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Abstract— Over the last twenty years, Brazil has experienced 

significant changes in its electric energy matrix, notably with the 

expansion of wind and solar energy sources. In the early 2000s, 

hydroelectric plants with a capacity of 70 gigawatts (GW) were 

responsible for generating 90% of the country's electricity, while solar 

and wind sources contributed merely 1%. Today, the scenario has 

evolved, with wind and solar energy comprising approximately 25% 

of the national generation, indicating a departure from the previous 

hydro-dominated matrix. This research aims to apply specific types of 

neural networks to multivariate data to forecast Brazil's wind power 

generation capacity, providing insight into the potential for future 

energy strategies. This research contributes as a as a decision support 

tool contemplating relevant information for analysts, researchers, and 

participants in the renewable energy market. The monetary volume 

destined to import key components of the wind, considering specific 

time lags, was utilized to forecast the Installed capacity of the wind 

farms in Brazil. The Toda-Yamamoto Causality Tests revealed 

unidirectional Granger causality in the sense of the Import variable for 

the Brazilian Installed Capacity variable for wind energy production. 

Another result obtained was the finding that the variable that matters 

most in the multivariate configuration of the Neural Network is the 

variation in Installed Capacity in megawatts, followed by the import 

volume of wind energy components, which exhibited critical lags at 3 

and 6 months. 

Keywords— Renewable Energy; Wind-Solar Growth; Neural 

Network Forecasting. 

1. Introduction
Brazil experienced a significant energy crisis referred to as 

"the Blackout of 2001," which was the most significant energy 
crisis at the time of its occurrence. The warning signs began with 
an increase in energy imports in 2000, and the mentioned 
blackout lasted almost a year, significantly impacting Brazilian 

society [1]. The crisis led to drastic changes in energy generation 
and supply, resulting in a nationwide power shortage. The 
scenario had environmental, economic, and structural causes. 
The 2001 blackout is often attributed to insufficient of rainfall 
and inadequate investment in energy production and 
distribution. Before the crisis, experts had already warned of an 
impending energy crisis and the risk of an energy shortfall 
greater than 5%, noting the significant discrepancy between 
supply and demand. Analysts maintained that problems were 
imminent, citing a lack of investment in new power plants and 
energy transmission lines and pointing to delays in ongoing 
energy projects. The situation became critical due to climate-
related changes, notably the significant reduction in rainfall [2]. 
In July 2001, the Brazilian government formed a commission, 
led by Jerson Kelman — the then-president of the National 
Water Agency (ANA) and subsequent general director of the 
National Electric Energy Agency (ANEEL) — to investigate the 
causes of the energy rationing. The commission's report 
implicated several entities, including the Ministry of Mines and 
Energy, ANEEL, and the National System Operator (ONS).  In 
response to the energy crisis of 2001, the Emergency Wind 
Energy Program (Proeólica) was created to encourage wind 
energy generation.  This was done through Provisional Measure 
2.198-3 of June 2001. As a result of this measure, the 
Government Council created the Electric Energy Crisis 
Management Chamber, which established standards for 
programs to address the energy crisis and implemented further 
measures [3].  

Since the 2001 water crisis, Brazil has faced ongoing threats 
of energy rationing, exacerbated by climate change's impact on 
hydrology, which powered 65.2% of its electricity in 2020. The 
Brazilian Geological Service – CPRM noted a severe water 
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crisis 2021, with significant declines in hydrographic basin 
flows across the South, Southeast, and Midwest. This, coupled 
with the La Niña phenomenon affecting rain distribution, 
especially in energy-critical regions, led to an energy crisis akin 
to 2001. Factors such as climate change, global warming, 
deforestation, and reliance on a hydroelectric-dominant energy 
matrix without alternative plans contribute to these crises. As of 
October 2022, Brazil's largest hydroelectric plants include Belo 
Monte in Pará with 11,233,100.00 kW, Tucuruí, also in Pará, 
with 8,535,000.00 kW, and the binational Itaipu plant in Paraná 
with 7,000,000 kW on the Brazilian side, highlighting the 
country's vulnerability to hydrological variability and climate 
impacts. 

Brazil has shown a change in its electric energy matrix over 
the last twenty years, with the expansion of wind and solar 
energy sources. hydroelectric plants, with a capacity of 70 
gigawatts (GW), accounted for 90% of the nation's electricity 
generation, with solar and wind contributing a mere 1%. 
Currently, wind energies add up to 26 GW of power, 
corresponding to 13% of the country's electricity. Solar energy 
totals 30 GW of capacity, with 21 GW in Distributed Generation 
(GD) solar, approximately 12% of national generation [4]. 
Moreover, global investment in clean energy generation 
technologies is expected to reach $1.7 trillion by 2023, 
surpassing fossil fuels (gas, oil, and coal) by just over $1 trillion 
for the eighth consecutive year. Suppose the pace of annual 
investments is maintained. In that case, the total by 2030 will 
exceed the level needed to meet the commitments of the Paris 
Agreement and prevent the average global temperature increase 
to below 1.5 degrees Celsius. The World Energy Investment 
2023 report, released in May by the International Energy 
Agency (IEA), disclosed these data. This research aimed to 
apply neural networks with multivariate data to predict the 
capacity of Brazilian wind energy generation, thereby 
contributing as a decision-support tool and providing relevant 
information for analysts, researchers, and participants in the 
renewable energy market. 

2. Wind Farm in Brazil 

Wind energy has served various mechanical energy needs, 
such as pumping water and milling grain, for many years. The 
initial efforts to generate electricity from wind date back to the 
late 19th century. However, it was only after the international oil 
crisis of the 1970s that increased interest and investment spurred 
the development and commercialization of wind power 
technology (Brazilian Institute of Information in Science and 
Technology, 2022).  

Wind energy usage began in Europe, now holding a large 
share of the world's installed capacity [3]. This region has been 
a focal point for technological development initiatives, 
particularly in Germany and Spain, which are home to major 
wind turbine manufacturers. China, the United States, and India 
have also ramped up their wind installations in recent years, 
achieving 75.6 GW, 60.0 GW, and 18.4 GW, respectively [5]. 
Despite Brazil's modest presence in the global wind market, the 
country has made significant strides in its installed capacity over 
the past decade. Programs such as the Emergency Wind Energy 
Program (Proeólica), the Alternative Energy Sources Incentive 
Program (Proinfa), and energy auctions have been instrumental 
in enhancing the contribution of wind energy to Brazil's 
electricity matrix. 

Diversification of energy sources and the rise of solar and 
wind energy have led to significant changes in Brazil's electric 
energy matrix over the past two decades. In the early 2000s, 

hydroelectric plants' electricity, with their 70 gigawatts (GW) of 
capacity, generated 90% of the country's, while solar and wind 
contributed a mere 1%. Today, wind energy contributes 26 GW, 
representing 13% of the country's electricity. Solar power adds 
up to 30 GW of capacity, with 21 GW in Distributed Generation 
(GD) solar, comprising approximately 12% of national 
generation [4]. Wind and solar energy growth in the Brazilian 
matrix largely stems from decreased technology costs. The 
International Renewable Energy Agency [6] emphasizes that the 
cost of adopting solar and wind energy has dropped by 80% over 
the past decade. These sources are highly competitive in Brazil 
due to strong sunlight and winds. The trade winds, for instance, 
boost wind energy competitiveness in the Northeast to over 
50%, which is more than twice the global average. From 2010 
to 2021, renewable energies have seen a seismic shift in 
competitiveness. The international average levelized cost of 
electricity (LCOE) for newly commissioned utility-scale solar 
photovoltaic projects plummeted by 88% between 2010 and 
2021, while onshore wind dropped by 68%, CSP by 68%, and 
offshore wind by 60%. The IRENA cost analysis program, 
initiated in 2012, consistently reports cost and performance data 
for renewable energy technologies based on a database with 
information on around 21,000 renewable energy projects 
globally. 

The shift in Brazil's energy matrix began in 1992 when the 
Brazilian Wind Energy Center (CBEE) and the Pernambuco 
Energy Company (Celpe) partnered with a Danish institute to 
install a wind turbine in Fernando de Nogueira [3]. That year 
also saw the start of pilot projects in Taíba in São Gonçalo do 
Amarante and Mucuripe in Ceará, with anemometer 
installations. The Annual Wind Energy Generation Bulletin 
released by ABEEólica  in 2020 reported 686 wind parks and an 
installed wind energy capacity of 17.75 GW, marking a 14.89% 
increase from December 2019's 15.45 GW capacity. The 
industry constructed 66 new wind parks in 2020, adding 2.30 
GW in new capacity. The pandemic posed significant challenges 
to the industry, including the absence of auctions due to 
decreased demand and the halting of regulated market sales in 
2020. By the end of 2021, wind energy boasted 795 plants and 
an installed capacity of 21.57 GW, reflecting a 21.53% growth 
in power from December 2020's 17.75 GW. That year witnessed 
the establishment of 110 new wind parks and the revocation of 
one, adding up to 3.83 GW of new capacity, a record for Brazil's 
wind installations. Brazil ranked third globally for new wind 
energy installations, based on data from the Global Wind Energy 
Council (GWEC) shared by ABEEólica  in the 2021 report. 

Over the past 11 years, Brazil has experienced exponential 
growth in wind energy generation. In 2021, data from the 
Statistical Review of World Energy revealed a 27% increase in 
generation from 2020 and a 3.22% increase since 2010. Brazil 
was the fourth-largest wind energy producer in terawatt-hours 
for that year, only behind China, the United States, and 
Germany. 

3. Toda and Yamamoto Causality Test 

To address some deficiencies found in other causality tests, 
such as the stationarity assumption, Toda and Yamamoto 
developed an alternative test in 1995 [7]. The Toda and 
Yamamoto procedure involves a modified Wald test (mwald) on 
the parameters of a vector autoregression (VAR) model. The test 
operates directly on the least squares estimators of an augmented 
VAR in levels. The authors assert that in integrated systems, the 
Wald test for linear constraints on the parameters of a VAR(z) 
follows a chi-squared (χ2) asymptotic distribution. It does not 
depend on the stationarity of the system when one estimates a 
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VAR of (𝑧 + 𝑒𝑚𝑎𝑥), where (e_{max}) is the maximum order of 
integration of the series. One performs the Wald test for the non-
causality hypothesis of Granger on the first z coefficients, 
disregarding the last (𝑒𝑚𝑎𝑥)  coefficients. These extra lags are 
indispensable to ensure the test statistic follows an 
asymptotically chi-squared (χ2) distribution. 

Thus, the non-causality test of Granger, modified and 
suggested by Toda and Yamamoto, consists of three main steps. 
(i) Step one is to determine the optimal number of lags (z) and 
the maximum integration order of the system (𝑒𝑚𝑎𝑥). One can 
select the optimal number of lags using Schwarz's Information 
Criterion (SIC) or Akaike's Information Criterion (AIC), among 
others. As for the maximum integration order, one can determine 
it in two ways: (a) to avoid potential biases from pre-tests, 
simply set (𝑒𝑚𝑎𝑥 = 1), assuming that macroeconomic variables 
are generally I(1); (b) or examine the univariate properties of the 
time series using the augmented Dickey-Fuller (ADF) test 
and/or the Phillips-Perron (PP) test. (ii) The second step involves 
estimating a VAR in levels with a total of (𝑧 + 𝑒𝑚𝑎𝑥) lags. The 
third and final step is to apply the Wald test on the first z 
coefficients to test the non-causality hypothesis of Granger. The 
hypotheses to be tested are: 

The hypotheses to be tested are as follows: 

 

{
𝐻0: 𝑋 does not cause 𝑌

𝐻1: 𝑋 cause 𝑌        
                                    (1) 

Given this, researchers will apply the Toda-Yamamoto 

causality test to ascertain the presence of causality. 

 

     It's important to highlight that the Toda-Yamamoto test 

considers the probability of committing two types of errors: 

Type I error (α): Rejecting the null hypothesis (H₀) when it's 

true (concluding there's causality when there isn't). 

Type II error (β): Failing to reject the null hypothesis (H₀) when 

it's false (concluding there's no causality when it exists). 

The goal is to minimize the probability of both errors. The 

significance level (α) is pre-defined r and is typically set at 5% 

(0.05). The lower the α, the less likely you are to commit a type 

I error, but the more likely you are to commit a type II error. 

The Toda-Yamamoto test aims to provide robust results even 

without the need for stationary series, aiding in the decision 

about the existence of causality between variables. 

 

4. Neural Networks in wind energy series 

modeling 

 
Research concerning neural networks has progressed 

significantly in the 21st century. Human decision-making 
capabilities are programmed into networks to make decisions 
and predict outcomes through training, rendering them more 
assertive and efficient. The information processing paradigms 
known as neural networks are premised on the biological neural 
systems of humans. [8] Introduce a forecasting methodology for 
energy from weather data refined with artificial neural networks. 
The authors conclude that the average forecast values for wind 
speed and power have a good approximation with actual values, 
demonstrating the suitability of the neural network method for 
wind forecasting. However, considerable work remains to be 
done to reduce uncertainties and enhance the reliability of wind 
generation in Brazil.  

Bibliometrics was used to identify the volume of 
publications on wind energy and neural networks. According to 

[9], describe the bibliometric method consists of an 
interdisciplinary scientific approach to quantifying the academic 
output of individuals and institutions regarding a specific topic. 
Qualitative insights are then drawn from its graphical and 
statistical results. The sample of this study was extracted from 
the Scopus indexing base, enabling the compilation of studies 
associated with influential journals that provide, in turn, 
essential results for this research field [10]. Publications were 
obtained using the keywords ["wind energy" AND "neural 
networks"] so that they must appear in the title, abstract, or 
keywords of the articles. 

Based on the specified criteria, 1,760 documents were found 
published from 1994 to June 2023. Among the publications are 
980 articles, 641 conference papers, and 35 book chapters. In 
2012, 68 research papers were published, while in 2021, there 
were 204 works on the topic; in 2022, there were 307, and as of 
June 2023, 137 studies have been documented. This trend 
demonstrates the exponential growth of research on wind energy 
and neural networks. 

In terms of geographic distribution, China leads in 
publishing, contributing 22.8% of the compiled documents, 
followed by India (18.5%) and the United States (7.5%). The 
participation of other countries in the literature adds up to 
51.2%, indicating a concentration of publications in the first 
three countries mentioned. The authors who published the most 
works related to the topic were: Wang, Jianzhou, with 16 
documents and cited by over 8,300 articles. The second most 
relevant author was Zhang Yagang, who has 15 documents and 
has been cited in more than 1,300 research papers. In third place 
is the researcher Petkovič, Dalibor, with 13 articles covering the 
topic and more than 4,230 citations. Regarding the most cited 
articles, the first place went to the paper titled: A Microgrid 
Energy Management System Based on the Rolling Horizon 
Strategy. Published in 2013 by the authors Palma-Behnke, R., 
Benavides, C., Lanas, F., Severino, B., Reyes, L., Llanos, J., & 
Sáez (cited by 604 other research papers). The second most 
noted work was on comparing three artificial neural networks 
for wind speed forecasting, published by [11] Li, G., & Shi, J. in 
2010 (cited by 594 other research papers). In third place is the 
article named: Optimal Energy Storage Sizing and Control for 
Wind Power Applications, published in 2011 by researchers 23 
Brekken, T. K., Yokochi, A., Von Jouanne, A., Yen, Z. Z., 
Hapke, H. M., & Halamay (cited by 440 other research papers). 

[12] Introduced a novel energy management system (EMS) 
based on a rolling horizon (RH) strategy for a renewable 
microgrid. The EMS delivers online setpoints for each 
generation unit and signals to consumers based on a demand-
side management (DSM) mechanism. The proposed SGA - 
Environmental Management System was deployed for a 
microgrid composed of photovoltaic panels, two wind turbines, 
a diesel generator, and an energy storage system. The authors 
devised a coherent forecasting information scheme and an 
economic comparison framework between RH and the standard 
unit commitment (UC). The solar and wind energy forecasts 
were based on phenomenological models enriched with current 
data. Addionatlly, they suggested a neural network for 
predicting electrical consumption two days ahead. The system 
described by the authors underwent validation using real 
datasets from an existing microgrid in Chile (ESUSCON). 

[13] presented sizing and control methodologies for a zinc-
bromine flow battery-based energy storage system. The results 
show that the power flow control strategy markedly influences 
the proper sizing of the system's nominal power and energy. In 
particular, artificial neural network control strategies resulted in 
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significantly lower-cost energy storage systems than simplified 
controllers. The findings by the authors demonstrated that 
through more effective control and coordination of energy 
storage systems, the predictability of wind plant outputs can be 
improved, and the associated integration cost due to reserve 
requirements can be diminished. 

5. Architecture and Topology of The Artificial 

Neural Network used to Predict Installed 

Capacity in Megawatts (Mw) 

 
The term "neural network topology" refers to the way 

neurons are arranged within the network and its structure. The 
type of learning algorithm used is directly related to the 
network's topology. In the present paper, recurrent networks 
were selected, where feedback occurs when the output of a 
neuron is applied as input to the same neuron or other neurons 
in previous layers, establishing a cycle within the graph. In this 
configuration, the outputs are fed back as input signals to other 
neurons, thus being employed for the processing of time-variant 
systems. The architecture in question is commonly used in time 
series forecasting, optimization, system identification, and 
process control. 

The capability of a neural network to learn from its 
environment and enhance its performance through learning is its 
main feature. This learning is the process by which the internal 
representation of the system improves in response to an external 
stimulus, making it capable of achieving a specific goal [14]. 
The learning was carried out through Error Correction. This is 
used in supervised training, and in it, the synaptic weights are 
adjusted through the error, which is obtained by the discrepancy 
between the network's output value and the expected value in a 
training cycle. 

In the present article, Multilayer Perceptron Networks were 
addopted. According to [15], the Multilayer Perceptron is the 
most widely used model in neural network applications using the 
backpropagation training algorithm. A Multilayer Perceptron is 
a variant of the original Perceptron model proposed by 
Rosenblatt in the 1950s. The network has one or more hidden 
layers between its input and output layers; the neurons are 
organized in layers, connections are always directed from the 
lower to the upper layers, and neurons in the same layer are not 
interconnected [15]. 

The number of hidden layers in a Multilayer Perceptron and 
the number of nodes in each layer can vary for a given problem. 
In general, according to [16]), more nodes offer greater 
sensitivity to the problem being solved, but also the risk of 
overfitting. According to the author, offen, a single hidden layer 
network with 2𝑛 + 1 neurons, where n is the number of inputs, 
may be recommended, but this is based on empirical evidence 
more than anything else. [16] noted that as the number of 
neurons within the hidden layer increases, the error coverage of 
the result approaches zero. Even at the stage where 40 neurons 
are used, the network will be able to produce optimal results. 
According to [16], there are many 'rule of thumb' methods for 
determining the correct number of neurons to use in the hidden 
layers, such as: (i) The number of hidden neurons should be 
between the size of the input layer and the size of the output 
layer. (ii) The number of hidden neurons should be 2/3 the size 
of the input layer, plus the size of the output layer, and (iii) The 
quantity of hidden neurons ought to be fewer than double the 
dimension of the input layer. For the authors, these three rules 
offer an initial framework to be taken into account. Ultimately, 

the selection of the architecture for the neural network will come 
down to trial and error. 

According to [17], Multilayer Perceptron Networks are 
defined by: (i) Their configuration or architecture - the number 
of layers, the number of neurons per layer, etc., are determined. 
(ii) Activation methods - the transfer functions used in various 
neurons are specified. (iii) The specification of the gradient 
descent learning method using the generalized delta rule, 
conjugate gradient, or another method is provided. (iv) Event 
specification - it is determined whether the weight update is 
performed 'online' (i.e., after each training pattern) or 'offline' (at 
the end of each epoch, after all training patterns have been 
presented). 

The algorithm applied followed the subsequent steps: Stage 
1: Network initialization was carried out with weights being 
initialized randomly. Stage 2: Feedforward was conducted, 
where information was transmitted from the input layer through 
the hidden layer(s) and subsequently to the output layer via the 
sigmoid activation function. Stage 3: Error evaluation was 
performed to determine if (i) the error was sufficiently small to 
satisfy the requirements or (ii) the number of iterations had 
reached a pre-determined limit. Step 4: Backpropagation was 
used where the error in the output layer was utilized to modify 
the weights. The algorithm backpropagated the error through the 
network and calculated the gradient of the change in error 
relative to the changes in the weights’ values. Stage 5: 
Adjustments were made where the weights were adjusted using 
the change gradients to reduce the error. The weights and biases 
of each neuron were adjusted by a factor based on the derivative 
of the activation function. 

In the current study, several variants of neural networks were 

tested, incorporating changes in Installed Capacity in megawatts 

(MW) from the previous period and variations in the monetary 

volume allocated for importing key components of wind farms 

at different lags (1, 2, 3, 4, 5, 6, 7, and 8 lags). Both single-layer 

and two-layer networks were tested, with hidden layer neuron 

counts varying as follows: 1.2, 3, 4, 5, 6, 7, and 8. Activation 

functions such as logistic and Tanh were implemented. The 

evaluation of models included calculating the Sum of Squared 

Errors (SSE) using the following equation: 

 

𝑆𝑆𝐸 = ∑(𝑌𝑖 − 𝑌�̂�)
2

𝑛

𝑖=1

(2) 

 

where 𝑌𝑖 represents the actual observed value and Yî represents 

the predicted value by the neural network model.  

The algorithm utilized for training the neural networks was 

rprop+ (Resilient Backpropagation with Weight Backtracking). 

rprop+ is a variant of the backpropagation algorithm that adapts 

the learning rate individually for each weight based on the sign 

of the gradient and the previous update direction. This allows for 

faster convergence and improved training efficiency. 

Learning rates in the rprop+ algorithm were constrained to the 

range of 0.6 to 1.2. The Neuralnet and NeuralNetTools packages 

were used for this study. It's important to note that the dataset, 

comprising 140 data points per series, was divided into training 

(128 data points) and network validation (12 data points) sets. 

 

   Additional neural network variants were also tested, involving 

only changes in Installed Capacity in megawatts (MW) from the 

previous period as input for predicting fluctuations in Installed 

Capacity in megawatts (MW) at time t. Again, networks with 
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one and two hidden layers were tested, varying the neuron 

counts in the hidden layer as follows: 1.2, 3, 4, 5, 6, 7, and 8. 

 

 After completing tests with multivariate and univariate data, 

two formulations were compared: multivariate and univariate. 

The following equations were used: 

 

𝑛𝑒𝑡1𝑡 = 𝑤0 + 𝑤1(𝐶𝑎𝑝𝑡−1) + 𝑤2(𝐼𝑚𝑝𝑡−1) + 𝑤3(𝐼𝑚𝑝𝑡−3)
+ 𝑤4(𝐼𝑚𝑝𝑡−6) 

 

 
𝑛𝑒𝑡2𝑡 = 𝑤0 + 𝑤1(𝐶𝑎𝑝𝑡−1)2 (3) 

 

In 𝑛𝑒𝑡1𝑡 , the additional variable is the variation in the monetary 

volume allocated for importing key components of wind farms 

(Wind turbines, Wind blades, and Wind towers) at lags one, 

three, and six. Equation 𝑛𝑒𝑡2𝑡 only considers the series of 

Installed Capacity variation in megawatts (MW) at time t with a 

lag of one. 

 

When forecasting historical values using artificial neural 

networks (ANNs), actual values can be compared with estimated 

values to determine the level of forecast error generated by the 

model. Various metrics were used; in this study, MAD (Mean 

Absolute Deviation), MAPE (Mean Absolute Percentage Error), 

and RMSE (Root Mean Square Error) were employed. 

 

6. Results 

 

In this section, analyses and results of the current study are 

detailed. The evaluation commenced to forecast the installed 

capacity of wind farms in Brazil, through the import of key 

components necessary for their implementation as the 

explanatory variable, such as: Turbine, Towers, and Wind 

blades, data on imports (US$) and installed capacity (MW) 

were collected monthly from January 2010 to December 2022. 

 

The import records were collected from the Contrade data 

system, and the 6-digit S.H. (Harmonized System) codes 

applied were 850231, 730820, 841290, and 850232. The codes 

include: (i) Wind turbines: Wind turbines with power exceeding 

750 KW and wind turbines with power not exceeding 750 KW. 

(ii) Wind towers: Wind towers and their sections, of iron or 

steel, and (iii) Wind blades: Parts of wind turbines, including 

wind blades. Figure 1 presents the monthly values and the 

cumulative values for the period analyzed.  

 

 
Fig. 1. Imports of components for wind energy production from 2010 to 2022, 

monthly data 

Source: Own elaboration based on the analyzed data. 

 

A notable rise in funds allocated to components for the 

expansion and modernization of Brazilian wind farms is 

observed. Intervals of substantial investment were recorded, 

particularly in the last two quarters of 2021 (US$ 300,405,877) 

and in the final two quarters of 2011 (US$ 202,581,391). From 

2015 to 2020, imports were less elevated with a monthly 

average of US$ 8,408,140. It is pertinent to note that the capital 

goods referred to here have a minimum lifespan of 20 years 

(turbines and towers), while wind blades are expected to last 30 

years. 

To analyze the main traits of the observed series, it is essential 

to underscore the descriptive statistics. The use of these 

statistical measures is crucial for facilitating the examination of 

diverse datasets; they serve to condense an extensive array of 

values from the same source, allowing for a general overview 

of the variable of interest. In Table 1, the key metrics of the 

import and installed capacity series can be assessed. It is noted 

that the maximum invested in imports was an approximate 

value of 166,033,993.00 dollars, occurring in August 2011, 

while the nadir was in February 2010, with approximately 

2,561,870.00 dollars invested. Another important point is that 

over the span of 12 full years, the average value committed to 

the importation of essential parts for the implementation of 

wind farms was 23,540,177.00 dollars. Regarding skewness, it 

can be said that the positive sign indicates that the distribution 

is right-skewed, and as 2.19 is greater than the reference range 

[-1, 1], it is seen that the data presents a high degree of 

skewness. Addionally, the Import series (US$) exhibits kurtosis 

of 9.21, surpassing the normative value of 3, which indicates 

that the curve is leptokurtic, i.e., it is less flat than the normal 

curve. Therefore, the distribution's peak is more pronounced, 

meaning that the data are more concentrated.  

 

As for the measures of the centrality of the Installed Capacity 

series (MW), it is noted that the average monthly installed 

capacity is approximately 9,182 (MW). Regarding the 

skewness, the value of 0.30 is positive and is within the 

reference range [-1, 1], resulting in a positive skewness, and the 

data are more symmetrical. The kurtosis presented a value of 

1.81, below the reference value of 3, indicating the existence of 

a platykurtic curve; this behavior points to the existence of light 

or thin tails with low peaks. 

TABLE I. METRICS OF THE OBSERVED SERIES 

Source: Own elaboration based on the analyzed data 

The Installed Capacity data were collected from ANEEL - 

National Electric Energy Agency. The data are monthly, 
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spanning from 2010 to 2022. The analyzed sample is grouped 

in megawatts (MW), totaling 156 observations. Figure 2 

illustrates that the installed capacity shows a growth trend, 

reaching approximately 23,624 MW in 2022. It is observed that 

until 2014, the growth was exhibiting a steady behavior, and 

from this period onwards, the curve becomes steep, with very 

few periods of decline. 

 

Fig. 2. Installed Capacity in Megawatts (MW) - Brazil from 2010 to 2022, 

monthly data. 

Source: Own elaboration based on the analyzed data.   

To verify the causality between the variables addressed in this 

study, the Granger causality test proposed by Toda and 

Yamamoto (1995) was applied. Vector autoregression (VAR) 

models were estimated with the variables of installed Capacity 

in MW and Importation of the most important components for 

the implementation of wind farms, both in logarithmic scale 

(ln). The Toda and Yamamoto test was applied considering an 

(𝛼 = 0.05). In Table 2, it is possible to observe the result of the 

test; it is noted that with the p-value result of (0.85986), there is 

no evidence to reject (𝐻0), that is, the hypothesis of non-

existence of causality from Installed Capacity to Importation 

was not rejected. However, the test applied considering that 

Importation does not cause Capacity rejected the null 

hypothesis ((𝐻0)) at a p-value of (0.00096). Thus, the tests 

showed unidirectional Granger causality from the Importation 

variable to the Capacity variable. Therefore, it can be concluded 

that the Importation of the main components for the 

implementation of wind farms causes the installed Capacity in 

MW. 

TABLE 2 – TODA-YAMAMOTO CAUSALITY TEST 

TESTS 

CHI-SQUARED 

STATISTIC 𝝌𝟐
 P-VALUE 

Installed Capacity does not 

Granger-cause Importation 
2.576 0.85986 

Importation does not 

Granger-cause Installed 

Capacity 

22.548* 0.00096 

Source: Own elaboration based on the analyzed data.  Note: The asterisk (*) 

indicates that (𝐻0) – no causality, was rejected at the 5% significance level. 

Figure 3 presents the configuration of the selected neural 

network with the best performance. As can be seen, the inputs 

(input) CapaIns1, Imp_acu1, Imp_acu3, and Imp_acu6 

represent the variations of the selected series with lags 

(Installed Capacity in megawatts (MW) Brazil and Imports of 

components for wind energy production). The variable CapaIns 

(output) is the Installed Capacity in megawatts (MW) in Brazil 

predicted by the ANN (Artificial Neural Network). 

 

Fig. 3. Artificial Neural Network – Configuration (𝑛𝑒𝑡1𝑡) (Equation 1) 
Source: own elaboration 

Figure 4 shows a bar graph with the relative importance of input 

variables in neural networks using Garson's algorithm. Garson's 

algorithm was originally described by [18] and later modified 

by [19]. The function employed, Garson is an implementation 

of the method described in [20], which identifies the relative 

importance of each variable as an absolute magnitude. For each 

input node, all weights connecting an input through the hidden 

layer to the response variable are identified to return a list of all 

the specific weights of each input variable. The aggregated 

products of the connections for each input node are then 

proportionally adjusted relative to all other inputs. A value for 

each input node indicates the relative importance as an absolute 

magnitude from zero to one. The method described in [24] (also 

referenced in [19]) ascertains the relative importance of 

explanatory variables for a single response variable in a 

supervised neural network by deconstructing the model's 

weights. The relative importance (or the strength of the 

association) of a specific explanatory variable to the response 

variable can be gauged by identifying all the weighted 

connections between the nodes of interest. All the weights 

connecting the specific input node passing through the hidden 

layer to the response variable are identified. 

As illustrated in Figure 4 the most important variable in the 

𝑛𝑒𝑡1𝑡 configuration is the variation of Installed Capacity in 

megawatts, followed by the changes of Imports of components 

for wind energy production with a lag of 3, 1, and 6 months. 

 

Fig. 4. Relative Importance of Input Variables in Neural Networks Using 
Garson's Algorithm 
Source: own elaboration 
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Figure 5 displays a sensitivity analysis of the model's responses 

in a neural network for input variables using the Lek profile 

method. The Lek profile method [20] can be extended to any 

statistical R model with a prediction method. However, it is one 

of the few methods used to assess sensitivity in neural networks. 

The profile method can appraise the influence of explanatory 

variables by producing a plot of the predicted response across 

the spectrum of values for each variable. Initially, the profile 

method examined the impact of each variable while fixing the 

other explanatory variables at various quantiles. All 

explanatory variables are maintained at their average values, 

while the variable of interest is sequenced from its minimum to 

maximum value across the entire range of observations. This 

matrix (or data frame) is then used to predict the values of the 

response variable. 

In Figure 5, the legend labeled 'Groups' indicates the colors 

corresponding to each group. The groups describe the values at 

which the unassessed explanatory variables were held constant. 

Each facet of the graph shows the bivariate relationship 

between a response variable and an explanatory variable. The 

multiple lines per graph indicate the change in relationship 

when the other explanatory variables are held constant. 

 

Fig. 5. Sensitivity Analysis Using Lek Profile Method, where in the analysis 

of each predictor variable the others were kept at their minimum values, 1st 

quartile, median, 3rd quartile, and maximums (Groups from 1 to 6, 
respectively). 
Source: own elaboration 

 

The Lek profile method elucidates the behavior of the model's 

output over the range of a specific input variable while all others 

are held fixed. The lekprofile function, used in this research, 

evaluates the impacts of input variables by generating a graph 

of model predictions across the range of values for each 

variable. In Figure 5, the number of lines equals the number of 

observations in the original dataset, and the number of columns 

equals the number of explanatory variables. Every explanatory 

variable is held steady (at the median), while the focal variable 

is sequenced from its minimum to its maximum. This matrix is 

subsequently applied to predict the values of the response 

variable. This procedure is replicated for each explanatory 

variable to obtain all the response curves. 

The objective is to examine the system's response around its 

nominal point. The groups from 1 to 6 represent the minimum, 

20th, 40th, 60th, 80th percentiles, and maximum, respectively. 

When the variables were fixed at the minimum value (group 1), 

the accumulated import variable over three months exerted the 

most influence (greater amplitude on the graph) on the installed 

capacity of wind farms. The monthly import variable exhibits 

the same pattern of influence across all groups except for group 

1 (minimum). In groups 2 to 6, the accumulated import 

variables over three and six months significantly influence the 

installed capacity of wind farms. This fact can be observed by 

the steeper slope of the curves in the graphs (Figure 5). 

As shown in Figure 6, the model with the multivariate 

formulation yields a more accurate approximation to the actual 

values. Table 3 lists the error values for each configuration, for 

both the training and validation parts of the neural network. The 

neural network containing the variation of Installed Capacity in 

megawatts (MW) in the previous period and the monetary 

volume variation allocated to importing main wind farm 

components at different lags (1, 3, and 6) registered lower error 

measures. Thus, it proved more efficient than the network that 

contained only the series of variations of Installed Capacity in 

megawatts (MW). 

 

 

Fig. 6. Out-of-sample forecast of the variation of Installed Capacity in 

megawatts (MW) in Brazil using the two RNA arrangements compared in this 

research (see equation 1 and 2). 
Source: own elaboration 

TABLE 3 – ERROR MEASURES CALCULATED FOR EACH NETWORK 

CONFIGURATION. 

TWORK 

CONFIGURATIONS 

TRAINING 

ERROR 

MEASURES 

VALIDATION 

ERROR 

MEASURES 

  MAD RMSE 

Univariate (1 lag) 2.1% 0.40% 

Multivariate (with variation 

of the US$ volume imported 
of selected products with 

lags 1,3 and 6) 

1.9% 0.37% 

Source: own elaboration 

 

7. conclusion 
 

In the last 20 years, Brazil diversified its energy matrix, 

increasing wind and solar energy contributions. Initially, 

hydroelectric plants generated 90% of electricity with 70 GW 
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capacity, while sun and wind were nearly negligible at 1%. 

Now, wind energy contributes 26 GW (13%) and solar energy 

30 GW, with 21 GW from distributed generation, totaling 12% 

of the country's electricity. Brazil is now the third-largest wind 

power developer globally, with a 21.53% growth in wind 

capacity from 2020 to 2021, reaching 21.57 GW from 795 

plants and adding 3.83 GW with 110 new wind farms. 

This study was conducted to scrutinize Brazil's energy matrix 

and the change in Installed Capacity in megawatts (MW) from 

2010 to 2022, and its interplay with the importation of principal 

wind energy production components. Understanding the 

interrelation between the variables above may facilitate 

forecasting wind energy supply based on import data of the 

main components of wind farms and the extent of core wind 

farm elements and the duration of the pre-operational phase 

(through investment in the import of wind farm components). 

The first step entailed establishing causality among the study’s 

variables, for which the Granger causality tests proposed by 

Toda and Yamamoto (1995) were applied. Vector 

autoregressive models (VAR) were estimated with the variables 

of installed capacity in MW and Import of the most important 

components for the implementation of wind farms, both on a 

logarithmic scale (ln). The findings indicated that there is no 

evidence to reject 𝐻0; that is, the hypothesis of no causality 

from Installed Capacity to Import was not rejected. Conversely, 

according to the applied test considering that Import does not 

cause Capacity, the null hypothesis (𝐻0) was rejected with a p-

value of (0.00096). Thus, the tests showed unidirectional 

Granger causality from the Import variable to the Capacity 

variable, suggesting that the import of key wind farm 

components is a determinant for installed capacity in MW. 

Subsequently, several Neural Network configurations were 

applied to forecast the Installed Capacity in megawatts (MW) 

of Brazilian wind energy, one univariate and several 

multivariate. As stated above, the multivariate model 

formulation provides a closer approximation to real values. The 

neural network containing the variation of installed capacity in 

megawatts (MW) in the previous period and the variation of the 

monetary volume allocated to the import of the main 

components of wind farms at different lags (1, 3, and 6 lags) 

showed lower error measures. Therefore, it proved more 

efficient than the network that contained only the series of 

variations of the Installed Capacity in megawatts (MW). 

Additional outcome of this research was applying the method 

described in [26], which assessed the relative importance of 

explanatory variables for a single outcome variable within a 

neural network by deconstructing the model’s weights. The 

relative importance (or strength of association) of a specific 

explanatory variable for the response variable can be 

determined by identifying all the weighted connections between 

the nodes of interest. Each weight linking the specific input 

node through the hidden layer to the outcome variable is 

documented. Based on the analysis, the most critical variable in 

configuration (equation 2) is the variation of Installed Capacity 

in megawatts, followed by the variations of Imports of 

components for wind energy production with a lag of 3, 1, and 

6 months.  

Using the Lek profile method, it was observed that the monthly 

import variable exerts the same pattern of influence in all 

groups except for group 1. Within groups 2 to 6, the 

accumulated import variables of three months and six months 

markedly affect the installed capacity of wind farms. 
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