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Abstract-AC-AC Statistic Matrix converter, also called 
frequency converters, is the most widely-used and first power 
electronics systems. These converters are conventionally 
designed and produced with an AC-DC-AC structure (i.e. a 
middle DC circuit is used). The used filter in the middle circuit 
causes system loss and increases the circuit volume. On the other 
hand, because of the short lifetime of electrolyte capacitors used 
in the middle DC circuit, reliability decreases. The direct AC-
AC converter does not have such weaknesses, but the 
bidirectional switches have not been developed enough and 
because of commutation problems, these converters are not 
suitable replacements for the AC-DC-AC converters. To 
produce two phase voltage, Scott transformers are mostly used 
for industrial purposes. But the cost and the core loss of Scott 
transformers are much higher than the matrix converters. In 
this paper, a two-phase matrix converter is introduced, in which 
he number of switches are reduced as much as possible in order 
to decrease the switching losses and to eliminate the 
commutation problem in line side. Simulation results are 
presented showing the proposed circuit and it's control working 
good enough. 
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I. INTRODUCTION 

Matrix converter is a device which converts the AC energy to 
AC directly.  Basically, a three-phase to three-phase matrix 
converter consists of 9 bidirectional switches, which needs 
commutation to minimize the losses and to produce the 
desired output with high quality input and output waveforms, 
as shown in Fig.1. Matrix converter was first introduced in 
1980’s by Alesina and Ventarini [1]. Because of several 
advantages, e.g. power capability in two directions and high 
quality input and output waveforms, the matrix converters 
have recently received considerable attention. On the other 
hand, it can be produced in compact circuits and moreover in 
smaller sizes since there is no energy saving element like 
capacitors in DC bus of this converter. 
Due to some problems such as: complex commutation and 
complicated over-voltage protection circuits, the use of 
matrix converters has been limited in industry. For example, 
the applications of matrix converters are: induction motor 
driver, switching power supply, applications in aircraft 
industry, voltage regulator, Unified Power Flow Controller 
(UPFC), middle converter in electrical networks with 
different frequencies. A great number of studies have been 

conducted on practical usages of matrix converters in 
industry. The studies were in the fields  
of safe commutation of matrix converters and the structure of 
bidirectional switches in them[2] or control of matrix 
converters using PWM (pulse width modulation)[3],[4]. 
However, the matrix converter is not widely used in industry. 
The main problem is the commutation issues of this converter 
since there should not be any short-circuit of the input circuit 
and open-circuits in the load side. To solve these problems, 
some alternatives have been presented in the related 
literature, but generally these techniques introduce a multi-
stage commutation of a general protection circuit which 
increases the converter complexity itself. 
Later, to reduce the switches of direct matrix converter and to 
simplify the strategy of commutation in protection circuit 
against over-voltage, new generations of matrix converters 
named indirect matrix converters (IMC) were introduced. The 
IMC topology was first proposed by P.D.Zingas in 1985 [5]. 
But until 2001 this converter was not known as a matrix 
converter. By considering the topology of the conventional 
matrix converter (CMC), the topology of indirect matrix 
converter (IMC) has recently received considerable attention 
and has been developed extensively, which it circuit is shown 
in Fig.2.  
In reference [6], it is completely explained how 18 switches 
are reduced to 15 switches and then 15 switches to 12, and 

 
Fig.1 Main circuit of conventional matrix converter. 
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Fig. 6 switching position symbol 
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The Eq. (2) can be converted to two following equations. 
Two conversion matrixes are produced, one for rectifier and 
other for inverter. 
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C. The rectifier section 
To produce a dc-link voltage in the rectifier, the nine-switch 
technique proposed in ref. [6] was used. The method is 
completely explained in ref. [6].  
 

D. The inverter section  
It is used to produce two-phase voltage by the means of three-
leg model. In this model, a leg is used as the ground for the 
other two legs. 

1

2

( ) ( ) ( ) cos( )

( ) ( ) ( ) cos( ) (6)
2

out A C o o

out B C o o

V t V t V t V t

V t V t V t V t

ω
πω
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Each switch can be in two positions, ON and OFF. 
Considering three leg inverter, 23 combinations can be 
achieved. 
It is necessary for switches positioned in the same leg, not to 
be open or close simultaneously. So in order to fulfill the 
above-called criterion, it would be enough just to produce 
three pulses for the upper side switches and use the NOT 
pulses of the upper side pulses for the lower side switches. 
The eight possible combinations, previously mentioned, are 
illustrated in table I and Fig.6  
Of the eight above-mentioned combinations, eight space 
vectors are produced. Among these eight vectors, two of them 
are zero-vectors and six are active vector (non-zero vectors). 
 

 
 
 
 
 

TABLE I 
SWITCH STATES IN EACH INTERVAL 

 
Switches Voltages Space vector 

SaP SbP ScP Vo1 Vo2   

1 0 0 0 0 0 
 Zero - 

vector 

2 0 0 1 0 Vdc 
 Active-

vector 

3 0 1 0 -Vdc -Vdc 
 Active-

vector 

4 0 1 1 -Vdc 0 
 Active-

vector 

5 1 0 0 Vdc 0 
 Active-

vector 

6 1 0 1 Vdc Vdc 
 Active-

vector 

7 1 1 0 0 -Vdc 
 Active-

vector 

8 1 1 1 0 0 
 Zero - 

vector 

 
In order to produce two-phase voltage, the length of the 

reference vector must be a constant amount. Of the six active 
vectors previously mentioned, two of them have different 
lengths in contrast to the four others, so we omit them and use 
the remaining four active vectors and two zero-vectors to 
produce two-phase voltage. Four active vectors have divided 
the complex plane into four same sections, as shown in Fig. 7. 
Let’s explain a vector located in sector 1 as shown in Fig. 8. 
This sector is composed of two active vectors which act as 
two orthogonal axis, and it also includes two zero vectors. 
The reference vector cycles through this zone with constant 
length in the range of angle 0 to / 2π . For each arbitrary angle 
of the reference vector, the reference vector length-share on 
vector (100) is d1 and its length-share on vector (001) is 
labeled d2, while d0 is the reference vector length-share on 
zero vectors. 
In an arbitrary Ts switching time: 

1 1

2 2

0 s 1 2

T =d ×cosθ
T =d ×cosθ (7)
T =T -T -T
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Where 1T  is the reference vector time-share on vector (100), 

2T  is the reference vector time-share on vector (001) and 0T  
the reference vector time-share on vector zero. 
It is of great necessity that we design a filter for line section. 
The designed filter is illustrated. 

 

 
 

III. COMMUTATION PROCESS  

Fig. 9 illustrates switches pulses in four-step commutation 
with output current Io1.   Fig. 1 illustrates ScA combining of 
two switches ScA(nc) and ScA(c) for transferring the negative 
current and positive current respectively. The switch ScA (nc) is 
turned off sooner, and the switch SaA(c) will not be turned off 
till SbB turned on. After turning SbA(c) on, SaA(c) will be 
turned off and SbA(nc) will be turned on (see Fig. 10). This time 
difference is just the same as the time of turning a switch on 
and off, so that turning two switches off is guaranteed. Under 
these circumstances the output phase terminals never become 
open circuit and the input phase terminals are never short 
circuit. In Fig.11, when the output current Io1 is negative, the 
order of turning the switches on and off is converted with 
respect to the pervious case, i.e. SaA(c) is the one which turned 
off first.  
 

 

 
IV. SIMULATION RESULTS 

Following simulation parameters are: 
( )220cos 100aV tπ= , sL and sC in the input filter 

frequency are 200 Hμ , 30 Fμ . Switching frequency, Fs, 
is equal to 5 KHz. 
 

A. Convention matrix converter(CMC) 
Fig. 12(a) illustrates the voltages of each phase for matrix 
converter CMC with four-step commutation. The desired 
output currents are: 

( )1 2100cos 100 , 100cos 100
2o oV t V t ππ π⎛ ⎞= = +⎜ ⎟

⎝ ⎠  
 

The results of simulation for the case of considering the time 
of turning the switches on or off are the same as the case 
ignoring them, so these results are not reported here. Because 
turning the switches on and off are instaneously in simulation.  

 Fig.11 Switches pulses in four-step commutation has negative quantity 
output current Io1 
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 Fig.9 Switches pulses in four-step commutation with output current Io1 

Fig.10 Switches pulses in four-step commutation has positive quantity output 
current Io1 
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Fig.8. sector 1 
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b) 
Fig.12 Output voltages in phase for CMC matrix converter in four-step 

commutation 
a) Waveforms   b) Harmonic spectrum 

a) 

b) 
Fig.13 Input currents for CMC matrix converter in four-step commutation 

a) Waveforms   b) Harmonic spectrum 
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Fig.13 Input currents for CMC matrix converter in four-step commutation 
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b) 

Fig.14 Input current for IMC matrix converter with reduced switches 
a) Waveforms    b) Harmonic spectrum 
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b) 

Fig.12 Output voltages in phase for CMC matrix converter in four-step 
commutation 

a) Waveforms   b) Harmonic spectrum 
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Fig. 12(b) illustrates the harmonic spectrums of output 
voltages, where the maximum phase of first output voltage 
occurs in fundamental frequency of 98.99v,with 
THD 2.6565 %= and maximum phase of second output 
voltage occurs in fundamental frequency of 100.2v, with  
THD 2.54 %= .  
Fig. 13(a) illustrates the input current of phase a for matrix 

converter CMC with four-step commutation, also Fig. 13(b) 
shows the harmonic spectrums of this current, where the THD 
of input currents of three phases are less than 8%. 

 

B. Indirect matrix converter 
The input current of phase a is illustrated for matrix 

converter IMC with reduced switches in Fig.14(a). In 
Fig.14(b) the harmonic spectrums for input current of phase a 
is illustrated, in which the amount of THD (Total Harmonic 
Distortion) of that is 7.3274. As it is obvious in Fig.14(b), this 
current has only the 5th, 7th and 11th harmonics with 
significant amounts, while other harmonic distortions are 
negligible.  

Fig. 15 is DC voltage link, and this dc voltage is appropriate 
for inverter section. 

Fig. 16(a) illustrates the voltages of each phase for matrix 
converter IMC. The desired output currents are: 

( )1 2220 cos 100 , 220 cos 100
2o oV t V t ππ π⎛ ⎞= = +⎜ ⎟

⎝ ⎠

 

 

Fig. 16(b) illustrates the harmonic spectrums of output 
voltages, where the maximum phase of first output voltage 
occurs in fundamental frequency of 222v, with 
THD 5.9220 %= and maximum phase of second output 
voltage occurs in fundamental frequency of 221v, with 
THD 5.9041 %= . By filtering output voltages by the means 
of low-pass filters, the difference between output phase 

voltages has equaled to90o as shown in Fig. 16(c). 
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CONCLUSION 

The circuit topologies and control schemes for two-phase 
matrix converter have been presented. The modulation 
schemes for the three-leg, two-phase ac-ac matrix converter 
have been developed based on SVM. In the proposed system 
on the Developed strategy, the matrix converter directly and 
with no dc link, generates two-phase sinusoidal waveforms. 
The proposed matrix converter provides sinusoidal output 
current/voltage waveforms with independently controlled 
magnitude and 90° phase angle to two-phase loads. 
Simulation results prove that the algorithm work goog with 
low THD. 
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Fig.15 Voltage of DC link for IMC matrix converter with reduced switches 

 
a) 

 
b) 

 
c) 

Fig.16 Output Voltages for IMC matrix converter with reduced switches 
a) Waveforms b) Harmonic spectrum c) Filtered voltages 
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