
22nd International Conference on Renewable Energies and Power Quality

(ICREPQ’24) Bilbao (Spain), 26th to 28th June 2024

Renewable Energy and Power Quality Journal (RE&PQJ)
 ISSN 2172-038 X, Volume No.22, September 2024

Useability Evaluation of Reinforcement Learning Toolboxes for

Electrical Drives

N. Szécsényi1 and P. Stumpf1

1 Department of Automation and Applied Informatics, Budapest University of Technology and Economics
Műegyetem rkp. 3., H-1111 Budapest, Hungary

Abstract. The current direction of development predicts that

Reinforcement Learning based data driven control methods can

become a next generation technology to control electrical drives

instead of the classical model-based techniques. The paper aims to

evaluate toolboxes that can be used to train agents for control

approaches. The paper helps lay the theoretical bases and provides

guidelines for using these toolboxes via a case study. This is done

to highlight each toolbox’s key aspects and workflow patterns,

shifting the comparison to useability and peak-performance.

Key words. Artificial Intelligence, Reinforcement

Learning, Electrical Machines & Drives, Permanent Magnet

Synchronous Machine, Power Electronics

1. Interest of the work

The last years have witnessed an enormous interest in the

use of artificial intelligence (AI) techniques in different

engineering fields. AI has the capability to facilitate systems

with intelligence that is capable of human-like learning and

reasoning. Among the different categories of AI, machine

learning is used primarily in the research of energy

management in renewable-based power distribution

applications, power electronic systems and control or

monitoring of electrical drives [1], [2]. Reinforcement

Learning (RL), which is an area of machine learning, can be

considered as a viable solution to many decision and control

problems across different time scales. For this reason,

current manuscript also focuses on this technique.

Multiphase electric machines – either asynchronous or

synchronous - are widely used in renewable energy

applications such as wind power generation, tidal energy

utilization or electric vehicles. A proper control approach is

essential for high performance electric drives, as it directly

affects performance of the overall system. Field Oriented

Control (FOC), Direct Torque Control (DTC) and Model

Predictive Control (MPC) are the most used standard

methods to control electrical machines. However, recently

increasing attention has been given to data-driven

approaches, that do not require an explicit plant model, like

these classic control schemes [3]. In the case of RL based

model-free approaches the control policy is continuously

improved through learning to obtain optimal performance.

The main drawback of this method is that the training phase

can be time-consuming and the agent settings and parameter

selection are not straightforward and require an in-depth

knowledge. Furthermore, the training phase should be

repeated for each drive system.

Closed- as well as open-source toolboxes are available for

ease of training of an RL agent for electric motor control.

The main goal of the manuscript is to present and evaluate

these RL toolboxes by presenting their features via a case

study. Furthermore, it also aims to provide some

guidelines that may be used in solving similar problems.

As a case study, the feasibility of RL toolboxes is

demonstrated on the FOC of a Permanent Magnet

Synchronous Machine (PMSM), where the inner linear

current controllers are replaced by an RL agent.

2. Basics of Reinforcement Learning

When it comes to machine learning, three different

settings can be achieved based on the input and output

provided to the neural network. The basic setting is when

the model has access to inputs paired with the correct

output values, called supervised learning, used mainly for

classification tasks. When the desired outputs are not fully

available or cannot be acquired, the process is called semi-

supervised or unsupervised learning, frequently used in

clusterization and dimension reduction. The third option,

called RL, is when the model does not learn based on a

correct output but rather tries to maximize a long-term

reward function by choosing the suitable set of actions to

take. This approach is used for tasks where the most

optimal solution is not known in advance or very hard to

compute so the model can learn it by defining a reward

function based on the requirements. For possible

applications first video games, self-driving and other

action-based environments come to mind, but this method

can also be used efficiently in the domain of power

electronics, more precisely motor control. This is already

backed up by research where it has been showcased that

the RL based methods can achieve the same level of

performance as the traditional approaches [3], [4].

Although the focus of this paper is not on the architecture

of the RL models, it is still important to introduce the basic

layout of these methods so that the role of each part can be

cleared in advance. To visualize the basic components,

Fig. 1. is provided where the example outlines of a RL

model is shown.

This model can be broken down into two main

components: the environment and the agent. The

environment encapsulates the system that we want to

control, in our case, the electric drive itself. It also includes

any disturbances or factors, like noise or load. The agent

89

gets observations from this environment and based on them

determines its state. Using the available information, the

agent decides on the next action which will be applied to the

environment to change its state in the desired manner. After

this input, a suitable reward is calculated according to the

next state, which the agent tries to maximize by altering its

actions in a way which will, after many iterations, reliably

keep the environment in a desired state.

Fig. 1. General Layout of a Reinforcement Learning Setup

3. Available Reinforcement Learning

Toolboxes for Electric Drives

As more and more advances are being made in the field of

RL based control of electrical drives, the need for an adapt

development environment is getting increasingly larger.

There are several tools and software already available for

this task, but they offer different perks and functions so in

this paper a thorough comparison is made between them to

establish guidelines when it comes to choosing the

development environment to work with. The most used

toolboxes can be split into two groups based on the software

environment they use: MATLAB or Python (see Fig. 2).

The first is a commercial choice while the second one

mostly has open-source toolboxes.

In the case of power electronics and motor control,

MATLAB offers the Simulink modelling software with

several products, one of which is the Motor Control

Blockset. This, combined with the Reinforcement Learning

Toolbox, makes a complete environment for Artificial

Intelligence based motor control solutions. The support for

deployment on target hardware (microcontrollers, FPGAs

or others) is also a great asset of this environment.

As for the Python based environment, the basis of a RL

model is the Gymnasium package, which defines a general

interface regarding the specific model environment. Using

this, a setup for any task can be modelled quite intuitively,

but in the case of electric motors, this can be combined with

the so-called GEM package. This is developed specifically

for the modelling of electric drives and already has several

frequently used predefined setups. Moreover, many of the

most used Artificial Intelligence packages (Tensorflow,

PyTorch) are also available with additional workflow

support modules like RLlib and Stable Baselines.

Altogether, these components provide a great deal of

flexibility due to their modular structure and open-source

code, making it possible to build an environment for every

task.

Fig. 2. Reinforcement Learning toolboxes

4. Reinforcement Learning based FOC of a

PMSM drive

As it was mentioned previously, the feasibility of RL

toolboxes is demonstrated on the FOC of a surface

mounted PMSM, where the inner linear current controllers

are replaced by an RL agent. This scheme can be

considered as a basic workflow for evaluating the

performance of RL agents in electric drive systems [6],

[7]. Figure 3 presents the simplified schematic of the

overall drive system, where the d axis reference current

𝑖d
∗ is forced to zero and a speed constraint is assumed,

where the actual mechanical angular speed Ω is

determined by the loading machine.

Fig. 3. Simplified schematic of the drive system

Following through the process of training and evaluating

the performance of the RL based FOC separately in the

two software environments will highlight the key features,

making the comparison more balanced. To make it even

more unbiased, the same general neural network

architecture and the same type of RL algorithm is used in

both settings.

A. Environment modelling

Typically, PMSMs are modelled in the dq rotating

coordinate system, where the vector of the pole flux is

aligned with the d axis. Both the MATLAB/Simulink

environment and the GEM toolbox provide, among several

other DC and AC machine types, a built-in PMSM model.

In the basic GEM package, only a linear model is available

currently, where the motor parameters are constant. The

toolboxes of MATLAB/Simulink can offer different

PMSM models, which give a more realistic machine

model. In both cases, it may be necessary to implement a

90

custom PMSM model, to model nonlinearities, like

parameter dependencies, cross saturation, spatial harmonics

and iron loss. In this case, Simulink provides a much more

intuitive and simpler environment than the Phyton-based

approach.

The PMSM is fed from a Voltage Source Inverter (VSI),

which is also part of the environment. The RL agent can

directly provide the switching signals or the required d and

q axis voltages 𝑣d and 𝑣q, which can be formed by some

PWM method. MATLAB/Simulink offers much more

possibilities to model a VSI, than GEM, as many inverter

topologies can be tested and the nonlinearities of the

inverter can be modeled also quite easily. The basic GEM

toolbox currently provides an ideal two-level VSI model for

driving the PMSM.

In summary, the main difference in the modeling of the

drive system between the two environments is the level of

likeness to a real-life setting: the MATLAB model can

provide a very detailed machine and inverter model, while

the Python based GEM environment models them with only

a few parameters. This becomes a key aspect when the

trained RL agent is transferred to a real-life motor control

system, as there it can experience several effects it has not

seen during training, making its performance unstable, so it

is advised to introduce them at an early stage in the

development.

For the fair comparison, in the paper, the training and the

testing phase of the RL agent are performed for an ideal

PMSM model assuming constant parameters and the

machine is supplied from an ideal VSI.

B. Reinforcement Learning Agent

Typically, Deep Q-network (DQN), Deep Deterministic

Policy Gradient (DDPG) and Twin Delayed DDPG (TD3)

algorithms are used for RL agents in electric drives and

power electronics. Both MATLAB and Phyton libraries

support these techniques. In the paper the TD3 algorithm

was selected which, as its name suggests, addresses some

issues of the classic DDPG method [5]. One of the main

aspects of this choice is that it can deal with continuous

action spaces, so the output of the agent will be the direct

voltages instead of the switching values, as those also have

to be optimized which the agent is not primarily encouraged

to learn. Another feature is that it trains two separate neural

networks during learning: the actor and the critic network.

The first one determines the necessary action to take with

respect to the observations it receives as input, while the

critic network is responsible for producing a predicted

reward value for this specific action which updates the

policy of the RL agent to reach higher long-term rewards.

One of the most important factors in the success of the RL

agent is the definition of the reward function, as it

determines the output the agent receives during training and

this is the metric which it tries to maximize in the long run.

During this experiment, we have elected to use a formula

based on the Mean Root Error (MRE) metric, which is

frequently used in RL based motor control [6], [7], as this

returns a relatively higher reward even for differences very

close to zero:

𝑟k,i = ∑ √
|𝑖p,k

∗ − 𝑖p,k|

𝑖limit
𝑝∈{𝑑,𝑞}

where 𝑖p,k
∗ , 𝑖p,k are the reference and motor current at

timestep 𝑘 respectively and 𝑖𝑙𝑖𝑚𝑖𝑡 is the current limit of the

motor to ensure a safe working condition. Moreover, since

every quantity is normalized between -1 and 1, the reward

function stays consistent and does not vanish at later stages

of training.

The proper generation of reference input signals (like 𝑖q
∗ or

Ω in our case) is very important for diverse training. It is

advised to choose a signal shape that covers a large range

of the input space while still not too difficult to learn for

the agent and does not violate the previously set limit

values. From reference generation point of view, Phyton

based GEM can provide much wider possibilities than

MATLAB. Not only classic sinusoidal, triangular and step

functions can be chosen, but also the Wiener process can

be used. Furthermore, these signals can have train-by-train

randomly selected time period, amplitude and offset

making the RL agent more robust.

5. Results

The TD3 agents were trained and tested for a PMSM drive

system in both environments. The parameters of the drive

system can be seen in Table I. while the general structure

of the neural networks is outlined in Table II.

Table I. – Parameters of the PMSM motor used for training

Parameter Name Parameter

Value

Number of pole pairs (𝐩) 𝟕

Stator Resistance (𝐑𝐬) 𝟐𝟗𝟑𝐦𝛀

Q- and D-axis Inductance

(𝐋𝐝 and 𝐋𝐪)

𝟕𝟕. 𝟕𝟐𝟒𝛍𝐇

Magnetic Flux of the Permanent

Magnet (𝛙𝐩)

𝟒. 𝟔𝐦𝐕𝐬

Nominal speed in RPM 𝟑𝟒𝟕𝟔𝐑𝐏𝐌

Nominal Current (𝐈) 𝟕. 𝟐𝟔𝐀

Nominal Voltage (𝐕) 𝟏𝟑. 𝟖𝟔𝐕

Sample time (𝝉) 𝟏𝟎𝟎𝛍𝐬

Table II. – General outline of the neural networks used for the

RL agent

Network Layer and Activation function

Actor

Dense with 32 neurons, ReLU

Dense with 32 neurons, ReLU

Dense with 2 neurons, Tanh

Critic

Dense with 32 neurons, ReLU

Dense with 32 neurons, ReLU

Dense with 16 neurons, ReLU

Dense with 2 neurons, Tanh

91

A. Results with the Phyton based GEM toolbox

A conclusion from the training of the RL agent in the Phyton

based GEM environment was that the number of episodes

has a drastic effect on the performance. As can be seen on

Fig. 4., the agent has rapidly improved after a certain total

episode number. This behavior can be caused by the limit

violations that GEM introduces, which can shut down an

episode very early, making the performance of the agent

highly fluctuating at the beginning of training. It can also be

explained by the algorithm’s exploration strategy, as it tends

to try out a wider range of actions at the start of learning and

then it narrows down its choices as it tries to converge to an

optimal solution. However, it still seldomly experiments in

later stages as well, to be able to move out from a given local

minima, resulting in large drops in the reward value.

Fig. 4. Python Mean Reward trend over episode number during

training

The performance of the Python agent can be seen on Fig. 5.

for a load speed that varies in time which makes the agent

able to experience a wider range of scenarios and increases

its generalization power. The figure presents the time

function of the normalized mechanical speed Ω and electric

torque τ, as well as the d and q axis current signal with their

respective reference signal in Ampere. The control actions,

like the 𝑣d and 𝑣q voltage signals, as well as the time

function of one of the phase currents are also given in the

figure. An important point to mention here is that based on

the figure, we can see that the agent does not violate the

voltage limits but rather stays in the zone of safe operating

conditions which is highly important in a real-life setting.

Fig. 5. Trajectories of the Python RL Agent controlled PMSM

motor with a varying RPM

B. Results with MATLAB/Simulink

As for the MATLAB environment, the obtained results

can be seen on Fig. 6. and 7., where the motor is under the

same time varying load function and the goal is to follow

the reference current just like in the Python experiment.

Based on the reward trend, it can be seen that the

MATLAB agent converged in much less episodes and

achieved a stable reward curve, which can be explained by

the different constraint implementation of the

environment: the episode is not terminated right away

when a limit is broken but rather it gives some time to the

agent to correct itself, thus resulting in longer episodes and

more stable performance right at the start of training.

However, the main conclusion here is also the same: the

RL agent managed to learn how to control the motor so

that it follows the reference current closely while also

staying within the safe operating limits. This behavior can

be spotted when the load function is at its peak and the

current does not follow the higher reference value but

rather stays well within the border of the safe operating

conditions. The metric values for the two experiments can

be seen in Table III., where it is quite evident that the

Python based agent greatly outshined the MATLAB

environment. This is possible since the GEM environment

generates a random reference function for each episode,

making the performance of the RL agent more robust to

external factors like the time varying load function.

Fig. 6. MATLAB Reward trend over episode number during

training

Fig. 7. Trajectories of the MATLAB RL Agent controlled

PMSM motor with an outer speed control

92

Table III. – Performance metrics of the RL Agents for 10,000

steps

Metric Python MATLAB

Mean Square Root Error 11% 17%

Mean Absolute Error 0.87% 2.00%

Mean Squared Error 0.014% 0.119%

6. Comparison of the Software Environments

7.

After introducing how the RL agent-controlled motor

system was set up, the core part of this paper is addressed:

the qualitative comparison of the two software

environments. The summary of the comparison can be seen

on Fig. 8. where the main takeaways from this experiment

are collected.

The main advantage of the Python based environment is that

it is open-source and it provides a wide range of software

packages in Artificial Intelligence, more precisely, Deep

and Reinforcement Learning. Using these resources, we can

access most of the cutting-edge research done in this field

and use it effectively in our experimentation. These

packages also help in speeding up both the construction of

the neural network architecture and the training of the agent

itself, as they offer a clear workflow and parallelize a lot of

operations, greatly exploiting the capabilities of a GPU. As

for the modelling of the control system, our choices are a bit

more limited, as often if we want to model a specific system

with real-life nonlinearities, we have to code it ourselves to

achieve the desired outcome. Since no graphical interface is

available, we also need to visualize the system layout just

by looking at the lines of code, which makes the

construction of complex systems more demanding and the

debugging process more time-consuming.

In the case of the MATLAB environment, the priorities are

switched. The modelling is done using Simulink where

there are a lot of available “building blocks” from which we

can construct and parametrize a control system as the

specifications require it. Here the simulation is closer to

reality as the non-ideal nature of every equipment can be

modelled and used during the calculation, making the

transition from software to hardware much more seamless.

The user-friendly graphical interface is also a huge benefit,

as it makes the construction of the system quite intuitive and

helps understand its functioning, making the process of

identifying and correcting issues much faster. Constructing

the neural networks, however, is a bit more limited as we

have only access to a predefined set of tools which are only

updated periodically with the MATLAB versions. If we

would like to use some recent research, we would have to

implement it ourselves which can be quite demanding as the

original coding itself is usually done in Python. The price of

MATLAB also has to be mentioned, as it is not openly

available to everyone, but this also means that the toolboxes

come with a detailed documentation, support background

and in-depth examples to ease the development and

implementation of ideas.

Conclusions

Based on the acquired results it is evident that the Python

based environment, due to its open-source nature, has all the

cutting-edge RL technology available to use, lifting its

performance. In comparison, the MATLAB based

environment provides a well-structured software with a

user-friendly visual interface and many predefined model

blocks from which a given setup can be built relatively

easily. To sum up, in earlier stages of development, the

Python environment serves well for trying out different

algorithms, agent settings and parameter optimization. In

comparison, the MATLAB based environment proves

better in later stages, where the applicability and

deployment are more emphasized. This conclusion

suggests the workflow of training the RL agent in the

Python environment on a less detailed model and then

transferring it to the MATLAB environment where it is

further fine-tuned on a more realistic model, which

process can be the basis for further research.

Fig. 8. Summary of the comparison between the two

environments

Acknowledgements

This work was supported by the National Research,

Development, and Innovation Office under Grant FK

143429.

References

[4] A. Traue, G. Book, W. Kirchgässner, and O. Wallscheid,

 "Toward a reinforcement learning environment toolbox for

intelligent electric motor control," IEEE Transactions on

Neural Networks and Learning Systems, vol. 33, no. 3, pp. 919-

928, 2022, doi: 10.1109/TNNLS.2020.30295.
[5] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing

function approximation error in actor-critic methods," in

International Conference on Machine Learning, Jul. 2018, pp.

1587-1596.
[6] G. Book et al., "Transferring online reinforcement learning

for electric motor control from simulation to real-w

[1] S. Zhao, F. Blaabjerg, and H. Wang, "An overview of

 artificial intelligence applications for power electronics,"

IEEE Transactions on Power Electronics, vol. 36, no. 4, pp.

4633-4658, 2021, doi: 10.1109/TPEL.2020.3024914.
[2] S. Zhang, O. Wallscheid, and M. Porrmann, "Machine

 learning for the control and monitoring of electric machine

drives: Advances and trends," IEEE Open Journal of

Industry Applications, vol. 4, pp. 188-214, 2023, doi:

10.1109/OJIA.2023.3284717.
[3] D. Jakobeit, M. Schenke, and O. Wallscheid, "Meta

-reinforcement-learning-based current control of permanent

magnet synchronous motor drives for a wide range of power

classes," IEEE Transactions on Power Electronics, vol. 38, no.

 7, pp. 8062-8074, 2023, doi: 10.1109/

TPEL.2023.3256424.

orld

93

94

experiments," IEEE Open Journal of Power Electronics, vol. 2,

pp. 187-201, 2021, doi: 10.1109/OJPEL.2021.3065877.
[7] D. Weber, M. Schenke, and O. Wallscheid, "Steady-state error

compensation for reinforcement learning-based control of

power electronic systems," IEEE Access, vol. 11, pp. 76524-

76536, 2023, doi: 10.1109/ACCESS.2023.3297274.

