the solution 

space with probabilistic acceptance of worse solutions to 

avoid local optima. SA is robust for rugged landscapes 

but requires careful parameter tuning and may converge 

slowly. Particle Swarm Optimization (PSO).  simulates 

social behavior, adjusting particle positions based on best 

solutions, yet it may converge prematurely and need 

more diversity. Ant colony optimization (ACO) models 

ant foraging behavior, which is effective for 

combinatorial problems but demands computational 

resources. Differential evolution (DE) iteratively 

improves solutions and is robust for high-dimensional 

problems but may struggle with multimodal functions 

and noise. Comparison entails factors like convergence 

speed, solution quality, scalability, robustness, and ease 

of implementation, tailored to specific optimization 

problem characteristics. 

The literature on MGs explores a range of economic, 

technical, and reliability goals within various constraints 

[14], as shown in Figures 9 and 10. These goals are 

studied both individually and collectively, sometimes 

focusing on a single objective, and other times on 

multiple objectives. Many studies aim to provide 

solutions to specific parts of the issue, often limited by 

simplified assumptions like focusing on a single goal or 

using deterministic inputs. Such objectives can include 

technical goals (e.g., minimizing losses), power quality 

goals (e.g., voltage stability), economic goals (e.g., cost 

reduction), or environmental goals (e.g., reducing 

emissions) and involve different types of data. However, 
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this approach frequently overlooks other important 

objectives and aspects. 

 

Social cost of 

carbon, SCC
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Loss of power supply 

probability, LPSP
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Life cycle 
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Total investment 
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Total capital cost, 

TCC

Carbon emission, 
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energy, CFOE

Embodied energy, 

EE

Fuel emission, FE
Life cycle 
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index, HDI
Job creation, JC

Life cycle emission, 

LCE

Portfolio risk, PR

Social acceptance, 

SA

Project 

payback

Power quality Voltage stability Frequency control Harmonic mitigation

 
Figure 9. Energy planning objectives in MGs. 

Constraints

Network constraints Energy balancing
Reactive power 

support
Reliability

Physical limits 

of generators

Output limits of 

renewable resources

Physical limits of 

energy storages
Financial budget

 
Figure 10. Constraints identified within MG systems. 

Achieving balance in MG design is key to optimizing both 

system efficiency and societal benefits, encompassing 

technical integration and stability, economic cost-

effectiveness, environmental sustainability, and social 

inclusivity. The approach necessitates comprehensive 

planning and collaboration to meet these diverse 

objectives, focusing on leveraging advanced technologies, 

efficient energy management, emission reduction, 

renewable integration, and community involvement. This 

holistic strategy aims to create intelligent, sustainable, and 

equitable MG systems, ensuring a balanced consideration 

of technical, economic, environmental, and social factors 

for future MG development. 

Finally, Figure 11 presents the classification of various 

data types relevant to MG systems. 

Data

Deterministic StochasticType

Meteorological InsolationAir temprature

Market prices

Load demands

Wind speed Hydro flow

Inputs

 
Figure 11. Classification of data types presented in MGs. 

This section analyzed MGs, focusing on their types, 

operation, and goals, and discussed the technical, 

economic, and operational factors in MG design. Next, it 

assessed the methods’ strengths and weaknesses, offering 

an in-depth evaluation of their use in MG analysis to guide 

informed MG design and implementation decisions. 

 

3. Case Study, Optimal Framework Selection 
This study examines the introduction of a MG focusing on 

the potential for photovoltaic (PV) generation, as 

highlighted in a previous study [15]. Now, all its power 

demands are met by the main-grid network. The goal is to 

explore the feasibility of integrating a MG to meet the 

community’s specific energy needs and improve its 

electricity supply’s resilience, considering economic 

efficiency improvements. 

The proposed MG will be based on the existing energy 

consumption pattern and designed consequently. Hence, 

the MG, presented for a medium-scale, mainly residential 

application, is an on-grid, AC-coupled radial grid (Figure 

1).  

Given the region ample solar radiation and wind 

resources, the MG aims to leverage these renewable 

sources, reducing reliance on fossil fuels (Figure 2).  

The batteries are needed alongside renewable sources for 

energy storage to ensure continuous power supply during 

low renewable energy generation periods, enhancing MG 

stability and reliability. Hence, the study also considers 

incorporating energy storage, with battery storage 

identified as the most efficient option despite high initial 

costs. Lead-acid batteries are selected for their cost-

effectiveness (Figure 3).  

Based on the rural area demand, all load carriers are AC 

power electricity, exhibit variable characteristics, are 

non-critical, and are designated for residential use (Figure 

4).  

The MG schematic is shown in Figure 12. 

 
Figure 12. The schematic of the supposed MG. 

In this structure, the goal is to design the system by 

finding the appropriate size of equipment based on 

geographical conditions and load demands. Due to the 

extensive search space and the high computational 

complexity, utilizing heuristic optimization algorithms 

seems rational (Figure 7). Among these algorithms, the 

PSO appears more suitable than others due to its high 

exploration capability. PSO is particularly advantageous 

for optimization problems characterized by high-

dimensional search spaces and non-linear, non-convex 

objective functions. Its simplicity, ease of 

implementation, and ability to quickly converge to near-

optimal solutions make it popular for various 

optimization tasks, including those encountered in MG 

optimal sizing. 

This process is enabled by implementing a tailored 

energy management system (EMS) through the 

mentioned PSO algorithm. In other words, within the 

inner loop of the EMS, optimal performance is achieved 

at each time step. Subsequently, in the outer loop, the 

information from the EMS is utilized to determine the 

optimal sizing of the equipment to accomplish the 

objectives of interest. 

By utilizing the solar panel model, the surface area of the 

panels, solar radiation, and air temperature at each time 

step, the energy produced by the solar panels is 
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calculated. The wind turbines’ energy is also calculated 

using the wind turbine model, the blades’ surface area, and 

wind speed at each step. The difference between the total 

energy produced by these two generation resources and the 

load demand at each time step determines the energy that 

needs to be either charged or discharged by the battery. 

Indeed, the limited amount of energy that can be charged 

or discharged by the battery at each step depends on the 

specifications of the utilized battery model, the number of 

batteries, and the state of charge at each step. 

It is noteworthy that in this structure, in cases where there 

is no generation, and the battery conditions are such that 

they cannot respond to the load, the demand for the load 

will inevitably be met through the upstream network. 

Additionally, when there is no load demand and the battery 

bank is fully charged, the generated energy will be 

transferred to a dump load. This load can be utilized for 

water heating and similar applications. 

In the considered MG system, solar panels and wind 

turbines consistently operate in the direction of energy 

generation, while load demand consumes energy. The 

battery bank, therefore, serves as the sole component 

capable of interacting bidirectionally. Consequently, only 

one control variable, the battery power at each time step, is 

influenced by system conditions. Hence, all system-

governing equations can be rewritten based on battery 

power. Under these circumstances, establishing a rule-

based system under a look-up table could be optimal for 

energy management (Figure 8). The advantages of this 

EMS include simplicity, high responsiveness, and 

performance closely resembling real-time operation. 

In this context, three variables—namely, the surface area 

of solar panels, the surface area of wind turbines, and the 

number of batteries—are initialized by the PSO algorithm. 

In this scenario, at each time step, the energy charged or 

discharged by the batteries is calculated from the 

difference between the energy produced by the generation 

units and the load demand. Upon completing the 

computations for all time steps within the study horizon, it 

becomes possible to calculate various technical criteria. 

One such criterion that reflects the level of reliability is the 

deficiency of the power supply probability (DPSP) metric 

(Figure 9), offering a clear indicator of its ability to meet 

demand effectively. It is defined as the sum of the values 

of unmet load demands in different sub-intervals to the 

sum of the total demand required in the entire time horizon 

as Eq (1). 

1

1

( )

( )

T

t

T

Demand

t

DPS t

DPSP

P t

=

=

=



  (1) 

Regarding Eq (1), T denotes the study period horizon. DPS 

stands for Deficiency of Power Supply, which indicates 

the inadequacy of sufficient energy supply in meeting 

demand at a particular time step. 

Using system variables, it is also feasible to calculate the 

system’s total capital cost (TCC), including initial costs, 

replacement costs, and maintenance costs over the 

project’s lifespan (Figure 9). TCC criterion has been opted 

for due to its comprehensive assessment of overall 

investment expenses, encompassing initial and ongoing 

costs. 

In this context, the PSO algorithm aims to find a system 

configuration that minimizes TCC criteria while ensuring 

that the DPSP remains below a specified threshold. In 

other words, the algorithm iteratively explores the search 

space of possible configurations of solar panels, wind 

turbines, and battery bank quantity to identify the optimal 

mix that meets economic constraints and reliability 

requirements (Figure 10). By adjusting the parameters 

and updating the positions of particles within the swarm, 

the PSO algorithm aims to converge toward a solution 

that balances minimizing costs and maximizing 

reliability, as indicated by the DPSP. 

In this condition, the input data includes air temperature, 

solar radiation, wind speed, and load demand, which 

could be deterministic or stochastic (Figure 11). As 

mentioned before, the system variables consist of the 

surface area of solar panels, the swept area by the blades 

of wind turbines, and the number of batteries in the 

battery bank. 

Many scenarios can be analyzed when the methodology 

is applied to the selected case study. As a result of this 

analysis, different optimal sizes are obtained depending 

on the target DPSP chosen. Table I shows the optimal 

sizes of components and the related costs considering two 

different DPSP levels. 

Table I. – Optimal results based on different DPSP values. 

Sce. 1 2 

DPSP (%) 0 0.1 

APV (m²) 17554 12912 

AWT (m²) 2927 2366 

NBattery (#) 46368 8528 

MG Cost (×10⁶ $) 17.434 6.964 

Grid Purchase (×10⁶ $) 0 0.754 

TTC (×10⁶ $) 17.434 7.718 

Table I presents that the storage volume has been 

dramatically downsized by increasing DPSP from 0% to 

10%. This reduction significantly decreases the system 

TCC, which is slightly dependent on the main grid. 

Compared to the first scenario, the second scenario 

shows a reduced renewable unit production and storage 

transaction volume while increasing network 

participation. The analysis of these scenarios can be used 

to obtain the optimal design. 

Table II summarizes the MG components energy values 

for both scenarios on a typical day using optimal sizes 

according to Table I. 

Table II. – Results in a typical day. 

Sce. 1 2 

PV (kWh) 5198.95 3824.14 

WT (kWh) 558.86 451.75 

Battery_Ch (kWh) 4697.64 3310.12 

Battery_Disch (kWh) 2093.82 1334.30 

Grid Supply (kWh) 0.00 853.93 

Energy Demand (kWh) 3154 

According to Table I, in the second scenario, compared 

to the first scenario, there is a reduction in the energy 

output of PVs and WTs, as indicated in Table II. 

However, with a significant decrease in the size of the 

storage unit, energy input and output to/from the battery 

have decreased, leading to increased reliance on the grid. 
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To better understand the scenarios,  the hourly energy 

balance on the typical day has been presented in Figure 13. 

Figure 13. The schematic of the supposed MG. (a) DPSP equals 

0%, (b) DPSP equals 10%. 

Utilizing the PSO to optimize MG configuration offers a 

promising avenue for cost-effective solutions with ensured 

reliability. By dynamically adjusting system variables, 

PSO aims to minimize TCC while keeping DPSP below a 

set threshold. This approach enables efficient energy 

resource management, supporting sustainable and resilient 

energy solutions in response to evolving demands. Further 

research and development in optimization techniques can 

significantly enhance energy management practices in 

MG, promoting a sustainable and resilient energy future. 

 

4. Conclusions 
The present paper has explored MG structures from 

various perspectives, mainly focusing on aspects of 

designing a MG. Following this examination, a 

comprehensive analysis of the differences between these 

structures was conducted, presenting the brief advantages 

and disadvantages of each. With an understanding of these 

structures, the most suitable framework for a case study 

was proposed. The targeted MG is situated in a specific 

location where, considering the geographical conditions, 

type, and magnitude of demand, the optimal arrangement 

of the MG, EMS, and optimization algorithm for elements 

sizing, along with technical and economic constraints and 

objectives, were investigated. While the extensive scope of 

the topics presented in the initial sections was not fully 

addressed in the MG study, future research endeavors 

will delve into extensive quantitative analyses of the 

targeted MG, further advancing our understanding in the 

field. Additionally, obtaining the global optimal design 

will be an exciting outcome in future works. 
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