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Abstract. Electric and magnetic fields produced by power 
transmision and distribution lines are receiving strong interest 
due to its biological effects and interference disturbances upon 
electronic and computer equipment. The presence of currents 
with harmonic contents, generated by variable speed drives and 
other power electronic devices worsen the problem. The 
accurate evaluation of the magnteic field in the vicinity of the 
line must take into account the non uniform distribution of 
currents inside the conductors, due to skin and proximity 
effects. The spatial distribution of induction lines down to the 
ground level must be plotted, to evaluate its effects in the body 
of a person situated below the line This paper proposes a two 
step procedure for solving the problem: first, the non uniform 
distribution of the currents in the conductors is calculated, 
applying Maxwell laws. Second, the distribution of the field is 
obtained, using a very fast and innovative approach, based on 
the application of the Bidimensional Fast Fourier Transform to 
solve a bidimensional convolution in the domain of the spatial 
frequency.  
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1. Introduction 
 
Electric and magnetic fields produced by power 
transmission and distribution lines systems are receiving 
strong interest due to its biological effects and 
interference disturbances [1]. 
 
The effects of  low fequency electromagnetics fields can 
be very strong:: interferences with other systems,  
thermal effects in biological tissues, etc.. That’s why it is 
of particular interest to analyze fields that have low 
frequency [2].  In this paper, the main goal is to 
accurately calculate the magnetic field due to a bifilar 
line, carrying currents with high harmonic contents, in 
the space occupied by a person situated directly below 
the line. 

This study is carried out in two steps: first, the 
distribution of the current within the conductors of a 
phase is computed by the calculation of the 
electromagnetic field in the interior and the vicinity of 
the conductors. In a second step, the magnetic field in the 
air between the line and the ground is obtained. 
 
Maxwell equations allow for the calculation of the 
magnetic field distribution both inside of the conductors 
and in the space surrounding them [3]. A general 
procedure to analyze the electromagnetic field under a 
quasi-stationary hypothesis in a multiconductor system 
has been proposed in [4]. Under the hypotesis of 
magnetic linerarity, a matrix of self and mutual 
impedances, including eddy current and proximity 
effects, is calculated and inserted into circuit equations. 
In [5],  the calculations of such inductances is carried out 
neglecting the effects of eddy currents, allowing for a fast 
calculation of the impedance matrix associated to the 
conductor system. 
 
Magnetic linearity is assumed, since we are dealing with 
aerial lines. This allows for the calculation of the field 
distribution, both inside and outside of the conductors, 
applying the superposition principle: the space is 
discretized, in 2D, and the magnetic effects of all of the 
”discrete” pieces of the conductors are added in every 
point of space. This method was first introduced by 
Silvester [5], and has been in widespread use in 
calculating current distribution and frequency-dependent 
impedance of conductors with irregular cross-sectional 
shapes [6].  One difficulty with this method, as pointed 
out by Wang [7], is the huge number of subconductors 
needed to accurately model the distribution of the field. 
When extending this approach to calculate the field in the 
air below a power transmission line, in the range of tens 
of meters, the problem becomes unmaneagable. 
 
In this paper, a new, original and extremely fast approach 
to obtain the distribution of the field, both in the air and 
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Fig. 1.  Path of 

integration of Maxwell’s 
equations 

in the interior of the conductors is followed. Field 
equations are discretized, and the effects of all the 
subconductors, in the form of a spatial 2D convolution,  
are accounted for in the spatial frequency domain. The 
use of the Bidimensional Fast Fourier Transform allow 
for a dramatic increase in the speed of the calculations. 
The magnetic potential is used for computation of the 
flux linkage of windings [8], as well as for calculation of 
the values of the field in the air. The total field in the 
space occupied by a person situated below the line is 
evaluated. 
 
In section 2, the discretisation of the line conductors is 
carried out, and the matrix of self and mutual inductances 
is calculated, as well as the frequency-dependent 
resistance of each phase. In section 3, the calculation of 
the magnetic field generated by the currents in the air 
down to the ground level is carried out by evaluating the 
convolution integrals in the spatial-frequency domain. 
The algorithms develped make intensive use of the 
Bidimensional Fast Fourier Transform of the spatial 
distribution of the field, wich allows for a dramatic 
reduction of the computation time and the memory 
requirements of the computer system. The frequency 
effects are considered with reference to a static converter 
(six-pulse rectifier), without neutral conductor, taking 
into account the 5th, 7th, and 11th harmonics. Section 4 
presents the main conclusions 
 
 
2. Calculation of eddy currents and 

proximity effects in the line conductors 
 
Maxwell equations fully characterize the behavior of the 
system. Due to the role of eddy currents and proximity 
effects, the following equations must be solved: 
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Considering an infinite straight line following the z-axis, 
end effects are neligible, and a 2D field analysis can be 
performed (that is, all the space cross-sections are 
equivalent). We introduce a magnetic vector potencial 
such as BAx
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and, after integration, we get 
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Substituing this value in (2) we get 
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and, as long as all the magnitudes have only z-compo-
nent, this becomes an scalar equation in the z axis. 
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Let’s integrate (5) along of one of 
the conductors of the line, between 
two points a and b separeted a 
distance l.  
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Assuming that J and A are constant within the line we get 
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If we consider a distance betweens points a and b of  
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Under sinusoidal conditions, we use time phasors 
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If the conductor has not neligible dimensions, neither the 
current density nor the potencial vector can be considered  
as uniforms. In this case,  we follow the method of 
dividing the cross-section of the conductor in N identical 
slim square subconductors, as shown in Fig. 2. In each of 
this subconductors, the current density and the potential 
vector can be assumed constant.  The sum of all the 
individual currents is the total current passing through the 
conductor 
 

 
Fig. 2. Division of the conductor in N subconductors 

 
The errors due to aproximating with squares an arbitrary 
geometry can be reduced to the desired level by refining 
the mesh. With this discretization, (7) becomes a system 
of N equations 
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And, if all the squares are of equal dimensions, x·x ∆∆  
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If only the k-th subconductor is supplied by a unitary 
current, the voltage drop in the j-th, jV∆ ,  becomes the 
corresponding per-unit length impedance.  
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This approach can be extended to the case of 
multiconductor systems, single or polyphased, by 
iteratively appliyng the same procedure: feeding an 
unitary current into one of the subconductors of the 
system and calculating the voltage drop in all the others 
subconductors. 
 
To calculate the impedance matrix one must calculate the 
magnetic field distribution in the points where the 
subconductors are located. Neglecting end effects, a 
circular conductor carring an unitary current creates a 
magnetic field whose lines of force are circles concentric 
to the conductor. Its value at a distance r of its center is 
obtained applying Maxwell equation JHx

rr
=∇ . 

Integrating it we get 
 
 

 
and, considering a current of 1A, r21H π=θ . 
 The magnetic vector potential A has only z component, 
and it is related to the induction components by the 
following equations, in cilindrical coordinates 
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     (a)                              (b) 

 

Fig. 3. Potential vector Az (a) and lines of induction (b) 
generated by a conductor placed in the origin feeded with 

a constant current of 1A 

If the sum of all the currents equals 0, the summed effect 
of constant C of all the subconductors vanish. So we can 
assign it a value of zero without affecting the system 
response. 

 

Mutual impedances between square subconductors 
 
The distance r in (10) is replaced in this case by the 
geometric mean distance (GMD). It is approximated by 
the distance between their geometric centers, with an 
error that Arizon and Dommel [9] have shown to be of 
0.655%.  for the worst case (adjacent squares). 
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Self impedance of a square subconductor 
 
The distance r in (10) is replaced in this case by the 
geometric mean radius (GMR). For a subconductor of 
side length x∆  it can be computed using the integral 
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Calculation of the per unit length impedance of the line 
 
The distribution of the currents in a bifilar line formed by 
two parallel conductors of section 120 mm2, separated by 
a distance twice their radio, has been calculated. With a 
voltage drop per unit length of 1e-3 V,  and currents of 
opposite sign in the conductors, the distribution of the 
currents is calculated for  50 and  250 Hz,  the 
fundamental and 5th harmonics. The cell size is x∆ = 
1mm, that is, 120 cells per conductor. Values of the per 
unit length impedance of the line are given. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Absolute value of currents in a conductor of 120 
mm2 for a frequency of 50 Hz with a cell of 1x1 mm. 

Z= (1.4041+1.0183i) 10-4 Ω  
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Fig. 5. Absolute value of currents in a conductor of 120 
mm2 for a frequency of  250 Hz with a cell size of 1x1 

mm 
Z=(1.6020 +5.0087i) 10-4 Ω 

 
 

By increasing the number of discretized points, we get 
more accuracy. With a cell size of 0.5 x 0.5 mm2 (480 
cells per conductor),  we get the following results 
 
 
  
 
 
 
 
 
 
 
 
Fig. 6. Absolute value of currents in a conductor of 120 

mm2 for a frequency of  250 Hz with a cell size of 
0.5x0.5 mm. 

Z=(1.4244 +1.0272i) 10-4 Ω 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7. Absolute value of currents in a conductor of 120 
mm2 for a frequency of  250 Hz with a cell size of 

0.5x0.5 mm      
  Z=(1.6218 +5.0541i) 10-4 Ω 

 
 
The evolution of the resistance (Ω) and inductance (H) 
per meter of the line as a function of the operating 
frequency, calculated up to the 11th  harmonic of the 
currents (550 Hz) is shown in Fig. 8. 

 
                               (a)             (b) 

Fig. 8. Per unit length (a) resistance (Ω ) and  (b) 
inductance (H) of the line for harmonic order up to 11th. 

Cell size of 0.5x0.5 mm 
 
3. Magnetic induction in the vicinity of the 

line 
 
To obtain the magnetic field in the air surrounding the 
line, we must calculate the magnetic potential vector in 
every point of the space. Its contour lines are the 
induction lines in the space surrounding the line. By 
superposition we get 
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This expression is a spatial convolution of two functions: 

• I(x,y), the spatial distribution of currents, 
• Az0(x,y), the potential vector generated by a 
single conductor situated on the origin of coordinates 
and feeded with a constant  current of 1 A.  

 
By discretization, this integral becomes  
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which gives the potential vector in every point of 
coordinates (m,n) of the space, generated by 
instantaneous currents in arbitrary points (i,j).  
 
This expression has a serious drawback. The number of 
operations needed to evaluate it is proportional to (Nx * 
Ny)2 . If the line is considered, for example, at a height of 
3m, and we want to obtain the potential vector in a square 
domain of 3m situated below it, we need, with a cell size 
of  0.5mm, Nx=Ny=6000, which gives a number of 
operations O(60004)=O(1.3*1015). We have solved the 
problem in an original manner, as far as we know, 
namely, we have resort to a technique that, although has 
been developed and thought for time domain signals 
(radio, radar, etc.), nevertheless it can be formally 
extended to signals in the space domain: the frequency 
analysis. Thus, by performing a Discrete Fourier 
Transform in two dimensions (DFT2), the convolution of 
(11) can be expressed in the domain of the spatial 
frequency as 
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where 0zz A,I,A ωωω  are, respectively, the DFTs of the 
discretized functions 0zz A,I,A . There is a decoupling in 
the domain of spatial frequency. In the spatial domain, 
the potential vector in a point depends on the effects of 
the currents located in every point (11). On the contrary, 
in the spatial frequency domain, the value of the potential 
vector’s harmonic of (u,v) order depends only on the 
value of the harmonics of the currents with the same 
order.  The number of operations needed to evaluate the 
convolution in the spatial frequency domain reduces to 
O(Nx*Ny). In our case,  O(60002=3.6*107), which 
represents a reduction of 8 orders of magnitude!.  
 
To calculate the DFTs of the spatial functions we use a 
very effective algorithm, the Fast Fourier Transform in 
two dimensions (FFT2). To recover the values of the 
functions in the spatial domain from the frequency one, 
we use the inverse DFT2 of the functions, which is 
calculate using the inverse FFT2 algorithm. Thus, the 
whole process has the following steps: 
 

 
(1) Transformation 
into spatial 
frequency domain. 

     
          (2) Convolution. 
 
 

(3) Transformation 
into spatial domain 
 

The magnetic potential generated in the vicinity of the 
line depicted in the previous paragraph, when feeded by a 
current of 300 A, is the following one 
 
 
 
 
 
 
 
 
 

(a) (b) 
Fig. 9. Magnetic vector potential generated by a line 

situated at a height of 3m and feeded with 300 A in a the 
space around (a) and its value zoomed in the position of a 

person situated directly below it (b) 
 
To calculate the induction in every point of the space, 
and from the definition of the magnetic potential vector, 
we have 
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As can be seen in Fig. 9, induction lines are practically 
vertical ones in the position of the person, so the value of 

the horizontal component of the induction, Bx , is 
negligible. Plotting Bx along the vertical line (CD) we 
get a value of zero for that component 
 
 
 
 
 
 
 
 
 
Fig. 9. Horizontal component of the induction  (T) along 

the vertical line  CD.  Bx≈0 
 
On the other hand, the plot of the vertical component of 
the induction, By, along the horizontal line AB, situated 
at a height of 1.70m above the ground, is given in fig. 10 
 
 
 
 
 
 
 
 
 

Fig. 10. Vertical component of the induction (T) along 
the horizontal  line AB, situated at the height of the head 
 
As can be seen, the strongest influence in the case of a 
person situated below the line is produced at the height of 
his head (average of 1.7m), and in the vertical line of 
symmetry. For the line carrying a current of 300A, this 
value is of 1µT ( the magnetic field of the earth has a 
value between 30 and 70µT). 
 
4. Conclusion 
 
In this paper, the magnetic induction generated by a 
bifilar power transmission line has been calculated in the 
spatial points that can affect a person situated below of it. 
For that end, an innovative two step method has been 
employed, by using the magnetic vector potential as a 
fundamental magnitude for solving Maxwell equations 
both inside and outside the conductors: first, the 
distribution of the currents in the conductors of the line 
has been calculated taking into account skin and 
proximity effects; second, the magnetic field in the space 
of interest (5 x 5m) has been computed with a great 
resolution ( 0.5 mm)  in the domain of the spatial-
frequency, making use of very fast and memory saving 
algorithms based upon the properties of the Discrete 
Fourier Transform. 
 
The results show that the main component of the 
induction that affects the body of a person is the vertical 
one, and its strongest value is located at the head of the 
person. This value has been computed for the case of a 
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line with parallel massive conductors of  120 mm2, 
separated a distance equal to twice their radio, and 
located at a height of 3m above ground. When carrying a 
current of 300A, the maximum value of the induction has 
be found to be of 1µT. 
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