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Abstract. The Deployment of Power Line Transmission 
(PLT) and the development of new broadband services over the 
telephone network through technology like xDSL (x Digital 
Subscriber Line), requires higher data rates, consequently 
higher bandwidths, and operating frequencies. So it is generally 
accompanied with electromagnetic compatibility (EMC) 
phenomena, in particular the radiated emissions associated to 
the deployed system and used cables characteristics. In fact the 
electrical cable presents variations in their geometry, causing an 
increase in the electromagnetic radiation. This paper presents a 
theoretical approach to study a complex transmission line 
network over ground plane. This approach leads to an analytical 
expression for the evaluation of P.U.L. parameters of finite 
length twisted wires lines. These expressions give the 
capacitances and the inductances values in every point of the 
cable, the theoretical results are compared to measurements. 
The formalism is also derived to determine the distribution of 
the electromagnetic field radiated by Shielded or Unshielded 
Twisted Pair cables with discontinuity. The obtained results are 
compared to those provided by a code based on the antenna 
theory. 
 

Keywords  
PLT, xDSL, radiated emissions, nonuniform transmission 
line, discontinuity, P.U.L. parameter. 
 
1. Introduction 

 
The advance of high-speed systems increases the 

generation and radiation of undesired electromagnetic 
waves. For example, as the demand and deployment of 
multi-media data transmission are increasing, xDSL 
technology is widely used on the telecommunication 
access network. Conveying such services requires higher 
data rates, consequently higher bandwidths, and 
operating frequencies.  
The increase in bandwidth for the new services will 
require considerable ingenuity. In particular, signal 
propagation at these frequencies through the differential 
and common mode, lead not only to ground wave 
transmission but also to sky wave propagation.  

To study cable systems and the resulting 
electromagnetic phenomena, generally we use the 
antenna theory or the transmission line theory. In the first 
case, the integral equations resulting from the Maxwell's 
equations are used, which allows to study complex 
structures more rigorously than the transmission line 
theory. However, such approach needs an important 
computing time according to the complexity of the 
studied configuration. 
With the transmission line theory, the effectiveness of the 
method depends on the Per-Unit-length parameters 

(P.U.L.), related to the elementary structures of the 
equivalent model. These parameters can be calculated or 
measured. 
 For telecommunication, the twisted pair cables are 
frequently used. The symmetry of telecommunication 
cables is directly depending on the electrical 
characteristic of the twist. This symmetry can give rise to 
common mode currents at any point on the network and 
generates radiated emissions. The P.U.L. parameters are 
strongly related to the geometry of the studied structure. 
Consequently, a network constituted of twisted pair 
cables is more difficult to model. 
On the other hand, discontinuities in the transmission line 
like bends may cause disturbing fields and consequently, 
increase the crosstalk and the electromagnetic 
interferences. 
 

In this paper, we propose an approach for 
modelling transmission line localized over a ground 
plane. Section II and III presents the formalism, which 
has been used in order to determine the P.U.L. 
parameters of twisted pair cables above a perfect ground 
plane. In section IV, the approach is used to study the 
electromagnetic emission from transmission line network 
with discontinuity (bend, variable height of different 
sections). This characterization leads to the determination 
of the current and voltage distribution by using chain 
matrix approach. The following step is the determination 
of electromagnetic field radiated by Shielded or 
Unshielded Twisted Pair (U.T.P. or S.T.P.) cables. 
 
 

2.  Theoretical approach  
 
The formulation proposed in this paper leads to 

study the distribution of electromagnetic field radiated 
by multi-conductor network of complex geometry. The 
formalism is based on the non-uniform transmission line 
theory, where the P.U.L. parameters vary according to 
the geometry of the line [7,8]. The transmission line 
equations can be derived from the integral or differential 
Maxwell's equations. To assess the P.U.L. parameters, 
The calculation of the magnetic field and the electric 
charges are necessary [1,2]. From the Maxwell's 
equations, the electric field can be obtained via the scalar 
and vector potentials: 
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permeability and the permittivity in the free space. The 
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The current density |J|
 

and charges density ρ  are 

obtained by the following equation : ωρ−=⋅ jJdiv
r

. 

The tangential component of the electric field on the 

conductor surface vanish, Aj0E
rr

ω−=φ∇⇒= . Denote 

ẑ  as the unit tangential vector on the conductor surface. 
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Using the thin-wire approximation [3], i.e. the 
currents on wire of small diameters will circulate only on 
the axis of the conductor Ci where i = 0, 1... N (N: 
number of conductors). Note Ii(z') the total current on the 
conductor Ci , z' corresponds to the co-ordinates on the 

axis of each conductor. )z(iφ  represent the scalar 

potential on Ci, which is contributed from all other 
conductors. z indicates the observation's point and it is 
located on the surface of the conductor. 

[ ]∑∫
=

′′−′
′
′

ωεπ
−=φ

N

1n C

0iin
n

i

n

zd)z,z(G)z,z(G
zd

)z(dI

j4

1
)z(  (5) 

[ ]∑∫
=

′′−′′•′
π

ωµ−=φ N

1n C

0iinn
i

n

zd)z,z(G)z,z(Gzˆẑ)z(I
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The voltage for m-th conductor is calculated by: 
 

)z()z()z(V 0mm φ−φ= ,       m = 0, 1,… N (7) 

On the other hand, we can deduce : 
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V and I respectively represent the current and the voltage 
for each conductor to the reference conductor (vector of 

N values). ]l[L mn=  and 1
mn

1 ]b[BC −− == are NxN 

matrices (m,n = 1, 2... N). L and C are respectively the 
capacitances and inductances calculated: between the m-
th conductor and the reference for self-values, and, 

between m-th and n-th for the mutual values. mnl  and 

mnb  can be calculated from the following equations : 
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Therefore, the characteristic impedance can be defined by 
the ratio of the forward-wave voltage and current. The 
line parameters obtained from (9) can be calculated by 
supposing )jkzexp()z(In −≈ , where K is the propagation 

constant in free-space. 
 

 
3.  Application of the formalism to calculate 

P.U.L. parameters of a twisted pair cable 
 
Nowadays, as the high bit rate technology is widely used, 
the modelling of the twisted pair cable becomes essential 
to study the radiated electromagnetic fields. The shape of 
the twisted pair cable is modelled as a double helix (Figure 
1). 
 
 

 
Fig. 1.  The radiation from twisted pair cable  

The Cartesian co-ordinates of a double helix (wire 1 and 
wire 2) in a three-dimensional space and directed 
according to Z-axis [4,5] were considered : 
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R' is the cable radius, p is the cable pitch, i.e., the length 
of one turn, L is the physical length of the radiating part 
of the cable. Where w is the length parameter, w running 
from zero to L.  
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Using the theory of the electric images, R is the distance 
from the source to observation point. The s points are 
located on the conductor surface and the s' points are 
located on the axis of the structure: 

22 r)'ss(R ±
± +−=  (12) 

The symbols "+" indicate the distances R from the source 
to the observation point, on the other hand, the distances 
from the image of the source to the observation point are 
indicated by the symbols "-".  
r is also a distance which its value is related to co-
ordinates of each pair (X1,Y1,Z1 and X2,Y2,Z2). 
 
By making a change of variables x'=-s, the inductance 
and capacitance can be calculated as follows : 

π
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A. Case of Unshielded Twisted Pair Cable 

The conductor geometry plays an essential role 
in the limitation of the interferences and the radiation 
phenomena. In the transmission line theory, this impact 
appears clearly in the P.U.L. matrices, through the values 
and the symmetry of every matrix [6]. 
The calculation of the P.U.L. parameters of multi-
conductor twisted pair cable is more constraining 
compared to of the case of flat conductors. The cables are 
above of infinite ground plane, where in X-coordinate 
s=0, the height of the axis of conductor "n" is hn. Using 
the theory of the electric images of UTP [1]. 
In order to validate the theoretical results, 
experimentations were carried out to measure values for 
unshielded cables network. Appendix (2) shows the 
simulation and measurement results of the average values 
of characteristic impedances (Zc). 
However, we can observe a good tuning between the 
calculated and measured parameters, which shows the 
validity of our model. 

B. Case of Shielded Twisted Pair cable  

In the case of the STP cables, the images of the 
conductors are calculated and located at radial distances 
from the shield, as indicated in figure 2 [1]. 

 
Fig. 2.   Shielded twisted pair s=0, Using the theory of the 
electric images. 
 
Let us note rb the radius of the shield, and, di the distance 
which separates conductor "j" to the shield center. In the 
case of a circular shield, the image is at rb

2/dj from the 
center. The Zc parameters were measured [6], and then 
these results were compared with the calculated values. The 
symmetry in the P.U.L. matrix was reproduced correctly. 
Moreover, we noted a good agreement (Appendix (2), 
Table: 3,4). 
 
4. Application of the formalism on 

transmission line network with 
discontinuities 

 
In this section, we will study the case of two 

conductors of radius "a" with an arbitrary angle α0 shown 
in figure 3. The first conductor "C1" is suspended at the 
height h1, however the second conductor "C2" is at h1 in 
s=0 and at h2 in s=L2 over the ground plane. 
 

 
Fig. 3.  Conductors with bend over ground Plane 
 
Hence, from (5,6) the series impedance Z(s) and shunt 
admittance Y(s) can be expressed as follows: 
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The integrals in (15) and (16) expression can be 
simplified be making a change of variables. The 
P.U.L. inductance l(s,hi) and capacitance c(s,hi) of 
the line can be calculated by: 

(17) 
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The A1, A2, A3 and A4 expression are respectively 
derived in the Appendix (1). 
 

With the chain supermatrix, the values off all 
voltages and currents along the cable can be determined 
for each frequency. So, v(s) and i(s) are the voltage 
vector and current vector at abscissa s. 
To calculate the radiated fields, let us assume that the 
reference conductor is ideal (i.e. infinite and perfectly 
conducting ground plane). The electromagnetic field is 
calculated at a point P specified by its right-hand 
cartesian coordinate (X,Y,Z).  
 

Where X is a vertical distance above the horizontal 
ground plane, Y is the distance from the cable, Z is a 
horizontal distance parallel to the cable. Consequently, 
the radiated emission by the cable above the ground 
plane is determined by the per-unit-length dipole 
moments (electric and magnetic dipole moment). Finally, 
the electric and magnetic fields respectively are 
calculated by using the Hertz potentials. 
 

A. Application case and results 
We consider as numerical application case: a bend 

two-wire transmission line over ground plane as shown in 
figure 4. 
 

 
Fig. 4.   Conductors with bend over ground plane 
 
The height of conductors is constant (h1=1m) for L1≤s<0, 
and, for s including between 0 and L2, this value is 
variable h1≤hi≤h2 (h2=1.5m). 
The first conductor (Wire1) is connected to a voltage 
source of unit amplitude and terminated by a resistance 
of 120Ω. Wire2 is connected to the ground at both ends. 

In order for verify the applicability of the formulation, 
the results calculated by our approach will be compared 
to the results obtained by the antenna theory (FEKO 
code).  
 
The electric fields were calculated at P=[50cm,1m,49m]. 
The results of E fields obtained with the two approaches 
are represented on the curves of figure 5.  
 
In the same context, a simulation was carried out to study 
the magnetic field for the same network configuration 
(Figure 4). Once again, the field is calculated by the tow 
theories (antenna and non-uniform transmission line), 
figure 6 shows the magnetic radiated emission (H). 
 
However, we can observe a good tuning between the 
calculated the field results, which shows the validity of 
our model. The evolution of the signal level was 
reproduced correctly. The difference between simulations 
is due to the assumptions made in our theoretical 
approach. 

 

5. Conclusion 

In order to study the radiation from complex 
network of multiconductor transmission lines, a 
theoretical approach has been presented. The method is 
formulated in the frequency domain and uses 
multiconductor transmission line theory for the 
determination of field sources. This formalism is based 
on the modified transmission lines theory, where the 
P.U.L. parameters vary according to the geometry of the 
line. 

Analytical expressions for P.U.L. parameters of 
twisted pair transmission lines have been developed and 
programmed with Matlab. 

To validate the theoretical approach, the 
simulated results were compared with the measurements 
of P.U.L. parameters carried out in France Telecom 
laboratory. The obtained results confirm the assumptions 
used, and validate the model of simulation. The 
discrepancies between simulations and experimental 
results are due to; the inaccuracy of P.U.L. measurement 
and the assumptions made in the theoretical approach. 

The distribution of the electromagnetic field 
radiated by cable network with discontinuity was 
simulated by using this formalism. Then, the results 
calculated by this theory were compared to those 
obtained by using a code based on the antennas theory. 
We noted a very good agreement between the two 
formalisms. The weak inaccuracy observed between the 
results is also attributed to due to the many assumptions 
used to simplify and decrease the calculation time. 

 
The method can be used to study EMC 

phenomena for complex cables systems. In addition, an 
equivalent circuit can be defined to characterize the 
bends or other type of geometrical discontinuities. The 
study reported here may be useful in establishing the new 
engineering rules for the deployment of high bit rate data 
systems on coppers transmission systems. 
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Fig. 5.  Electric field (E) – Antenna/ Formalism, P= [50 cm, 1 m, 4 m], α0 = 90°, L1 = L2 = 5 m.

 
 

 

Fig. 6.  Magnetic field (H) – Antenna/ Formalism, P= [50 cm, 1 m, 4 m], α0 = 90°, L1 = L2 = 5 m. 
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Appendix (1) 
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Appendix (2) 

Characteristic impedance: 
C

L
Zc =  

Unshielded twisted pair, 8 conductors, length 2 m 
height 0.5m, measure\theory 

Shielded twisted pair, 8 conductors, length 2 m 
height 0.5m, measure\theory 

 

 Table 1 : Characteristic impedance measure (ohms) 

177,5 231,4 507,3 503,8 1051,6 1068,6 495,3 489,1 

231,4 176,8 506,5 502,0 1065,8 1052,0 501,8 497,5 

507,3 506,5 173,5 225,5 475,7 488,8 1023,2 1023,5 

503,8 502,0 225,5 174,5 489,6 488,8 1055,1 1120,1 

1051,6 1065,8 475,7 489,6 176,4 236,4 491,8 500,7 

1068,6 1052,0 488,8 488,8 236,4 176,4 495,0 495,7 

495,3 501,8 1023,2 1055,1 491,8 495,0 174,3 228,1 

489,1 497,5 1023,5 1120,1 500,7 495,7 228,1 174,4 
 

 Table 3 : Characteristic impedance measure (ohms) 

84,3 95,5 174,1 170,9 367,7 366,1 160,6 156,8 

95,5 84,4 171,3 172,8 366,8 360,0 165,6 159,7 

174,1 171,3 87,3 83,5 161,9 162,3 263,5 267,5 

170,9 172,8 83,5 86,9 161,7 155,3 261,7 253,4 

367,7 366,8 161,9 161,7 88,7 90,6 155,1 153,8 

366,1 360,0 162,3 155,3 90,6 87,6 151,6 153,9 

160,6 165,6 263,5 261,7 155,1 151,6 88,9 86,0 

156,8 159,7 267,5 253,4 151,0 153,9 86,0 87,8 
 

 

 Table 2 : Characteristic impedance simulation (ohms) 

176,8 213,9 550,1 514,3 916,3 874,7 543,9 541,8 

213,9 177,7 557,2 543,7 912,4 916,3 555,7 526,4 

550,1 557,2 177,5 213,9 526,2 541,6 894,1 924,7 

514,3 543,7 213,9 177,0 555,7 543,7 911,3 894,1 

916,3 912,4 526,2 555,7 177,7 213,9 543,7 557,2 

874,7 916,3 541,6 543,7 213,9 176,8 514,3 550,1 

543,9 555,7 894,1 911,3 543,7 514,3 177,0 213,9 

541,8 526,4 924,7 894,1 557,2 550,1 213,9 177,5 
 

 

 Table 4 : Characteristic impedance simulation (ohms) 

85,1 96,7 168,5 131,9 171,6 163,5 161,0 128,7 

96,7 79,6 129,6 161,8 167,5 143,7 125,8 152,8 

168,5 129,6 80,6 92,7 135,1 167,2 171,4 137,0 

131,9 161,8 92,7 80,6 186,5 127,4 137,4 175,0 

171,6 167,5 135,1 186,5 77,3 84,7 188,4 167,9 

163,5 143,7 167,2 127,4 84,7 82,4 236,1 330,0 

161,0 125,8 171,4 137,4 188,4 236,1 81,1 91,4 

128,7 152,8 137,0 175,0 167,9 330,0 91,4 81,1 
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