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Abstract. The current direction of development predicts that

Reinforcement Learning based data driven control methods can 

become a next generation technology to control electrical drives 

instead of the classical model-based techniques. The paper aims to 

evaluate toolboxes that can be used to train agents for control 

approaches. The paper helps lay the theoretical bases and provides 

guidelines for using these toolboxes via a case study. This is done 

to highlight each toolbox’s key aspects and workflow patterns, 

shifting the comparison to useability and peak-performance. 
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1. Interest of the work

The last years have witnessed an enormous interest in the 

use of artificial intelligence (AI) techniques in different 

engineering fields. AI has the capability to facilitate systems 

with intelligence that is capable of human-like learning and 

reasoning. Among the different categories of AI, machine 

learning is used primarily in the research of energy 

management in renewable-based power distribution 

applications, power electronic systems and control or 

monitoring of electrical drives [1], [2]. Reinforcement 

Learning (RL), which is an area of machine learning, can be 

considered as a viable solution to many decision and control 

problems across different time scales. For this reason, 

current manuscript also focuses on this technique.  

Multiphase electric machines – either asynchronous or 

synchronous - are widely used in renewable energy 

applications such as wind power generation, tidal energy 

utilization or electric vehicles. A proper control approach is 

essential for high performance electric drives, as it directly 

affects performance of the overall system. Field Oriented 

Control (FOC), Direct Torque Control (DTC) and Model 

Predictive Control (MPC) are the most used standard 

methods to control electrical machines. However, recently 

increasing attention has been given to data-driven 

approaches, that do not require an explicit plant model, like 

these classic control schemes [3]. In the case of RL based 

model-free approaches the control policy is continuously 

improved through learning to obtain optimal performance. 

The main drawback of this method is that the training phase 

can be time-consuming and the agent settings and parameter 

selection are not straightforward and require an in-depth 

knowledge. Furthermore, the training phase should be 

repeated for each drive system. 

Closed- as well as open-source toolboxes are available for 

ease of training of an RL agent for electric motor control. 

The main goal of the manuscript is to present and evaluate 

these RL toolboxes by presenting their features via a case 

study. Furthermore, it also aims to provide some 

guidelines that may be used in solving similar problems. 

As a case study, the feasibility of RL toolboxes is 

demonstrated on the FOC of a Permanent Magnet 

Synchronous Machine (PMSM), where the inner linear 

current controllers are replaced by an RL agent. 

2. Basics of Reinforcement Learning

When it comes to machine learning, three different 

settings can be achieved based on the input and output 

provided to the neural network. The basic setting is when 

the model has access to inputs paired with the correct 

output values, called supervised learning, used mainly for 

classification tasks. When the desired outputs are not fully 

available or cannot be acquired, the process is called semi-

supervised or unsupervised learning, frequently used in 

clusterization and dimension reduction. The third option, 

called RL, is when the model does not learn based on a 

correct output but rather tries to maximize a long-term 

reward function by choosing the suitable set of actions to 

take. This approach is used for tasks where the most 

optimal solution is not known in advance or very hard to 

compute so the model can learn it by defining a reward 

function based on the requirements. For possible 

applications first video games, self-driving and other 

action-based environments come to mind, but this method 

can also be used efficiently in the domain of power 

electronics, more precisely motor control. This is already 

backed up by research where it has been showcased that 

the RL based methods can achieve the same level of 

performance as the traditional approaches [3], [4]. 

Although the focus of this paper is not on the architecture 

of the RL models, it is still important to introduce the basic 

layout of these methods so that the role of each part can be 

cleared in advance. To visualize the basic components, 

Fig. 1. is provided where the example outlines of a RL 

model is shown. 

This model can be broken down into two main 

components: the environment and the agent. The 

environment encapsulates the system that we want to 

control, in our case, the electric drive itself. It also includes 

any disturbances or factors, like noise or load. The agent 
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gets observations from this environment and based on them 

determines its state. Using the available information, the 

agent decides on the next action which will be applied to the 

environment to change its state in the desired manner. After 

this input, a suitable reward is calculated according to the 

next state, which the agent tries to maximize by altering its 

actions in a way which will, after many iterations, reliably 

keep the environment in a desired state. 

 
Fig. 1.  General Layout of a Reinforcement Learning Setup 

 

3. Available Reinforcement Learning 

Toolboxes for Electric Drives 
 

As more and more advances are being made in the field of 

RL based control of electrical drives, the need for an adapt 

development environment is getting increasingly larger. 

There are several tools and software already available for 

this task, but they offer different perks and functions so in 

this paper a thorough comparison is made between them to 

establish guidelines when it comes to choosing the 

development environment to work with. The most used 

toolboxes can be split into two groups based on the software 

environment they use: MATLAB or Python (see Fig. 2). 

The first is a commercial choice while the second one 

mostly has open-source toolboxes. 

In the case of power electronics and motor control, 

MATLAB offers the Simulink modelling software with 

several products, one of which is the Motor Control 

Blockset. This, combined with the Reinforcement Learning 

Toolbox, makes a complete environment for Artificial 

Intelligence based motor control solutions. The support for 

deployment on target hardware (microcontrollers, FPGAs 

or others) is also a great asset of this environment. 

As for the Python based environment, the basis of a RL 

model is the Gymnasium package, which defines a general 

interface regarding the specific model environment. Using 

this, a setup for any task can be modelled quite intuitively, 

but in the case of electric motors, this can be combined with 

the so-called GEM package. This is developed specifically 

for the modelling of electric drives and already has several 

frequently used predefined setups. Moreover, many of the 

most used Artificial Intelligence packages (Tensorflow, 

PyTorch) are also available with additional workflow 

support modules like RLlib and Stable Baselines. 

Altogether, these components provide a great deal of 

flexibility due to their modular structure and open-source 

code, making it possible to build an environment for every 

task. 

 
Fig. 2.  Reinforcement Learning toolboxes 

 

4. Reinforcement Learning based FOC of a 

PMSM drive  
 

As it was mentioned previously, the feasibility of RL 

toolboxes is demonstrated on the FOC of a surface 

mounted PMSM, where the inner linear current controllers 

are replaced by an RL agent. This scheme can be 

considered as a basic workflow for evaluating the 

performance of RL agents in electric drive systems [6], 

[7]. Figure 3 presents the simplified schematic of the 

overall drive system, where the d axis reference current 

𝑖d
∗  is forced to zero and a speed constraint is assumed, 

where the actual mechanical angular speed Ω is 

determined by the loading machine.  

 
Fig. 3.  Simplified schematic of the drive system 

 

Following through the process of training and evaluating 

the performance of the RL based FOC separately in the 

two software environments will highlight the key features, 

making the comparison more balanced. To make it even 

more unbiased, the same general neural network 

architecture and the same type of RL algorithm is used in 

both settings. 

 

A. Environment modelling 

 

Typically, PMSMs are modelled in the dq rotating 

coordinate system, where the vector of the pole flux is 

aligned with the d axis. Both the MATLAB/Simulink 

environment and the GEM toolbox provide, among several 

other DC and AC machine types, a built-in PMSM model. 

In the basic GEM package, only a linear model is available 

currently, where the motor parameters are constant. The 

toolboxes of MATLAB/Simulink can offer different 

PMSM models, which give a more realistic machine 

model. In both cases, it may be necessary to implement a 
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custom PMSM model, to model nonlinearities, like 

parameter dependencies, cross saturation, spatial harmonics 

and iron loss. In this case, Simulink provides a much more 

intuitive and simpler environment than the Phyton-based 

approach.  

The PMSM is fed from a Voltage Source Inverter (VSI), 

which is also part of the environment. The RL agent can 

directly provide the switching signals or the required d and 

q axis voltages 𝑣d and 𝑣q, which can be formed by some 

PWM method. MATLAB/Simulink offers much more 

possibilities to model a VSI, than GEM, as many inverter 

topologies can be tested and the nonlinearities of the 

inverter can be modeled also quite easily. The basic GEM 

toolbox currently provides an ideal two-level VSI model for 

driving the PMSM. 

In summary, the main difference in the modeling of the 

drive system between the two environments is the level of 

likeness to a real-life setting: the MATLAB model can 

provide a very detailed machine and inverter model, while 

the Python based GEM environment models them with only 

a few parameters. This becomes a key aspect when the 

trained RL agent is transferred to a real-life motor control 

system, as there it can experience several effects it has not 

seen during training, making its performance unstable, so it 

is advised to introduce them at an early stage in the 

development. 

For the fair comparison, in the paper, the training and the 

testing phase of the RL agent are performed for an ideal 

PMSM model assuming constant parameters and the 

machine is supplied from an ideal VSI.  

 

B. Reinforcement Learning Agent 

 

Typically, Deep Q-network (DQN), Deep Deterministic 

Policy Gradient (DDPG) and Twin Delayed DDPG (TD3) 

algorithms are used for RL agents in electric drives and 

power electronics. Both MATLAB and Phyton libraries 

support these techniques. In the paper the TD3 algorithm 

was selected which, as its name suggests, addresses some 

issues of the classic DDPG method [5]. One of the main 

aspects of this choice is that it can deal with continuous 

action spaces, so the output of the agent will be the direct 

voltages instead of the switching values, as those also have 

to be optimized which the agent is not primarily encouraged 

to learn. Another feature is that it trains two separate neural 

networks during learning: the actor and the critic network. 

The first one determines the necessary action to take with 

respect to the observations it receives as input, while the 

critic network is responsible for producing a predicted 

reward value for this specific action which updates the 

policy of the RL agent to reach higher long-term rewards. 

One of the most important factors in the success of the RL 

agent is the definition of the reward function, as it 

determines the output the agent receives during training and 

this is the metric which it tries to maximize in the long run. 

During this experiment, we have elected to use a formula 

based on the Mean Root Error (MRE) metric, which is 

frequently used in RL based motor control [6], [7], as this 

returns a relatively higher reward even for differences very 

close to zero: 

𝑟k,i = ∑ √
|𝑖p,k

∗ − 𝑖p,k|

𝑖limit
𝑝∈{𝑑,𝑞}

 

where 𝑖p,k
∗ , 𝑖p,k are the reference and motor current at 

timestep 𝑘 respectively and 𝑖𝑙𝑖𝑚𝑖𝑡  is the current limit of the 

motor to ensure a safe working condition. Moreover, since 

every quantity is normalized between -1 and 1, the reward 

function stays consistent and does not vanish at later stages 

of training.  

The proper generation of reference input signals (like 𝑖q
∗  or 

Ω in our case) is very important for diverse training. It is 

advised to choose a signal shape that covers a large range 

of the input space while still not too difficult to learn for 

the agent and does not violate the previously set limit 

values. From reference generation point of view, Phyton 

based GEM can provide much wider possibilities than 

MATLAB. Not only classic sinusoidal, triangular and step 

functions can be chosen, but also the Wiener process can 

be used. Furthermore, these signals can have train-by-train 

randomly selected time period, amplitude and offset 

making the RL agent more robust. 

 

5.  Results  
 

The TD3 agents were trained and tested for a PMSM drive 

system in both environments. The parameters of the drive 

system can be seen in Table I. while the general structure 

of the neural networks is outlined in Table II. 

 
Table I. – Parameters of the PMSM motor used for training 

 

Parameter Name Parameter 

Value 

Number of pole pairs (𝐩) 𝟕 

Stator Resistance (𝐑𝐬) 𝟐𝟗𝟑𝐦𝛀 

Q- and D-axis Inductance 

(𝐋𝐝 and 𝐋𝐪) 

𝟕𝟕. 𝟕𝟐𝟒𝛍𝐇 

Magnetic Flux of the Permanent 

Magnet (𝛙𝐩) 

𝟒. 𝟔𝐦𝐕𝐬 

Nominal speed in RPM 𝟑𝟒𝟕𝟔𝐑𝐏𝐌 

Nominal Current (𝐈) 𝟕. 𝟐𝟔𝐀 

Nominal Voltage (𝐕) 𝟏𝟑. 𝟖𝟔𝐕 

Sample time (𝝉) 𝟏𝟎𝟎𝛍𝐬 

 

Table II. – General outline of the neural networks used for the 

RL agent 

 

Network Layer and Activation function 

Actor 

Dense with 32 neurons, ReLU 

Dense with 32 neurons, ReLU 

Dense with 2 neurons, Tanh 

Critic 

Dense with 32 neurons, ReLU 

Dense with 32 neurons, ReLU 

Dense with 16 neurons, ReLU 

Dense with 2 neurons, Tanh 
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A. Results with the Phyton based GEM toolbox 

 

A conclusion from the training of the RL agent in the Phyton 

based GEM environment was that the number of episodes 

has a drastic effect on the performance. As can be seen on 

Fig. 4., the agent has rapidly improved after a certain total 

episode number. This behavior can be caused by the limit 

violations that GEM introduces, which can shut down an 

episode very early, making the performance of the agent 

highly fluctuating at the beginning of training. It can also be 

explained by the algorithm’s exploration strategy, as it tends 

to try out a wider range of actions at the start of learning and 

then it narrows down its choices as it tries to converge to an 

optimal solution. However, it still seldomly experiments in 

later stages as well, to be able to move out from a given local 

minima, resulting in large drops in the reward value. 

 
Fig. 4.  Python Mean Reward trend over episode number during 

training 

The performance of the Python agent can be seen on Fig. 5. 

for a load speed that varies in time which makes the agent 

able to experience a wider range of scenarios and increases 

its generalization power. The figure presents the time 

function of the normalized mechanical speed Ω and electric 

torque τ, as well as the d and q axis current signal with their 

respective reference signal in Ampere. The control actions, 

like the 𝑣d and 𝑣q voltage signals, as well as the time 

function of one of the phase currents are also given in the 

figure. An important point to mention here is that based on 

the figure, we can see that the agent does not violate the 

voltage limits but rather stays in the zone of safe operating 

conditions which is highly important in a real-life setting. 

 
Fig. 5.  Trajectories of the Python RL Agent controlled PMSM 

motor with a varying RPM 

B. Results with MATLAB/Simulink 

 

As for the MATLAB environment, the obtained results 

can be seen on Fig. 6. and 7., where the motor is under the 

same time varying load function and the goal is to follow 

the reference current just like in the Python experiment. 

Based on the reward trend, it can be seen that the 

MATLAB agent converged in much less episodes and 

achieved a stable reward curve, which can be explained by 

the different constraint implementation of the 

environment: the episode is not terminated right away 

when a limit is broken  but rather it gives some time to the 

agent to correct itself, thus resulting in longer episodes and 

more stable performance right at the start of training. 

However, the main conclusion here is also the same: the 

RL agent managed to learn how to control the motor so 

that it follows the reference current closely while also 

staying within the safe operating limits. This behavior can 

be spotted when the load function is at its peak and the 

current does not follow the higher reference value but 

rather stays well within the border of the safe operating 

conditions. The metric values for the two experiments can 

be seen in Table III., where it is quite evident that the 

Python based agent greatly outshined the MATLAB 

environment. This is possible since the GEM environment 

generates a random reference function for each episode, 

making the performance of the RL agent more robust to 

external factors like the time varying load function. 

 

 
Fig. 6.  MATLAB Reward trend over episode number during 

training 

 

 
Fig. 7.  Trajectories of the MATLAB RL Agent controlled 

PMSM motor with an outer speed control 
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Table III. – Performance metrics of the RL Agents for 10,000 

steps 

 

Metric Python MATLAB 

Mean Square Root Error 11% 17% 

Mean Absolute Error 0.87% 2.00% 

Mean Squared Error 0.014% 0.119% 

 

6. Comparison of the Software Environments 
 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

   

      

7. 

After introducing how the RL agent-controlled motor 

system was set up, the core part of this paper is addressed: 

the qualitative comparison of the two software 

environments. The summary of the comparison can be seen 

on Fig. 8. where the main takeaways from this experiment 

are collected.

The main advantage of the Python based environment is that 

it is open-source and it provides a wide range of software 

packages in Artificial Intelligence, more precisely, Deep 

and Reinforcement Learning. Using these resources, we can 

access most of the cutting-edge research done in this field 

and use it effectively in our experimentation. These 

packages also help in speeding up both the construction of 

the neural network architecture and the training of the agent 

itself, as they offer a clear workflow and parallelize a lot of 

operations, greatly exploiting the capabilities of a GPU. As 

for the modelling of the control system, our choices are a bit 

more limited, as often if we want to model a specific system

with real-life nonlinearities, we have to code it ourselves to 

achieve the desired outcome. Since no graphical interface is 

available, we also need to visualize the system layout just 

by looking at the lines of code, which makes the 

construction of complex systems more demanding and the 

debugging process more time-consuming.

In the case of the MATLAB environment, the priorities are 

switched. The modelling is done using Simulink where 

there are a lot of available “building blocks” from which we 

can construct and parametrize a control system as the 

specifications require it. Here the simulation is closer to 

reality as the non-ideal nature of every equipment can be 

modelled and used during the calculation, making the 

transition from software to hardware much more seamless.

The user-friendly graphical interface is also a huge benefit, 

as it makes the construction of the system quite intuitive and 

helps understand its functioning, making the process of 

identifying and correcting issues much faster. Constructing 

the neural networks, however, is a bit more limited as we 

have only access to a predefined set of tools which are only 

updated periodically with the MATLAB versions. If we 

would like to use some recent research, we would have to 

implement it ourselves which can be quite demanding as the 

original coding itself is usually done in Python. The price of 

MATLAB also has to be mentioned, as it is not openly 

available to everyone, but this also means that the toolboxes 

come with a detailed documentation, support background 

and in-depth examples to ease the development and 

implementation of ideas. 

Conclusions 

 
Based on the acquired results it is evident that the Python 

based environment, due to its open-source nature, has all the 

cutting-edge RL technology available to use, lifting its 

performance. In comparison, the MATLAB based 

environment provides a well-structured software with a 

user-friendly visual interface and many predefined model 

blocks from which a given setup can be built relatively 

easily. To sum up, in earlier stages of development, the 

Python environment serves well for trying out different 

algorithms, agent settings and parameter optimization. In 

comparison, the MATLAB based environment proves 

better in later stages, where the applicability and 

deployment are more emphasized. This conclusion 

suggests the workflow of training the RL agent in the 

Python environment on a less detailed model and then 

transferring it to the MATLAB environment where it is 

further fine-tuned on a more realistic model, which 

process can be the basis for further research. 
 

 
Fig. 8.  Summary of the comparison between the two 

environments  
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