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Abstract. Parameter identification techniques are applied to 

find suitable values of unknown key input factors into a 

mathematical model. Usually, these factors are determined 

through optimization algorithms. In this case, the establishment of 

consistent initial values, and their corresponding searching ranges 

(which are unknown), is quite important to provide reliable results 

after the identification process. In this work, a sensitivity analysis 

is carried out to evaluate the influence of the main parameters 

involved in a numerical model used to simulate a common-rail 

solenoid injector. Experimental measurements for several 

operating conditions were done, and their results were compared 

with the model outputs to establish an objective function from 

which to perform the assessment. As a result of this study, it was 

established the importance of each parameter included in the 

model: firstly, those parameters with low variability were selected 

to be removed from the identification procedure, assuming a value 

for them that do not affect the model results; finally, the rest of 

parameters remained in the algorithm. After applying the 

aforementioned identification process, some accurate results are 

provided and discussed in order to propose improvements for 

future works. 
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1. Introduction 

 
The validation of a mathematical model implies that the 

results of the model (outputs) match the experimental 

results. For this purpose, it is essential to know the value of 

the model input parameters. Nevertheless, some of them are 

unknown and, once the experimental results are obtained, it 

is possible to identify them.  

 

Generally, the identification process uses optimization 

algorithms, both conventional (based on Newton method) 

[1] or intelligent (e.g. Genetic Algorithms (GA)) [2]. 

These algorithms search for the minimum value of a 

defined objective function Ψ, which is an indicator of the 

approach goodness between the actual (experimental 

measurements) and the simulated output parameter of the 

system. The application of this methodology is very 

common in the field of combustion engines [3]. 

 

To successfully accomplish this identification, it is 

necessary to evaluate the influence of each parameter on 

the model results: for those unknown parameters whose 

variation do not significantly change the simulated results 

a fix value can be assumed, removing them from the 

optimization algorithm, which simplifies the identification 

process. On the other hand, the rest of unknown 

parameters must be carefully evaluated, by setting an 

adequate searching range for determining their actual 

values. If these searching ranges are stablished in a very 

wide interval or bad located, they could lead to physically 

of geometrically incompatible results. Sensitivity analysis 

plays a fundamental role in order to appropriately chose 

these initial settings: it is a useful tool to evaluate the 

influence of the input parameter values variation on the 

model outputs (evaluated using the objective function) [4]. 

 

This paper summarizes the work done regarding the 

sensitivity analysis for a set of input parameters that are 

required to define a solenoid common-rail injector model. 

Finally, a preliminary identification process for the 

evaluation of the goodness of the initial set of ranges 

selected for the optimization algorithm is performed and 

the main results discussed. 

 

https://doi.org/10.24084/repqj18.286 250 RE&PQJ, Volume No.18, June 2020

mailto:jlpn0001@red.ujaen.es,%20apt00010@red.ujaen.es,%20etorres@ujaen.es,%20fcruz@ujaen.es
mailto:jlpn0001@red.ujaen.es,%20apt00010@red.ujaen.es,%20etorres@ujaen.es,%20fcruz@ujaen.es
mailto:Octavio.Armas@uclm.es
mailto:luka.lesnik@um.si


The interest of this work is that represents an initial step of 

a systematic procedure for tuning a model. Among its 

advantages are minimizing the number of parameters 

required for the subsequent calibration process and setting 

the search direction to find an adequate range of initial 

values on them, to be established previously to that 

identification method. 

 

2. Materials and methods 

 

This work is done over a solenoid common-rail type 

injector, model: DENSO 5031 06E18602 13H50A. A 

scheme is provided in Fig. 1. Injector operation is as 

follows: once the current is applied to the solenoid, the 

armature lifts, making the fuel to flow towards de control 

chamber and decreasing the pressure at the top of the 

command piston so that the needle rises, which starts the 

fuel injection into the combustion chamber. When the 

current finishes, the armature returns to its initial position 

pushing the needle down and stopping the fuel injection. 

 

The accurate measurements related to each component of 

the injector (geometries, masses, physical properties, etc.) 

is a critical factor because the small dimensions of the ducts 

and elements require specific methodologies. In the present 

work, several methodologies are applied in order to obtain 

most of the characteristics of the injector under study [5] 

Fig. 2 shows an example of how the dimensions of the 

nozzle outlet orifices have been measured following the 

silicone methodology developed by previous authors [6]. 

This methodology allows quantifying the internal geometry 

of the injector.  

 

 
 

Fig. 1. Components of the injector. 

In the present study, a set of 12 operating conditions is 

evaluated in a systematic way. Each condition is 

characterized by two parameters: the rail pressure (bar) 

and the injector energization signal (A). These operating 

conditions illustrate a wide range of engine behavior in 

which this injector is mounted. These input data, as well 

as the injection rate, were experimentally determined in 

previous work [7]. Fig. 3 shows the input (injector 

energization signal) and output (fuel injection rate) 

profiles associated with one of those operating regimes 

tested.  

 

A commercial software package [8] is used to build a 

mathematical model to determine the fuel injection 

characteristics of a common-rail solenoid injector. This 

software includes several sub-models to simulate the 

following elements: needle, nozzles, spring, valves, 

boundaries, volumes, orifices and tubes. Previous authors 

used this software to successfully simulate different types 

of injection systems, such as in-line systems [9] and 

common-rail systems [10]. 

 

 
 

 
 
Fig. 2 Measurements examples of the internal geometry of a 

diesel nozzle using the silicone methodology  

 
Fig. 3. Experimental measurements: injector energization signal 

injection and injection rate for the operating condition 60 Nm 

and 1700 rpm engine speed (rail pressure = 65 MPa)  

 

Model accuracy is determined by comparing its outputs 

with the experimental results. For this purpose, an 

objective function Ψ has been defined to compare the 

modeled and the measured injection rates for the 12 

operating conditions tested according to the 

recommendations for an appropriate design of 
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experiments [11]. An individual objective function ψj for 

each condition ‘j’ is evaluated by means of the following 

equation: 
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where τj refers to the injection duration time, Y corresponds 

to the instantaneous modeled fuel injection rate along the 

time, and Y’ is the corresponding measured injection rate.  

 

The overall value Ψ is obtained by adding all Ψj (j = 1, 2, 

…,12). It is important to note that, for any of those 

conditions, component characteristics maintain the same 

value. Although the initial measurement procedure provides 

most of the input data required by the software, there are 30 

of these parameters whose values are not known with 

accuracy or they are unknown, such as amount stiffness and 

damping coefficients associated with different elements, 

etc. Therefore, they must be identified by an optimization 

algorithm. 

 

Fig. 4 summarizes the identification procedure applied in 

this work. Each step starts assigning a certain value for each 

unknown parameter. Then, for each condition, the 

experimental input signals (in this case, the injector 

energization) are used to simulate several injector output 

parameters. Among them, the fuel injection rate is used in 

the present work to calculate Ψj and, subsequently, an 

overall Ψ.  

 

This estimated value and its variation along the procedure 

makes the input set of unknown parameters to be changed 

until a minimum is reached. 
 

 
 

Fig. 4 Identification procedure scheme. 

Two optimization methods have been used. The first one 

is the Non-Linear Programming by Quadratic Lagrangian 

method (NLPQL) [1], [12]. It consists of a gradient-based 

local optimization method, which solves problems with 

smooth continuously differentiable objective functions 

and constraints. It requires an adequate starting point close 

to the global minimum or needs the merit function to be 

convex. The second optimization method is a GA 

procedure [2], [12] which is able to find solutions for non-

differentiable objective functions (or quite complex 

differentiable). 

 

Previously to the application of the identification 

procedure, an initial set of values for those parameters 

must be established, as well as the searching range for each 

of them. This selection of values is not easy, because there 

are interactions between parameters that affect the outputs. 

 

Sometimes, experience provides enough knowledge to 

approximate the value of some parameters, which allows 

us to take it as the center of its searching range and to 

narrow this range of variation. But in other cases, there is 

no information, thus a first approach must adopt a value 

for each parameter, where a global Ψ is reached, and 

establish it as the center value of the range. The range can 

be selected by setting an interval calculated as a 

percentage of the central value. Since no information is 

available, it is difficult to establish those ranges. 

 

Before applying the optimization procedure, it is needed a 

sensitivity assessment in order to decrease the number of 

parameters to be identified [4]: this sensitivity analysis 

evaluates the influence of the variation of each unknown 

parameter ωi on the model response (Ψ) using a sensitivity 

coefficient (Si): 
 

i
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Once the assessment is done, the results are analyzed. 

Those parameters with very low influence on the 

simulated outputs can be removed from the identification 

procedure and the central values can be fixed. For those 

cases with acceptable sensitivity, the ranges can be 

maintained as they were established initially. On the 

contrary, in those cases with excessive variations, the 

initial range must be reduced so that a congruous change 

in the output parameter is obtained. This last analysis 

requires a deeper study focused on the injector component 

associated with this unknown parameter. 

 

3. Results 
 

First, based on our previous experience, a given random 

range is established for each parameter. Then, the 

sensitivity analysis is done, which provides the results 

shown in Fig. 5. 

 

Since several parameters vary slightly (less than 10%), 

they are removed from the identification process, and their 

centered values are fixed. Their parameters mainly 

correspond to characteristics associated to the needle and 
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the piston, such as: preload, damping, and stiffness of 

needle spring; friction force in the needle; stop damping and 

stiffness in both needle and piston. It means that the 

behavior of these components can be reproduced with 

enough accuracy from their corresponding initial values, 

due to they provide very low variation in the simulated 

outputs even when they vary significantly.  

 

In addition, other parameters show coherent relative 

variations. It implies that the adopted range can be assumed 

as appropriate for the identification process. 

 

These parameters are: inlet throttle area, outlet throttle area, 

needle seat diameter and nozzle sac diameter. Additionally, 

four characteristics related to the armature present rational 

sensitivities as well. 

 

Finally, the rest of the parameters selected for the sensitivity 

analysis show high variability. These parameters are the 

most important for the identification model. Apart from 

seven parameters associated with the armature, the 

minimum inlet throttle area also produces a high variability. 

 

Evaluating the whole set of parameters, it is important to 

highlight: first, that the value of this last geometric value 

(inlet throttle area) must be carefully chosen before starting 

the identification process. The second task is the high 

uncertainty that the armature of the solenoid has in the 

injection model, while several terms present excessive 

variations. 

 

Next, the identification process was carried out in order to 

evaluate results for these initial uncertainties, mainly due to 

the armature behavior and the inner correlation among 

parameters. Since the searching range of values is high, the 

internal algorithm has problems finding the direction in 

which the parameters vary along with the procedure. The 

result obtained for the simulated fuel injection rate is shown 

in Fig. 6.  

 

The presented condition shows a satisfactory fitting, but 

there are some of the others that do not reach enough 

accuracy. The best results are reached for medium and high 

speeds at medium load. Higher discrepancies appear at 

extreme speeds and loads. 

 

The number of parameters, the uncertainties associated to 

the armature modeling, as well as the complexity of the 

physics involved in the whole injection process, make 

difficult to obtain an accurate approximation.  

 

If the identification process is performed for each operating 

condition, without considering the rest of them at the same 

time, each one may provide different final values for the 

same parameter, which makes no sense. For this reason, the 

procedure has been developed by batch, using the same 

value of each parameter for all the 12 conditions at each step 

of the optimization algorithm. It implies that some of the 

final curves do not match so well as they could. In this case, 

it seems that a local minimum is reached.  

 

 

Regarding the second optimization method, i.e. via GA, 

the results are similar to those obtained from the first 

procedure, as well as the discrepancies. Thus, it implies 

that the dissimilarities found cannot be exclusively 

associated with the optimization algorithm used but also 

to the selected search range used to find the value of a 

parameter. 

 

 
 

Fig. 5 Sensitivity results from an initial random range. 

 

Further effort is needed to accurately determine those 

parameters with excessive sensitivity, by readapting the 

center value and the searching range, in order to assure the 

consistency of results. Also, a detailed study dealing with 

the armature must be engaged.  
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Fig. 6. Final results provided by the identification algorithm 

considering the operating condition selected in Fig. 3 

 

 

4. Conclusions 
 

The main conclusions of the present work are summarized 

as follows:  

 

- Previously to the application of the identification 

procedure, it is important to perform an adequate 

selection of the initial centred values and the searching 

ranges. The interest of this work lies in the fact that it 

helps to fix the appropriated search range for 

determining the value of each parameter. 

- The sensitivity assessment allows decreasing the 

number of significant parameters in the model. 

- Several terms can be removed from the identification 

procedure, due to their low sensitivity. It implies that 

the number of terms to be identified can be reduced 

from 30 to 18. 

- On the other hand, some parameters need a deeper 

study, mainly those associated with the injector 

armature. 
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