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Abstract. In view of the challenging task of the operation of 

microgrids, this work presents a distributed strategy to manage an 

isolated system by the optimal dispatch of active and reactive 

power. The ADMM (alternating directions method of multipliers) 

is adapted to solve two optimization problems, finding power 

profiles along the day for generators and storage systems, taking 

into account the power flow and demand coverage constraints. The 

joint dispatch allows the solution to minimize the generation cost 

and provide ancillary services such as voltage regulation and 

losses reduction. The method is tested in a study case with batteries 

and renewable sources to quantify the effects of the proposed 

strategy and compare with a centralized optimization.  

 

Keywords: ADMM, Economic dispatch, Microgrid 
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1. Introduction 

Microgrid operation is a challenging task, in all control 

layers, to manage distributed energy resources (DER), 

loads, and storage systems to supply the demand with 

appropriate quality of service. To deal with the operation 

goals, DERs have local energy management systems, which 

attend commands from a central controller in a coordinate 

way [1]. To guarantee a proper working in the microgrid, 

primary and secondary levels provides stability for active 

and reactive power through locally-controlled power 

converters. On the other hand, tertiary control defines 

optimal operation points according to technical and 

economic conditions, sending setpoints to lower levels to 

accomplish higher level requirements (e.g., supply demand, 

reduce operation costs, and provide ancillary services) [2]. 

In this sense, tertiary controllers could increase the 

microgrids efficiency, improve robustness, ease high 

penetration of DERs and users, and provide ancillary 

services to increase quality of service and reduce efforts in 

lower control levels [3]. 

Taking into account the complexity in the operation, some 

control algorithms are centralized, which present high 

efficiency and manage all information from microgrid’s 

components. However, conventional centralized methods 

require high computational capacities and bandwidth to 

manage systems with a large number of users, generators 

or storage systems. Moreover, from a network perspective, 

the robustness is reduced due to the role of the central 

node, which hinders the required plug and play operation 

[4], [5]. In contrast, decentralized schemes facilitate 

implementation with local information and improve 

resilience of the grid to fails [6].  

Other important challenge on the operation of isolated 

microgrids is maintaining stability and energy quality. For 

instance, voltage and frequency must be regulated in the 

face of the constant changes in demand and renewable 

resources [7]. Similarly, management systems must 

propend for efficiency and loss reduction with proper 

operation points in DERs. In all these processes, storage 

systems could mitigate demand variability by 

complementing generation in rush hours with optimal 

cycles of charging and discharging [8]. However, since 

batteries have constraints in the dynamics of the state of 

charge, storage management could be difficult within high 

level objectives such as cost reduction. 

Dealing with the described problem, this work proposes a 

decentralized strategy based on ADMM (alternating 

directions method of multipliers) to manage an isolated 

microgrid. The operation optimizes the joint dispatch of 

active and reactive power of DERs, including storage 

systems and renewable generators in order to minimize 

costs, cover the changing demand, regulate voltage in each 

bus, and reduce active power losses. The method is tested 

in a simulation study case to analyse results and compare 

with a centralized strategy. 

Next, Section 2 presents some notation and the power flow 

problem to introduce the optimization framework in 

Section 3. Then, the ADMM method is presented in 

Section 4 and the simulation results and analysis is stated 

in Section 5.  
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2. Preliminaries 

 

A. Microgrids as graphs 

A microgrid has buses (i.e., physical connection points for 

generators, loads, and transformers) interconnected by links 

that represent distribution lines. Thus, a microgrid can be 

modelled by an undirected graph 𝓖 = (𝓝,𝓛), where 𝓝 =
{𝟏,⋯ ,𝑵} is the set of notes, and 𝓛 ∈ 𝑵 × 𝑵 is the set of 

arcs. Each node of the graph represents a bus, and the 

distribution lines are arcs, i.e., if buses 𝒊 and 𝒋 are linked by 

a distribution line, then (𝒊, 𝒋) ∈ 𝓛. 

The nodes have some associated variables. For instance, all 

nodes have a voltage magnitude 𝑽𝒊 (where 𝒊 is the node 

index) and an angle 𝜽𝒊. Moreover, if a node has a generator, 

it has additional variables associated: the active and reactive 

power generation, which are denoted by 𝑷𝑮𝒊
 and  𝑸𝑮𝒊

. 

respectively. Finally, if an electrical load is connected to a 

node, it has active consumption 𝑷𝑳𝒊
 and reactive 

consumption 𝑸𝑳𝒊
. 

B. Power flow 

The power flow is a feasible solution to the problem of 

satisfying the power demand of the loads, using generators 

through active and reactive power injections. The power 

flow model in polar form is defined as: 

𝑃𝑖(𝑉, 𝜃) = 𝑃𝐺𝑖
− 𝑃𝐿𝑖

, ∀𝑖 ∈ N, (1) 

𝑄𝑖(𝑉, 𝜃) = 𝑄𝐺𝑖
− 𝑄𝐿𝑖

, ∀𝑖 ∈ N, (2) 

where 𝑷𝒊(𝑽, 𝜽) and 𝑸𝒊(𝑽, 𝜽) are active and reactive power 

injections or consumptions depending on their sign  [9]. 

These variables can be calculated in terms of the node 

voltages and angles (𝑽, 𝜽) as: 

𝑃𝑖(𝑉, 𝜃) = 

𝑉𝑖 ∑𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)

𝑗∈𝑖

, ∀𝑖 ∈ N, (3) 

𝑄𝑖(𝑉, 𝜃) = 

𝑉𝑖 ∑𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)

𝑗∈𝑖

, ∀𝑖 ∈ N, (4) 

where 𝑮𝒊𝒋 and 𝑩𝒊𝒋 are the conductance and the susceptance 

of the line (𝒊, 𝒋), 𝜽𝒊𝒋 represents the angle difference between 

nodes 𝒊 and 𝒋 (𝜽𝒊𝒋 = 𝜽𝒊 − 𝜽𝒋), and the notation 𝒋 ∈ 𝒊 

represents the set of nodes that are connected to the 𝒊𝒕𝒉 node, 

including 𝒊. 

The approximations for the energy constraints in a grid 

presented in (3) and (4) are often combined with an 

objective cost function establishing the optimal power flow 

(OPF) as appropriate operation points in microgrids [10], 

[11]. Next, we propose two joint optimization problems to 

deal with technical and economic objectives, providing, in 

addition, some ancillary services and storage management. 

3. Active and reactive power dispatch 

considering storage systems 
 

A. Active power dispatch considering storage systems 

The active (or economic) dispatch determines the 

generation of each unit, including storage systems, that 

minimizes the operating cost. It is mandatory to satisfy the 

restriction of supplying the aggregate demand and the 

constraints related to the generation limits. Besides, 

storage systems require the management of 

charging/discharging actions to keep the state of charge 

(SOC) of batteries within operational limits. 

Considering a microgrid with 𝑵 buses, 𝑵𝑮 generators and 

𝑵𝑩 storage systems, the economic dispatch must find the 

optimal power profile of the 𝒊𝒕𝒉 generator during 𝑲 time 

slots, i.e., 𝑷𝑮𝒊
= [𝑷𝑮𝒊

(𝟏), … , 𝑷𝑮𝒊
(𝑲)]; and the charging 

and discharging profile of the 𝒋𝒕𝒉 storage system which we 

denote by 𝑷𝑩𝒄𝒋
 =  [𝑷𝑩𝒄𝒋

(𝟏), . . . , 𝑷𝑩𝒄𝒋
(𝑲)] and 𝑷𝑩𝒅𝒋

=

[𝑷𝑩𝒅𝒋
(𝟏), . . . , 𝑷𝑩𝒅𝒋

(𝑲)], respectively. Notice that each 

profile has the dispatched powers for each instant of a 

programming horizon with 𝑲 time slots. The active 

dispatch power is given by 

min
𝑃𝐺𝑖

 𝐹 = ∑∑𝐹𝑖(𝑃𝐺𝑖
(𝑘)) 

𝑁𝐺

𝑖=1

𝐾

𝑘=1

 (5) 

Subject to: 

 ∑𝑃𝐺𝑖
(𝑘)

𝑁𝐺

𝑖=1

+ ∑𝑃𝐵𝑑𝑗
(𝑘)

𝑁𝐵

𝑗=1

− ∑𝑃𝐵𝑐𝑗
(𝑘)

𝑁𝐵

𝑗=1

= 𝑃𝐿(𝑘),  
(6) 

𝑆𝑗(𝑘 + 1) = 𝑆𝑗(𝑘) + 𝜂𝑐𝑃𝐵𝑐𝑗
(𝑘) −

1

𝜂𝑑

𝑃𝐵𝑑𝑗
(𝑘),   (7) 

𝑃𝐺𝑖𝑚𝑖𝑛
≤ 𝑃𝐺𝑖

(𝑘) ≤ 𝑃𝐺𝑖𝑚𝑎𝑥
, (8) 

0 ≤ 𝑃𝐵𝑐𝑗(𝑘) ≤ 𝑃𝐵𝑐𝑗𝑚𝑎𝑥
,  (9) 

0 ≤ 𝑃𝐵𝑑𝑗(𝑘) ≤ 𝑃𝐵𝑑𝑗𝑚𝑎𝑥
,  (10) 

𝑆𝑗𝑚𝑖𝑛 ≤ 𝑆𝑗(𝑘) ≤ 𝑆𝑗𝑚𝑎𝑥 ,  (11) 

for all 𝒊 = 𝟏,… ,𝑵𝑮, 𝒋 = 𝟏,… ,𝑵𝑩, and 𝒌 = 𝟏,… ,𝑲. Here, 

for the instant 𝒌, 𝑷𝑳(𝒌) is the aggregate power demand, 

𝑭𝒊(𝑷𝑮𝒊
(𝒌)) represents the cost of the 𝒊𝒕𝒉 generation unit, 

and 𝑺𝒋(𝒌) represents the state of charge of 𝒋𝒕𝒉 storage 

system. The values 𝑺𝒋(𝟏) and 𝑺𝒋(𝑲 +  𝟏) as the initial and 

final states of charge, respectively. Moreover, 𝑷𝑮𝒊𝒎𝒊𝒏
, 

𝑷𝑮𝒊𝒎𝒂𝒙
, 𝑷𝑩𝒄𝒋𝒎𝒂𝒙

, 𝑷𝑩𝒅𝒋𝒎𝒂𝒙
, 𝑺𝒋𝒎𝒊𝒏, and 𝑺𝒋𝒎𝒂𝒙 are the 

operational limits of the generators and storage systems. 

Finally, 𝜼𝒄 and 𝜼𝒅 are the charging/discharging 

efficiencies. 

The cost in every time slot is a typical quadratic function 

𝑭𝒊 (𝑷𝑮𝒊
(𝒌)) = 𝒂𝒊 + 𝒃𝒊𝑷𝑮𝒊

(𝒌) + 𝒄𝒊𝑷𝑮𝒊

𝟐 (𝒌), where 

𝒂𝒊, 𝒃𝒊, 𝒄𝒊 are cost coefficients of the 𝒊𝐭𝐡 generation unit. 

Notice that (6) forced the systems to supply the demand, 

(7) describes the dynamics of the SOC of batteries, and (8) 

- (11) represent the limits of generators and storage 

systems.  

B. Reactive power dispatch to reduce voltage deviation 

and active power losses 

Voltage regulation can be performed either by storage 

systems or by reactive dispatch of generator units. In the 

same way, power losses in a distribution network can be 

reduced by reactive power injections. These desirable 

services can be provided by an optimization strategy with 

the distribution losses and voltage deviations as the 

objective function: 
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min
𝑉, 𝑄

 𝐻 = 𝑃𝑙𝑜𝑠𝑠 + ∑(1 − 𝑉𝑖)
2

𝑁

𝑖=1

 (12) 

Subject to  power flow in (3) and (4), and   
𝑄𝐺𝑖𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖𝑚𝑎𝑥, ∀𝑖 = 1,… , 𝑁𝐺 , (13) 

𝑉𝑖𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖𝑚𝑎𝑥, ∀𝑖 = 1, … ,𝑁, (14) 

𝜃𝑖𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑖𝑚𝑎𝑥, ∀𝑖 = 1,… , 𝑁. (15) 

The objective function (12) has two terms: The distribution 

losses, 𝑷𝒍𝒐𝒔𝒔 = ∑ 𝑮𝒊𝒋(𝑽𝒊
𝟐 + 𝑽𝒋

𝟐 − 𝑽𝒊𝑽𝒋 𝐜𝐨𝐬 𝜽𝒊𝒋)
𝑵
𝒊=𝟏 ; and a 

summation of penalties of the voltage deviations in the 

nodes from the p.u. measures. The constraints in (13) – (15) 

represent limits of reactive powers of each generator, and 

boundaries in voltages and angles for every node that can be 

defined according to regulatory policies in each region or 

country [12]. The decision variables in this case are the 

voltages and the reactive powers of the generators. 

The voltages define a point that minimizes the objective 

function, while the generators allow the systems to reach 

these voltages through reactive power variation. The power 

flow equations (3) and (4) define the relationship between 

reactive power and the magnitude and angle of the voltages 

at the nodes. It is worth noting that the active powers are not 

decision variables since they are provided by the solution of 

the active power dispatch (5) to (11). 

4. Decentralized operation based on ADMM 

Alternating directions method of multipliers (ADMM) is an 

optimization technique that splits the global problem into 

subproblems that are individually solved. In addition, 

individual solutions interact in a coordinated way to finding 

a solution to the global optimization problem [13]. From a 

technical perspective, this method can be understood as a 

mix that takes advantage of the benefits of dual 

decomposition and the augmented Lagrangian method to 

improve convergence. 

A. ADMM algorithm 

Let us consider the following optimization problem with 

decision variables 𝒙 ∈ 𝑹𝒏 and 𝒛 ∈ 𝑹𝒎. 

min 𝑓(𝑥) + 𝑔(𝑧), (16) 

Subject to: 𝐴𝑥 + 𝐵𝑧 = 𝑐, (17) 

where ∈ 𝑹𝒑×𝒏 , 𝑩 ∈ 𝑹𝒑×𝒎 and 𝒄 ∈ 𝑹𝒑. Moreover, 𝒇(⋅) and 

𝒈(⋅) are assumed to be convex.  

The augmented Lagrangian of (16), (17) is 

ℒ𝑝(𝑥, 𝑧, 𝑦) = 𝑓(𝑥) + 𝑔(𝑧) + 𝑦𝑇(𝐴𝑥 + 𝐵𝑧 − 𝑐) 

+(
𝜌

2
 ) ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖2

2, 
(18) 

where 𝝆 > 𝟎 is the penalty parameter, and the Lagrange 

multipliers are represented by 𝒚 ∈ 𝑹𝒑. Assuming that strong 

duality holds between the primal and dual problems, then 

both problems' optimum (𝒙∗, 𝒛∗) is the same and occurs 

with the same Lagrange multipliers (𝒚∗).  

Notice that the augmented Lagrangian includes a quadratic 

term at the end. This regularization term improves the 

robustness and the convergence rate of the algorithm [13]. 

The ADMM algorithm iteratively solves the two-variables 

problem in (16), (17) as follows: 

𝑥𝑘+1 ≔
argmin

𝑥
ℒ𝑝(𝑥, 𝑧𝑘 , 𝑦𝑘), (19) 

𝑧𝑘+1 ≔
argmin

𝑧
ℒ𝑝(𝑥

𝑘+1, 𝑧, 𝑦𝑘), (20) 

𝑦𝑘+1 ≔ 𝑦k + 𝜌(𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐), (21) 

where 𝝆 > 𝟎 is the step size and penalty term. Notice that 

the ADMM algorithm has two minimization steps given in 

(19) and (20), and one updating step of the Lagrange 

multipliers given in (21). The augmented Lagrangian is 

sequentially minimized with each variable in turn, i.e., in 

(19), an optimal value is calculated which directs the 

solution towards the global optimum only in the x-

direction. Equation (20) repeats the process directing the 

solution by z-direction. This leads the search for a global 

solution through alternating directions. Furthermore, the 

separation of 𝒙 and 𝒛 allows the decoupling or 

disaggregation of 𝒇(⋅) and 𝒈(⋅). 

B. ADMM for solving the active power dispatch with 

storage systems problem 

Our purpose is to use ADMM to obtain an optimal solution 

for problem in (5) – (11) in a decentralized way. First, the 

inequality restrictions are included as equality restrictions 

through slack variables. In this case, we define a set 𝑾 of 

slack variables as follows: 𝑾 =

[𝒘𝒎𝒊𝒏
𝟏 (𝒌),⋯ ,𝒘𝒎𝒊𝒏

𝑵𝑪 (𝒌), 𝒘𝒎𝒂𝒙
𝟏 (𝒌),⋯ ,𝒘𝒎𝒂𝒙

𝑵𝑪 (𝒌)] ∀ 𝒌 =

𝟏…𝑲, where: 𝑵𝒄 is the number of constraints; the 𝒎𝒂𝒙 

and 𝒎𝒊𝒏 subscripts are related to the type of constraint: 

maximum or minimum. In order to turn inequality 

constraints (8) – (11) to equality constraints, it uses slacks 

variables as follows. For example, let 𝒘𝒎𝒂𝒙, 𝒘𝒎𝒊𝒏 ∈ 𝑾 be 

slack variables, then a constraint is modified according to: 

𝑃 + 𝑤𝑚𝑎𝑥 = 𝑃𝑚𝑎𝑥 , (22) 

−𝑃 + 𝑤𝑚𝑖𝑛 = 𝑃𝑚𝑖𝑛 , (23) 

where: 𝑷 is the decision variable, and 𝑷𝒎𝒂𝒙, 𝑷𝒎𝒊𝒏 are 

maximum and minimum limits. 

Slack variables are auxiliary values that evolve in the 

process and facilitate reaching an optimal solution in a 

secondary role. In the iterative process, the variables in the 

set 𝑾 must evolve maintaining the equality constraints 

and the feasibility of the solution. For the slack variables 

to keep feasibility, they exert changes in the objective 

function by adding a penalty function 

𝑓+(𝑤) = {
𝐶+ 𝑤 < 0 

0  𝑤 ≥ 0.
 (24) 

The function 𝒇+(𝒘) works by increasing the value of the 

objective function a considerable amount 𝑪+, in case of 

obtaining negative values of 𝒘 that could affect the 

feasibility of the solution. 

Secondly, the Lagrangian ℒ𝜌(⋅) is defined by: 

ℒ𝜌(𝑃𝐺𝑖
(𝑘), 𝑃𝐵𝑑𝑗(𝑘), 𝑃𝐵𝑐𝑗(𝑘), 𝑌,𝑊) 

= 𝐹 + 𝐹+ + 𝐹𝑌 + 𝐹𝑌𝜌 . 
(25) 

Here, 𝐹 is the objective function in (5), 𝐹+ is the 

summation of penalties functions related to each slack 

variables defined in (24). The terms 𝐹𝑌 and 𝐹𝑌𝜌
 are related 

to the augmented Lagrangian, and are given by 𝐹𝑌 = 𝑌𝑇𝐸 
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and 𝐹𝑌𝜌 =
𝜌

2
𝐸𝐸𝑇, where 𝑌 is the Lagrange multipliers vector 

and 𝐸 is a vector with all constraints, defined as 

𝐸 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

∑𝑃𝐺𝑖
(1)

𝑁𝐺

𝑖=1

+ ∑𝑃𝐵𝑑𝑗(1)

𝑁𝐵

𝑗=1

− ∑𝑃𝐵𝑐𝑗
(1)

𝑁𝐵

𝑗=1

− 𝑃𝐿(1)

⋮

∑ 𝑃𝐺𝑖
(𝐾)

𝑁𝐺

𝑖=1

+ ∑𝑃𝐵𝑑𝑗(𝐾)

𝑁𝐵

𝑗=1

− ∑𝑃𝐵𝑐𝑗
(𝐾)

𝑁𝐵

𝑗=1

− 𝑃𝐿(𝐾)

𝜂
𝑐
∑ 𝑃𝐵𝑐𝑗

(𝑙)

1

𝑙=1

−
1

𝜂
𝑑

∑ 𝑃𝐵𝑑𝑗(𝑙)

1

𝑙=1

+ 𝑤𝑚𝑎𝑥
1 (1) + 𝑆𝑗(1) − 𝑆𝑗𝑚𝑎𝑥 

⋮

𝜂
𝑐
∑ 𝑃𝐵𝑐𝑗

(𝑙)

𝐾

𝑙=1

−
1

𝜂
𝑑

∑ 𝑃𝐵𝑑𝑗(𝑙)

𝐾

𝑙=1

+ 𝑤𝑚𝑎𝑥
1 (𝐾) + 𝑆𝑗(1) − 𝑆𝑗𝑚𝑎𝑥

−𝜂
𝑐
∑ 𝑃𝐵𝑐𝑗

(𝑙)

1

𝑙=1

+
1

𝜂
𝑑

∑ 𝑃𝐵𝑑𝑗(𝑙)

1

𝑙=1

+ 𝑤𝑚𝑖𝑛
2 (1) − 𝑆𝑗(1) − 𝑆𝑗𝑚𝑖𝑛

⋮

−𝜂
𝑐
∑ 𝑃𝐵𝑐𝑗

(𝑙)

𝐾

𝑙=1

+
1

𝜂
𝑑

∑ 𝑃𝐵𝑑𝑗(𝑙)

𝐾

𝑙=1

+ 𝑤𝑚𝑖𝑛
2 (𝐾) − 𝑆𝑗(1) − 𝑆𝑗𝑚𝑖𝑛

𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (26) 

First and second elements of vector 𝑬 are related to the 

power demand balance for each one of the 𝑲 time slots. The 

remainder of elements refer to maximum and minimum 

constraints of the SOC of batteries and the power limits of 

generators. In summary, the term 𝑭𝒀𝝆
 is the summation of 

the 2-norm of the constraints multiplied by the penalty 

parameter 𝝆. 

Algorithm 1 presents the proposed ADMM algorithm for 

active power dispatch according to (19) – (21). The 

algorithm works iteratively until reaching the optimal 

power profiles for generators and the optimal 

charging/discharging actions profiles for batteries. It 

assumes that the optimal values are reached at the maximum 

number of iterations (𝑻𝒎𝒂𝒙), which was tuned 

experimentally considering that the Lagrange multipliers 

tend to be constant at 𝑻𝒎𝒂𝒙. 

Algorithm 1. ADMM for active power dispatch 

1 for 𝒕 =  𝟏 to 𝑻𝒎𝒂𝒙 

2     𝑷𝑮𝒊

𝒕+𝟏 ≔ 
𝐚𝐫𝐠𝐦𝐢𝐧

𝑷𝑮𝒊

 𝓛𝒑 (𝑷𝑮𝒊

𝒕 , 𝑷𝑩𝒅𝒋

𝒕 , 𝑷𝑩𝒄𝒋

𝒕 , 𝒀𝒕,𝑾𝒕) 

                 ⋮ 

3     𝑷𝑮𝑵𝑮

𝒕+𝟏 ≔ 
𝐚𝐫𝐠𝐦𝐢𝐧
𝑷𝑮𝑵𝑮

 𝓛𝒑 (𝑷𝑮𝑵𝑮

𝒕 , 𝑷𝑩𝒅𝒋

𝒕 , 𝑷𝑩𝒄𝒋

𝒕 , 𝒀𝒕,𝑾𝒕) 

4     [𝑷𝑩𝒅𝒋

𝒕+𝟏 𝑷𝑩𝒄𝒋
𝒕+𝟏] ≔ 

𝐚𝐫𝐠𝐦𝐢𝐧
𝑷𝑩𝒅𝒋

, 𝑷𝑩𝒄𝒋
  𝓛𝒑 (𝑷𝑮𝑵𝑮

𝒕 , 𝑷𝑩𝒅𝒋

𝒕 , 𝑷𝑩𝒄𝒋
𝒕 , 𝒀𝒕,𝑾𝒕) 

                            ⋮ 

5     [𝑷𝑩𝒅𝑵𝑩

𝒕+𝟏 𝑷𝑩𝒄𝑵𝑩

𝒕+𝟏
] ≔ 

𝐚𝐫𝐠𝐦𝐢𝐧
𝑷𝑩𝒅𝑵𝑩

, 𝑷𝑩𝒄𝑵𝑩
  𝓛𝒑 (𝑷𝑮𝑵𝑮

𝒕 , 𝑷𝑩𝒅𝒋

𝒕 , 𝑷𝑩𝒄𝒋
𝒕 , 𝒀𝒕,𝑾𝒕) 

6     𝑾𝒕+𝟏 ≔ 𝐦𝐚𝐱(𝟎,
𝐬𝐨𝐥𝐯𝐞
𝑾𝒕 (𝑬𝒕)) 

7     𝒀𝒕+𝟏 ≔ 𝒀𝒕 + 𝝆𝑬𝒕 

8 end-for 

9 [𝑷𝑮𝒊

∗ , … ,𝑷𝑮𝑵𝑮

∗ ] : = [𝑷𝑮𝒊

𝑻𝒎𝒂𝒙, … , 𝑷𝑮𝑵𝑮

𝑻𝒎𝒂𝒙] 

10 [𝑷𝑩𝒅𝒋

∗ , … ,𝑷𝑩𝒅𝑵𝑩

∗ ] : = [𝑷𝑩𝒅𝒋

𝑻𝒎𝒂𝒙, … , 𝑷𝑩𝒅𝑵𝑩

𝑻𝒎𝒂𝒙 ] 

11 [𝑷𝑩𝒄𝒋

∗ , … ,𝑷𝑩𝒄𝑵𝑩

∗ ] : = [𝑷𝑩𝒄𝒋

𝑻𝒎𝒂𝒙 ,… ,𝑷𝑩𝒄𝑵𝑩

𝑻𝒎𝒂𝒙] 

Algorithm 1 starts by loading parameters such as cost 

coefficients of generation units, load profile for 24 hours, 

and maximum and minimum operational limits of 

generators and batteries. Lines 2 and 3 refer to obtaining 

the optimal power profiles for generators by minimizing 

the augmented Lagrangian. In the same way, lines 4 and 5 

obtain the optimal charging/discharging actions profile for 

batteries. It is remarkable that in lines 2 to 5 each agent (a 

generator or a battery) proposes an optimal solution to 

minimize a global function sequentially and individually.   

Algorithm 1 is not completely distributed, but it is highly 

decentralized. This is because the solving process that 

each agent performs requires mostly local information but 

also some global information. This case uses gradient-

based methods to solve problems in lines 2 to 5. This 

means that the method only requires local information 

related to their decision variables, avoiding knowing other 

variables which are constant under their point of view. 

However, the power balance constraint in (6) requires the 

complete state of generators and batteries. 

Lines 6 and 7 calculate the slack variables and the 

Lagrange multipliers. Line 6 updates the slack variables 

vector using the operation 𝐦𝐚𝐱(𝟎,
𝐬𝐨𝐥𝐯𝐞
𝑾𝒕 (𝑬𝒕)), which 

represents that if 𝑾 has no positive value, it takes a value 

equal to zero to maintain the solution feasibility. In this 

case, there is a penalization in the objective function 

equivalent to 𝑪+ in Equation (24). Otherwise, 𝑾𝒕+𝟏 takes 

the outcome value for solving the corresponding equation 

in the matrix 𝑬𝒕 for 𝑾𝒕. Line 7 is the updating equation for 

Lagrange multipliers, which reach a stable value after a 

finite number of iterations if the objective function is 

convex. Finally, lines 9 to 11 ends the Algorithm 1 

obtaining the optimal profiles of generators and batteries. 

C. ADMM for solving the reactive power dispatch 

enabling ancillary services 

Similar to the presented in the previous section, the 

inequality constraints in the problem (12) – (15) are 

expressed as equality constraints using slack variables. 

Then, the augmented Lagrangian is defined according to 

the cost function and the corresponding constraints, and 

finally, a solving algorithm is proposed. 

First, the inequality restrictions in (13) - (15) are equality 

constraints through a set of slack variables 𝑽 using (22), 

(23), and (24) as it is described in the previous section. 

The augmented Lagrangian 𝓛𝒒(⋅) includes the objective 

function (12) and the constraints for the power flow and 

the technical boundaries in (3), (4), (13) - (15), such that 

ℒ𝑞(𝑉𝑖 , 𝑄𝑖 , 𝑍, 𝑉) = 𝐻 + 𝐻+ + 𝑍𝑉 + 𝑍𝑞 . (27) 

More explicitly, 𝓛𝒒(⋅) is composed of four terms, where 

𝑯 is the cost function (12), which is a summation of the 

active power losses and voltage deviations in terms of the 

node voltages (𝑽𝒊). The term 𝑯+ is the summation of 

penalty functions related to the set of slack variables 𝑽 

given in (24). The following terms are defined as 𝒁𝑽 =

𝒁𝑻𝑼 and 𝒁𝒒 =
𝒒

𝟐
𝑼𝑼𝑻, where 𝒁 is the Lagrange multipliers 

vector and 𝑼 is a vector with all constraints given by 
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𝑈 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑉1 ∑(𝑉𝑗(𝐺1𝑗 cos 𝜃1𝑗 + 𝐵1𝑗 sin 𝜃1𝑗))

𝑗∈1

− 𝑃𝐺1

∗ + 𝑃𝐿1

⋮

𝑉𝑁 ∑ (𝑉𝑗(𝐺𝑁𝑗 cos 𝜃𝑁𝑗 + 𝐵𝑁𝑗 sin 𝜃𝑁𝑗))

𝑗∈𝑁

− 𝑃𝐺𝑁

∗ + 𝑃𝐿𝑁

𝑉1 ∑(𝑉𝑗(𝐺1𝑗 sin 𝜃1𝑗 − 𝐵1𝑗 cos 𝜃1𝑗))

𝑗∈1

− 𝑄𝐺1
+ 𝑄𝐿1

 

⋮

𝑉𝑁 ∑ (𝑉𝑗(𝐺𝑁𝑗 sin 𝜃𝑁𝑗 − 𝐵𝑁𝑗 cos 𝜃𝑁𝑗))

𝑗∈𝑁

− 𝑄𝐺𝑁
+ 𝑄𝐿𝑁

𝑈𝑚𝑖𝑛

𝑈𝑚𝑎𝑥 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (28) 

The first terms of matrix (28) are related to the active power 

flow in (3). Note that this equation uses the optimal active 

power profiles found with Algorithm 1. Following rows of 

matrix 𝑼 are related to the active power flow according to 

(4). Finally, 𝑼𝒎𝒊𝒏 and 𝑼𝒎𝒂𝒙 refers to power limits of 

generators and batteries.  

Algorithm 2 proposes an iterative method to obtain the 

reactive power dispatch based on the ADMM. It works 

similarly to Algorithm 1, but it obtains the optimal profile 

of reactive power for generators and batteries by 

minimizing the augmented Lagrangian 𝓛𝒒(⋅) in (27). It is 

worth remarking that Algorithm 2 is completely distributed 

because it only needs local information to reach an optimal 

result. This is possible given that constraints are only in 

terms of variables from neighbor nodes as voltages and 

reactive loads. 

Algorithm 2. ADMM for reactive power dispatch 

1 for 𝒕 =  𝟏 to 𝑻𝒎𝒂𝒙 

2     𝑸𝑮𝒊

𝒕+𝟏 ≔ 
𝐚𝐫𝐠𝐦𝐢𝐧

𝑸𝑮𝒊

 𝓛𝒒 (𝑸𝑮𝒊
,𝑸𝑩𝒅𝒋

𝒕 , 𝒁𝒕, 𝑽𝒕) 

                 ⋮ 

3     𝑸𝑮𝑵𝑮

𝒕+𝟏 ≔ 
𝐚𝐫𝐠𝐦𝐢𝐧
𝑸𝑮𝑵𝑮

 𝓛𝒒 (𝑸𝑮𝑵𝑮
, 𝑸𝑩𝒅𝒋

𝒕 , 𝒁𝒕, 𝑽𝒕) 

4     𝑸𝑩𝒋

𝒕+𝟏 ≔ 
𝐚𝐫𝐠𝐦𝐢𝐧

𝑸𝑩𝒋

 𝓛𝒒 (𝑸𝑩𝒋
,𝑸𝑮𝒊

𝒕 , 𝒁𝒕, 𝑽𝒕) 

                            ⋮ 

5     𝑸𝑩𝑵𝑩

𝒕+𝟏 ≔ 
𝐚𝐫𝐠𝐦𝐢𝐧
𝑸𝑩𝑵𝑩

 𝓛𝒒 (𝑸𝑩𝑵𝑩
, 𝑸𝑮𝒊

𝒕 , 𝒁𝒕, 𝑽𝒕) 

6     𝑽𝒕+𝟏 ≔ 𝐦𝐚𝐱(𝟎,
𝐬𝐨𝐥𝐯𝐞

𝑽𝒕 (𝑼𝒕)) 

7     𝒁𝒕+𝟏 ≔ 𝒁𝒕 + 𝒒𝑼𝒕 

8 end-for 

9 [𝑸𝑮𝒊

∗ , … ,𝑸𝑮𝑵𝑮

∗ ] : = [𝑸𝑮𝒊

𝑻𝒎𝒂𝒙, … , 𝑸𝑮𝑵𝑮

𝑻𝒎𝒂𝒙] 

10 [𝑸𝑩𝒅𝒋

∗ , … , 𝑸𝑩𝒅𝑵𝑩

∗ ] : = [𝑸𝑩𝒅𝒋

𝑻𝒎𝒂𝒙, … , 𝑸𝑩𝒅𝑵𝑩

𝑻𝒎𝒂𝒙 ] 

 

5. Simulation results 

The microgrid simulated is a 3-nodes system in a voltage 

level of 4.16 kV (see Figure 1). In order to analyze the 

interaction between renewable energy and storage resources 

in an isolated mode includes a photovoltaic generator (G1), 

a batteries system (G2/B1), and a diesel generator (G3). The 

diesel unit is the slack generator that provides the voltage 

and frequency references. Table I details the capacities of 

each generator and the storage system, whose generation 

cost is not considered just to define a free of charge unit. 

 

 
Fig. 1. Case study for a 3-nodes system. 

 

Table I. Characteristics of the generators and the storage system 

GENs. 

Active 

power 

limits [kW] 

Reactive 

power 

limits [kVAr] 

Cost 

coefficients 

(𝒄𝒊; 𝒃𝒊; 𝒂𝒊) 

G1 [0, 400] [0, 173] 0.00; 0.5; 0.5 

G3 [40, 400] [-100, 100] 0.01; 1.5; 0.5 

G2/B1 [-500, 500] [-193, 193] - 

Figure 2 shows the individual load profiles for each node 

of the active and reactive power and the aggregated 

profiles. The solar irradiance is a typical bell-shaped curve 

with a maximum at noon. 

 
Fig. 2. Load profiles for the case study. 

Figure 3 shows the active power dispatch obtained with 

ADMM. Clearly, the cheap solar generator is dispatched 

to its maximum capacity, while the batteries, despite their 

free cost, are charged and preserved to provide cheap 

energy in the rush hours. The expensive diesel generator 

completes the rest of power to supply the aggregate 

demand in the system. The results are compared to the 

ones of a centralized method (interior-point method) 

without substantial difference between power profiles as 

shown in Table 2. This fact is particularly important since 

the centralized algorithm relies on complete information 

to reach the result, while the decentralized algorithm uses 

only local information to achieve the same performance. 

As it is shown in Table 2, the optimal cost values are the 

same for both methods. However, the centralized process 

is less time-consuming than the decentralized one because 

ADMM needs more iterations to reach the optimal point. 

This occurs because ADMM updates variables one by one, 

whereas the centralized method updates all variables at a 

time. On the other hand, both methods maintain the power 

balance with a maximum error less than to 0.01% with 

respect to the maximum value of the demand. 

 
Fig. 3. Active power profiles dispatched by ADMM algorithm. 
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Table II. Performance of the methods 
Method Cost Error Time Iter. 

Interior-point 1.4509e+04 1.67e-14% 0.3637 s 41 

ADMM 1.4509e+04 6.10e-05% 2.8110 s 100 

 

The upper graph of Figure 4 shows the voltage profiles 

without considering the penalizing term of voltage 

deviation in the optimization process (12). In contrast, the 

bottom graph shows an important reduction of the voltage 

deviation (about 12%) considering the voltage penalizing 

term in the ADMM method. These voltage profiles are 

achieved by the reactive power dispatch shown in Figure 5, 

which take advantage of the cheap generators to supply the 

required reactive demand. This result reduces active power 

losses by 193.6 Wh in 24 hours which corresponds to 0.01% 

of the total energy consumed daily. 

 
Fig. 4. Voltage profiles without (upper) and with (bottom) 

penalty term form voltage deviations. 

 

 
Fig. 5. Reactive power profiles dispatched by ADMM algorithm. 

 

6. Conclusions 

A decentralized algorithm based on ADMM has been 

proposed to obtain power profiles of generators and battery 

charging/discharging actions. The optimal active and 

reactive joint dispatch minimizes the cost of operation and 

provides ancillary services to reduce power losses and 

voltage deviation. Additionally, it is worth nothing that the 

decentralized algorithm exhibits a similar performance 

compared to a centralized algorithm. Indeed, both methods 

achieve the same optimal value. The simulation results in a 

study case show that the method improves losses and 

voltage regulation with the obtained optimal profiles in 

comparison to scenarios without joint dispatch. The 

algorithm is highly decentralized, which is appropriate to 

manage scenarios with numerous agents. The algorithm 

performance can be easily tested in larger microgrids as 

future work. 
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