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Abstract. Electric energy demand forecasting represents a
fundamental tool to plan the activities of the companies that
generate and distribute it. So a good prediction of its demand
will provide an invaluable information to plan the production
and purchase policies of these companies. This demand may be
seen as a temporal series when these data are conveniently
arranged. In this way the prediction of a future value may be
performed studying the past ones. Neural networks have proved
to be a very powerful tool to do this. They are mathematical
structures that mimic that of the nervous system of living beings
and are used extensively for system identification and
prediction of their future evolution. In this work a neural
network is presented to predict the evolution of the monthly
demand of electric consumption. A Feedforward Multilayer
Perceptron (MLP) with three hidden layers has been used as
neural model with Backpropagation as learning strategy. The
consumption data have been normalized to avoid their rising
trend. Several procedures have been tested in order to find out
those performing the best. Errors smaller than 5% have been
obtained in most of the predictions.
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1. Introduction

Electric energy demand forecasting is a fundamental tool
for production and distribution companies because it
provides them a prediction of the market needs of electric
energy, so that they will be able to fit the electric energy
production to the society demand. Two kinds of
forecasting may be performed: a short term one that deals
with prediction of hourly or daily consumption and a
long term one that works with monthly data.

Short term prediction provides information about specific
demands for a few hours ahead, which allows companies
to adapt electric energy production to the society needs.
Long term prediction provides both producers and

distributors with a forecast of the evolution of the
demand, which allows the definition of strategies to
augment the capability of the distribution network, the
construction of new production plants or the development
of policies to obtain new clients.

As electric consumption data evolve along time they may
be assumed to form a time series, where the prediction is
done considering past values to forecast future ones.
Nevertheless as electric energy consumption is highly
influenced by factors different from past consumption,
prediction needs to take into account, along with those
past consumption values, other information as
temperature, humidity, hour of the day or day of the
week, because all of them have a remarkable influence on
demand. All this information is essential when a short
term prediction is to be done because the electric energy
consumption depends on all those factors. In this way a
great amount of data is needed to perform the prediction
and complex models must be used to obtain good results.

On the other hand, as long term forecasting deals with
monthly data, the influence of the aforementioned factors
is diluted in an overall value. These values represent the
total monthly electric consumption where specific peaks
or valleys are diluted in the overall information
considered, so their effect in the data is small. In this way
any kind of isolated distortion in the demand will have
little influence in its overall monthly value. Nevertheless,
although their effect is not very important in the
evolution of the time series, they generate fluctuations
that are difficult to take into account because their causes
are not provided. In any case, long term demand
forecasting needs less accurate predictions than the short
term one because it influences global decisions regarding
overall productions or purchases where small fluctuations
have little influence. So a less robust prediction may be
done avoiding the use of the sophisticated tools that are
needed to deal with short term predictions. In the same
way, as the influence of weather conditions or the kind of
the day (holiday or weekday) is diluted in the monthly
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overall consumption, the forecasting model may use only
past elements of the time series to obtain a prediction of
the electric demand.

As it has been pointed out previously electric demand
forecasting may be studied as a time series prediction
problem, so tools which provide good results in solving
this problem may be used to perform electric demand
forecasting. Among them neural networks have shown to
be an important tool because of their flexibility and easy
configuration for solving the time series prediction
problem, a fact that is hardly surprising if it is taken into
account that recurrent neural networks may be considered
as a special case of nonlinear autoregressive moving
average models (NARMA), a very powerful tool for
predicting the time series evolution [1]. So neural
networks have become popular tools for the electric
demand forecasting [2], [3], [4]. These works are mainly
devoted to short term prediction, using the neural
network capability to deal with different kinds of data as
the variables to be processed [4].

Nevertheless in spite of its potential interest for electric
energy companies, long term forecasting has received
little attention from researchers in contrast with the
higher interest that short term one has had [5]. In this
work a monthly demand prediction is carried out by a
neural network to study the performance of this kind of
forecasting. The selected neural model is the Multilayer
Feedforward Perceptron, one of the most popular neural
structures.

Before programming a Neural Network it is necessary to
study the structure of the data to be processed in order to
fit them and the network inputs and outputs. In this way it
may be seen  (Figure 1) that time series of monthly
demand have a rising tendency due to the influence of the
economic and technological evolution that generates a
growing demand of electric energy. This trend has a very
important influence in the evolution of the time series,
and its effect must be considered in the definition of the
neural network.

Unfortunately neural networks have prediction problems
when dealing with time series that present a tendency of
this kind because of the use of nonlinear saturating
functions as neural outputs that impose boundaries to the
network outputs. So the model will not be able to predict
values of the time series falling out of that boundaries.
Therefore it is necessary to define a normalization
process which transforms the original time series into
another where the rising trend does not appear. The way
the normalization is carried out represents a very
important step in the definition of the neural network
structure because it determines the amount of information
that those data provide the network to perform a
prediction. So a good selection of this procedure is
fundamental for the network to provide the best
performance. Unfortunately there is no way to decide
which is the best normalization procedure for each
problem and a trial and error strategy is to be used to find
out those performing the best. So in this work some
normalization processes have been tested and applied to

the same network in order to determine the performance
of each one.

The Spanish monthly consumption from January 1975 to
December 2002 (a total of 336 values) has been used to
validate the proposed model. All these data has been
divided into two blocks: one for training (from January
1975 to December 1996, 264 months) and the other for
validation (the remaining information, 72 months).

The outline of this work is as follows: Section 2 describes
the structure of the neural network used to perform the
forecasting. In Section 3 several  normalization processes
are described, while the results obtained with each of
them are studied in Section 4. Finally, in Section 5 some
conclusions are presented.

2.  Neural Network structure for time series
prediction

A. Structure of the Multilayer Perceptron

As it has been previously stated the neural network
structure used in this work is the well-known Multilayer
Perceptron. It has been widely used in time series
prediction because of its ability to identify the time
evolution of a dynamic system. Actually it may be
assumed as a universal approximator [6].

The network is formed by an input layer whose elements
are the data to be processed, an output layer that provides
the output data of the network and one or several hidden
layers that process the incoming information to obtain the
network response at the output layer. As it can be seen
the input layer is not actually a layer but rather the input
data to the first hidden one. Every layer may be formed
by a variable number of units named neurons. Each
neuron computes the weighted sum of all its inputs and a
bias constant. The result is processed by an activation
function that provides the neuron output:

∑ += −

k

i
j

i
k

i
jk

i
j ywx θ1 (1.a)

( )i
j

i
j xy σ= (1.b)

In this expression i
jx  represents the activity of neuron j

in layer i, i
jkw  the strength of the connections between

this neuron and all those that are in the previous layer,
i
jy  the neuron output  while i

jθ  is a bias constant.

The output function ( )i
jxσ  represents an important

element of the neural network paradigm, because it
supplies a nonlinear element to the model that allows
these structures to identify the nonlinear behavior
inherent to complex dynamics. The most frequently used
as output function is the so called sigmoid for its “S-
shape” form. It may be the arctangent or hyperbolic
tangent when it is needed an output included in the [-1,1]
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interval. When the desired interval is [0,1] the so-called
logistic function is used:
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Nevertheless very simple algebraic manipulations allow
the use of any of the two sigmoids with both output
intervals. The use of other kinds of output functions like
linear, piecewise linear or step is also usual.

A combination of both linear and nonlinear functions is
usually found in the literature, where a very common
configuration is the use of nonlinear functions for the
hidden layers and linear functions for the output one.
This configuration is based on the fact that the
information processing is performed by the hidden layers
while the output one usually provides only an adaptation
of the neural network response to the desired size
(number of outputs) of that response, moreover, the use
of a nonlinear saturating function in the output layer will
eliminate the possibility of signals with higher than
saturation values at the output, a fact that will diminish
the precision of the predictions performed by the
network. This is the configuration selected for the model
proposed in this work.

Another important issue in the definition of the network
structure is the connection scheme of every neuron. A
fully connected feedforward network has been selected,
where each neuron is connected to every output of the
previous layer and no connection is allowed between
neurons in the same layer. It has proved to have very
good capabilities in the approximation of any nonlinear
function, and also in time series prediction [6]. The
inclusion of feedback will need the demonstration of the
network stability and will not endow the model with
further capabilities, therefore it is usually not included in
neural network models used to identify time series.

B. Learning process

The learning capability of neural networks is provided by
the adaptation of the input weights of every neuron. This
process is performed by presenting an input pattern and
the desired output to the network and then modifying
every weight until an error function reaches a minimum
or falls below a fixed value. This procedure is repeated
for each pattern to be learned. The way this adaptation
process is carried out defines the learning strategy of the
neural network. The well known Backpropagation
algorithm [7] has been selected to do it. It uses the mean
squared error as error function. So, once an input pattern
is presented to the network it provides an output whose
value is compared with the desired one and an error
function is obtained. With this function it is possible to
calculate an expression that relates the gradient of the
overall error function to every weight. Several algorithms
may be used to perform this calculation. The selected one
is the so-called Levenberg-Marquardt (a combination of
the gradient descent and Newton methods for solving
optimization problems) [7] which provides a very

accurate weight adaptation with a moderate time
consumption. Its only drawback is the need of a very
large memory in the computer where the process will be
simulated, an easy to accomplish requirement in modern
computers.

C. Network Structure

The number of neurons in the hidden layer is an essential
issue in the network design strategy. So if a network is
provided with too few neurons it will not be able to
reproduce the system dynamics accurately and therefore
it could not provide a reliable forecasting. On the other
hand, too many hidden neurons will define a network
that, in the best case, will provide an appropriate
behavior but with an excessive computing time and a
high memory need while, in the worst case, will only
learn the presented patterns and will not be able to
generalize the acquired knowledge to predict non-learned
patterns. Therefore the selection of the appropriate
network size is not an easy task. Some algorithms have
been developed to look for the best dimension of the
network, the so-called pruning algorithms [8]. Their
working strategy is very simple: it starts with the
definition of a larger than necessary network and then
proceeds to simulate its behavior to detect redundant
neurons or links that will be next removed. The process is
iteratively repeated while an error function is kept under
a certain value. These algorithms usually consume too
much time and not always provide the smallest network
size.

An easier approach may be done with a trial and error
strategy, where several networks with different sizes are
simulated and that with the best performance is selected.
If a more precise response is needed variations about this
size will be tested until the desired precision is obtained.

Along with the definition of the network size it is also
important to determine the number of hidden layers it
has. Sometimes the use of a multilayer network provides
better results than using an only one, others an only layer
will be enough. Here there is no algorithmic procedure to
obtain the best solution and a trial and error strategy is to
be used.

Several layer numbers and sizes have been tested to find
out the best one [5]. Some one layer and multilayer
structures have been tested with one, two and three
hidden units. The most significant ones were (8) and (12)
for a one layer network, (4,2), (6,2), (6,4), (8,4) and
(12,6) for a two layers network and (4,2,4), (8,4,8) and
(12,6,12) for a three layers structure. The network that
presented the best results was (8,4,8). Thus, this structure
has been used to test different kinds of normalization
processes, as described bellow.

3. Input data structure

As it has been previously stated time series of electric
energy demand present a rising tendency due to the
influence of the economic and technological evolution on
the electric market. In fact, as the wealth of most nations
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presents a rising tendency and the technological
development provides the society with more and more
devices that need electric energy to work, the electric
demand suffers a constant rising tendency. This general
rising trend clearly appears in the example used to test
the presented model (Fig. 1). Imbedded in this general
trend a fluctuation caused by the difference in demand
that each month has appears. The electric demand in the
same month of different years must have very similar
variations from the general rising tendency because this
demand is mainly controlled by climatological factors,
which must be very similar every year. Modifications in
those factors are usually embedded in a more general
climatological behavior that will influence several
months. In the same way specific political or economical
factors different from those that govern the general rising
tendency of the demand will influence several months.
So variations in normal demand will affect several
elements of the time series, providing a slight
modification of the general rising trend. Those variations
may be properly handled if enough past values are
considered to perform a prediction. Then it may be
assumed that the time series is formed with the
combination of a general rising tendency and monthly
variations that ought to be very similar for different
years.
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Fig. 1. Monthly Spanish electric consumption from January
1975 to December 2002.

That rising trend represents an important problem for
neural networks that are to be used to perform the
demand forecasting because the use of nonlinear
saturating functions as neural outputs imposes boundaries
to the network outputs that avoid the network providing
an output higher that a certain upper limit. So the model
will not be able to predict values of the time series falling
out of that boundaries. The use of linear output functions
in the output layer does not solve this problem because
saturating functions in the inner layers will still impose
an upper limit to the network output. Removing all the
saturating functions from the whole network is not a
solution because in this way a linear network will be
defined and it will not be able to follow the highly
nonlinear behavior of time series that represent the
electric energy demand. Therefore it is necessary to
define a procedure that eliminates that rising tendency

from the time series but retains the monthly fluctuations.
In this work this procedure is defined as a normalization
process which transforms the original time series into
another where the rising trend does not appear and only
the monthly evolution is retained. Nevertheless there is
no beforehand way to define an optimal procedure to
perform that normalization process, therefore several
strategies must be tested in order to find out the one
performing the best.

As the normalization process try to extract the monthly
deviation from the general rising tendency of the time
series it will be necessary to obtain a kind of mean value
that represents that rising trend and a deviation from it
that will be assumed as that monthly deviation. Since the
prediction problem deals with the forecast of a value
from those preceding it the normalization process will
use only past values to do it. So a set of values preceding
that to be normalized will be considered to perform a
certain mathematical operation to obtain a general trend
linked to that element. This calculation will be applied to
every element of the time series except those n at the
beginning, where n is the number of elements taken into
account to obtain the normalization value (this is so
because it is not possible to consider n values to obtain
the normalization constant when there are only n-k
elements preceding the considered one).

Once every normalization constant has been obtained
every consumption will be divided by its corresponding
constant to obtain a deviation associated to every trend. A
division has been preferred to a subtraction because with
the last it is possible to obtain very high values along
with others too close to zero and the normalization
process will result little effective. On the other hand the
division will provide a value that will never be too high
(smaller values may be close to zero, although the highest
ones will never be much higher than one). In this way,
the values obtained with the division are well suited to be
processed by a neural network whose outputs and
weights are included in the interval [-1,1] ([0,1] for the
output function when it is a logistic one).

In this way two new time series have been defined: one
with the general trend associated to each consumption
datum and another with its deviation from that value.
This last one will provide the inputs to the network.

In order to fit the input data structure to the network layer
structure, in most cases, the number of elements taken
into account to perform the normalization process will be
the same as the number of values in the input layer.
Although it is not necessary to impose this condition to
the definition of the input layer it looks meaningful in
order to warrant a certain homogeneity between the
normalized data and the set of them that are presented to
the network every time a prediction is to be performed.

In this work the following normalization processes have
been defined:

1) The data to be normalized and a set of those
preceding it are added up to form the normalization
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constant. Several options have been tested in this
way:

- Six values are presented to the network. Every
datum is divided by the sum of the preceding five
along with itself. Here the seasonal influence in
the monthly demand is taken into account.

- Twelve values are presented to the network. The
normalization constant is obtained in a way
similar to that in the previous option with the
only difference that eleven past values are
considered. Here a yearly data evolution is
considered, because as the electric demand
presents similar monthly patterns for different
years it is reasonable to assume that a
normalization that spans a year back will extract
that monthly evolution from the overall yearly
tendency.

- Thirteen values are presented to the network.
Every datum is divided by the sum of the
preceding twelve along with itself. This is similar
to the previous option, but it includes the
influence of the corresponding month of the
previous year.

2) The datum to be normalized and several values of
the same month of preceding years are added up to
form the normalization constant. It allows knowing
the tendency of each of the months of a year, in the
context of the corresponding year.

3) The normalization constant is obtained as the
average value of a group of the preceding data and
that to be normalized. The same options considered
in the first case have been tested.

As the network input data are normalized the
corresponding prediction is also normalized, therefore a
process opposite to that one is to be performed in order to
obtain the corresponding forecasting of the actual
demand. So the corresponding denormalization constant
ought to be obtained in the same way to that used in the
normalization process. Nevertheless it is not possible to
use the actual value of the predicted demand to obtain its
corresponding denormalization constant because it is
unknown. But as the normalization constants represent
the rising trend of the time series two adjoining elements
will have very similar values and a very small error is
made if one is used instead the other. So it will be
possible to use the normalization constant of the
preceding element as denormalization constant of the
predicted one. That is to say, if element t+1 of the time
series is to be obtained, it will be multiplied by the
normalization constant of element t.

Finally, a corrective process has been applied to the
resulting values because, although the neural network can
learn the behavior of a time series, it cannot predict an
unexpected change in the series tendency until enough
values of the monthly demand have been presented to the
network.

To compensate for this effect a new variable is defined. It
represents the difference between the denormalized value
and an expected value for it. This one cannot be the real
datum, because it is not known when the prediction is
performed, and an estimation is to be obtained for it: the
same month of the preceding year multiplied by the unit
variation between subsequent years. Equation (3) shows
this variable:

)13(

)13()1(
)12()()(

−
−−−

×−−=
iR

iRiR
iRiPiC (3)

where C(i) is the corrective variable of the i datum; P(i)
is the predicted value of the i datum; R(i) is the real value
of the i datum.

As equation (3) shows, the expected value for the i datum
is estimated from the real twelve-months-before value
multiplied by the demand variation that has occurred
through the previous year.

This correction is weighted by a factor 0.6, a value that
has been obtained by a trial and error procedure which
provides the best results among all those tested between 0
and 1. So a factor 0.6C(i) is added up to the denormalized
datum to obtain the network prediction.

In this way the network provides a better output when the
trend of the time series changes, while negligible
variations appear with data with a uniform trend.

4. Computational results

As it has been previously stated the Spanish monthly
consumption from January 1975 to December 2002 (a
total of 336 values) has been used to validate the
proposed model. All these data has been divided into two
blocks: one for training (from January 1975 to December
1996, 264 months) and the other for validation (the
remaining information, 72 months).

The learning algorithm had a maximum number of
5000 time steps to reach an adequate error (between
0.0001 and 0.000001), a preventive measure to avoid the
algorithm falling into a too long learning process,
although in most cases the desired error was reached in
less than 1500 time steps, which proves the speed of the
selected algorithm.

The best results have been obtained using the average
value of six or twelve values as the normalization
constant. Although the error during the learning process
is limited to 0.0001, results show only seven errors over
5% when six values were used. Four errors higher than a
5% were obtained when twelve values were used,
although they were greater. Fig. 2 and Fig. 3 show the
normalized values and the resulting errors, respectively,
for the 6-values normalization, whereas Fig. 4 and Fig. 5
present the corresponding normalized values and errors
for the 12-values normalization.
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Fig. 2. Normalized data using the average six values as
normalization constant.
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Fig. 3. Simulation errors using the average six values as
normalization constant.
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Fig. 4. Normalized data using the average twelve values as
normalization constant.
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Fig. 5. Simulation errors using the average twelve values as
normalization constant.

The other normalization processes proposed in Section 3
were also simulated, but worse results were obtained. The
results are summarized in Table I. The table presents a
global error associated with each normalization process.
It corresponds to the network training goal. They are
different because the simulation process has shown that
in some cases a too reduced error can produce the data
memorizing, losing generalization ability. So a rising of
its value was necessary in order to improve the
forecasting precision. Those cases in which the
normalized data are very small (those whose
normalization constant is the sum of real values) can
work with a smaller error.

Table I. Results obtained in each case
NORMALIZATION

CONSTANT
ERRORS GREATER

THAN 5%
GLOBAL
ERROR

Sum of 6 values 8 0.0000012
Sum of 12 values 11 0.000001
Sum of 13 values 10 0.000001
Average value of 6 7 0.0001
Average value of 12 4 0.0001
Average value of 13 9 0.0001

The results obtained with Option 2 have not been
included in Table I, due to the bad result they present.
The causes of these bad results are the values taken into
account for the denormalization process. These values are
the same month of the past years, which are, in general,
lower than those used for the normalization (the same
month plus the same of the preceding years), due to the
rising tendency of the series. The correction process
previously described is not able to compensate for this
effect.

5.  Conclusion

A neural network has been presented to perform electric
demand forecasting that takes into account only past
monthly demand data to obtain a prediction of the
following month. Some neural structures have been
tested with a variable number of layers and neurons in
each layer. The one performing the best was that with
three hidden layers with a (8,4,8) distribution of neurons.
As input data present a rising trend a normalization
process was necessary in order to fit this data to the
network input and to eliminate that rising trend from the
time series. Several normalization processes have been
proposed and then tested in order to find out those
performing the best. These were those that divide every
consumption by an average of past values of the time
series. These results show the good performance of
neural networks to forecast long term electric demand. It
has been also highlighted that an appropriate
representation of input data is essential in order to obtain
the best performance of the neural model.
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