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Abstract. A neural network-based control system is offered, 

which ensures high quality blended braking of the green energy 

vehicles in both the intensive and the gradual deceleration 

scenarios, with energy recovery at the changing road pavement. 

In this study, a neural network controller provides the torque 

gradient control without a tire model resulting in returning 

maximal energy to the hybrid energy source during the braking 

process. To meet the conflicting requirements of different 

braking modes and road surfaces, an allocation algorithm 

determines how to distribute the driver’s torque request between 

the friction and electrical brakes. Simulation demonstrates 

effectiveness of the proposed braking system. Model states and 

inputs are used as a guidance to learn a coupled two-layer neural 

network capable to capture various dynamic behaviours that 

could not be included in the simplified physics-based model. An 

experimental part of the research proves the model and 

simulation validity. 
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Acronyms 

 
ABS antilock braking system 

EB electrical brake 

EV electric vehicle 

FB friction brake 

HES hybrid energy storage 

HIL hardware-in-the-loop 

kJ recovered energy 

λ, L% p.u. and percentage wheel slip, appropriately 

MRC model reference controller 

MSE mean squared error 

NN neural network 

NNC neural network controller 

NNEV neural network model of an electric vehicle 

r effective radius of the wheel 

REF reference 

SOC state of charge 

TA torque allocator 

T*, T actuating and application braking torque, 

appropriately 

TB* driver’s reference 

TE*,TE electrical fraction of actuating and application 

braking torque, appropriately 

TF*,TF friction fraction of actuating and application 

braking torque, appropriately 

vv longitudinal velocity of the vehicle 

vw longitudinal velocity of the wheel 

 angular speed of the wheel 

 

1. Introduction 

 
Though a specific performance of energy converters is 

getting better with each passing year, the overall 

efficiency of transportation has dropped from 26% to 

21% during the past 70 years due to rising car ownership, 

heavier vehicle power, much more frequent trips, and 

longer travelled distances [1]. At this, 20 to 70% of 

vehicle energy is lost during braking [2], [3]. Therefore, 

the problem of energy recovery in braking is currently of 

great importance. In the case of gradual braking at 

downhill driving, deceleration ahead traffic lights, 

parking, and similar regimes where the driver reduces car 

velocity in a stable and smooth manner, many useful 

solutions for green energy electric vehicles (EV) can be 

found in literature [4], [5]. On the other side, very little 

researches are published about energy saving in intensive 

antilock braking systems (ABS), such as [6]. Even less 

attention is paid to energy recycling solutions that might 

be so universal that equally succeed in both braking 

scenarios [7]. 

The benefits of EVs are based on their advantages in 

terms of the braking management potential, such as fast 

and accurate power generation by electrical motors, easy 

torque measurement by sensing the current, accurate 

wheel speed encoding, and an ability to adjust 

independently each wheel due to the small motor 

dimensions [8]. However, in most of existing EV control 

strategies, regenerative electrical braking (EB) accounts 

for only a small fraction of the total braking force, which 

causes high braking security along with poor braking 
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economics [9]. The challenge lies in the contradiction 

between the specific energy requirements posed by 

intensive stopping and by stopping with energy recycling. 

In ABS, the friction (hydraulic) brakes (FB) are mostly 

used that are capable to convert friction force to heat very 

fast. At gradual braking, EB is preferred in terms of energy 

recovery, which, however, is restricted in the pace due to 

the limited state of charge (SOC), voltage, and current. To 

resolve this problem, the blended braking systems are 

designed that unite traditional FB and EB, being associated 

with hybrid energy storage (HES) equipment composed of 

batteries on one side and ultracapacitors or/and flywheels 

on the other [10].  

With both EB and FB, the braking strength is to be 

additionally limited to avoid skidding due to tire-road 

friction weakening. At present, there are no affordable 

sensors to identify nonlinear and nonstationary tire-road 

friction and make these data available to a braking 

controller [11]. Although many attempts have been made, 

an accurate and general mathematical model of tyre 

behaviour has not been obtained. Therefore, some indirect 

estimates are needed that look problematic in general and 

complicated by the fact that tire properties depend on 

variable road conditions and many other features.  

In contrast to friction, wheel slip can be calculated easily 

as follows: 

v

rv ω
λ


                                     (1) 

where v – longitudinal vehicle velocity,  – angular wheel 

speed, and r – effective radius of the wheel. EVs usually 

utilise wheel-based sensors to measure the angular speed 

and/or angular acceleration of the wheel. As well, a 

number of different techniques have been proposed to 

estimate vehicle velocity [3], [12].  

To transfer from slip to friction, several methods are 

available in the literature, such as Pacejka’s “Magic 

Formula”, Burckhardt model, Rill model, and others [8], 

[13], [14]. However, there exist diverse views on how to 

apply the obtained friction-slip estimates to ensure both the 

requested stopping rate and maximal energy recovery 

taking into account that the friction peak optimality for a 

given road surface is variable. For example, in [7] the 

highest friction is developed at the slip level of about 12% 

on the dry road and at 5% on the icy road. On the contrary, 

in [12] the biggest friction appears at 20% slip on the dry 

road and at 30% on the icy road. Usually, the location of 

these peaks depends on the initial car velocity and 

alternates for forward-rear and right-left wheels. Hence, to 

avoid skidding, the designers commonly offer to choose 

some understated slip level, say 10% [12]. As a result, the 

vehicle does not decelerate fast enough and does not save 

as much energy as desired.  

To exclude the above vagueness, in [7] the torque gradient 

control method is designed, where the derivative 
λd

dT of the 

application torque T with respect to slip λ is used as a 

control feedback instead of slip applied in conventional 

intelligent braking ABS, such as [12]. The main benefit of 

this method is that it does not require any tire model for 

implementation. Therefore, this approach is further 

elaborated in this paper.  

Different controllers are applied to manage braking in 

EVs with blended braking systems. Among them, the 

intelligent control equipment, including fussy logic, 

model predictive, genetic algorithm, or neural network 

(NN) based controllers (NNC), have proven to be an 

emerging and effective solution capable to deal 

successfully with the nonlinear, uncertain, and varying 

braking dynamics [12]. The scope of application of 

intelligent vehicles with highly nonlinear dynamics 

driven upon the changeable road pavement grows 

annually [10]. 

The NNCs can outperform human experts used in fuzzy 

logic and may be realized within reasonable timeframes 

more accurately than other controllers [15]. For these 

reasons, different NN methodologies have been applied 

in the braking systems of automobiles [16], including 

control in changing driving scenarios [17], uncertain 

variable-pavement roads [18], and such surface types and 

combinations as gravel wet, gravel dry, cobblestone wet, 

cobblestone dry, asphalt wet, and asphalt [12]. The study 

[19] represents an example of an intelligent system where 

the braking space is defined as a set of actions covering 

no braking, weak braking, average braking, and strong 

braking, which management policy is conducted by deep 

reinforcement learning.  

The NNCs are employed successfully for optimisation of 

HES energy recovery. For instance, in [20] a 

convolutional NN estimates EV energy consumption. 

In [21], a regenerative EB scheme is offered to transfer 

braking energy to the HES devices. To that end, the 

multilayer feedforward NN provides satisfactory 

capability comprising EV speed and SOC of the 

supercapacitor and battery banks in a number of braking 

situations. As well, in [22], consumed power, trip time, 

and SOC are used as the NN training inputs; the EV 

recommended operation modes appear on the NN output; 

whereas the peak and off-peak load times, human 

behaviour, seasonal and weather conditions feed the 

model to generate a realistic load pattern. Another 

example is a deep NN-based approach of EV energy 

demand estimation proposed in [21], which is based on a 

driving cycle series served as a static input to the NN. In 

[24], the HES-based braking system implements 

automatic control of the EV regeneration torque aiming 

to improve energy efficiency along with driver’s comfort. 

To apply this system, the accurate prediction of the 

vehicle deceleration states was produced using the long-

short-term memory and a two-layer conventional NN 

model. 

An objective of the current research is to offer a new NN-

based control system, which ensures high quality blended 

braking of EVs in both the intensive (ABS-fed) and the 

gradual braking scenarios with energy recovery at the 

changing road pavement. The main contribution of the 

paper is in the design of the NNC capable to meet the 

conflicting requirements of different braking modes and 

road surfaces. This is one of the first studies where the 

NNC provides the torque gradient control without a tire 

model resulting in returning maximal energy to the 

vehicle HES during the braking process.  
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Using the author’s torque allocation algorithm, the system 

determines how to distribute the driver’s single torque 

request into separate torque requests between the FB and 

EB. Simulation demonstrates effectiveness of the proposed 

NN-based braking system. The model states and inputs are 

employed here as a guidance to develop a coupled two-

layer NN. Furthermore, the simulation study shows that 

the designed model can capture various dynamic 

behaviours that could not be included in the simplified 

physics-based model. An experimental part of the research 

proves the model and simulation validity. 

In the next sections, an NN-based braking system and its 

parts are introduced. Then, two design phases of the NNC 

are explained, which are identification of the NN model 

for predicting the EV behaviour and training the NNC 

using the identified NN model. After the control system is 

trained and validated, its responses are estimated against 

different driver’s requests and environmental conditions. 

To verify the effect of the proposed control strategy in the 

hardware environment, an experimentation is described. 

Finally, results are discussed and conclusions are drawn. 

 

2. Braking System 

 

The braking system discussed in this paper involves the 

reference system (REF), the NN-based model reference 

controller (MRC), the torque allocation (TA) module 

coupled with the physics-based EV model (PBEV) with 

blended braking supplied from the hybrid energy storage 

(HES), and the computational modules that estimate wheel 

slip and torque gradient (Fig. 1). 

 

Fig. 1. The architecture of the EV braking system. 

The block REF imitates an instant when a driver has 

stepped on the brake pedal. The block MRC produces 

actuating torque T* further divided by the block TA into 

two fractions: electrical TE* and friction TF*, both coming 

to the block PBEV. During braking, the block HES 

consumes an electrical fraction kJ of energy generated by 

PBEV while its value does not exceed the permissible 

SOC, voltage, and current restrictions. Application torque 

T of PBEV decelerates the EV with such intensity as to 

meet the driver’s reference TB* on the one hand and to 

avoid wheel skidding coursed by the wheel slip on the 

other. Electrical current recharges the HES block from the 

EB while the pressure signal adjusts the FB. 

The physics-based vehicle model PBEV was established in 

[7] based on experimental data that describe the interacted 

single-wheel rotational properties and the EV physical 

features. It is made up of an adjustable electrical drive 

implementing regenerative EB, a friction drive integrated 

with FB, and a module simulating the gear and vehicle 

inertia. To ensure the direct torque control with 

consideration of system non-linearity and space vector 

modulation, the AC6 Interior PM Synchronous Motor 

Drive block from the Specialized Power Systems 

MATLAB/Simulink™ library is used as a core of the EB. 

It is composed of the electric motor of 288 VDC, 100 

kW, the three-phase voltage source inverter fed by direct 

voltage from the HES, the space vector modulated 

controller equipped with a three-phase current regulator, 

and the speed controller operated in the torque regulation 

mode.  

The torque allocation module TA algorithmically 

distributes actuating braking torque T* generated on the 

MRC output between the front and rear wheels in a fixed 

ratio [25] and allocates it between FB and EB based on 

real-time SOC, voltage, and permissible EB current. In 

[7], an appropriate torque allocation algorithm is offered. 

In order to keep the HES battery and ultracapacitor 

within their safe operating areas, this algorithm checks if 

electrical current and actuating motor torque meet the 

real-time HES restrictions. Once the braking torque 

exceeds these boundaries, the FB is added or is replaced 

with the EB. Therefore, the common trait of this strategy 

is to include regeneration into all braking scenarios, even 

during heavy braking with ABS, leaving the solo FB only 

if the HES is saturated. 

 

3. Model Reference Controller 

 

To design the NN, the Deep Learning Toolbox™ from 

MATLAB/Simulink® was used in this study. An 

interactive environment for developing the NN 

controllers, namely, the MRC block, was applied. The 

MRC solves the problem of effective EV braking with 

maximal recovery of braking energy using data generated 

by the PBEV. For that, in response to the reference in the 

form of the driver’s torque request TB*, the MRC has to 

produce the actuating braking torque command T* for 

stopping the PBEV without wheels locking at a variety of 

road conditions and EV speeds.  

The MRC includes two NNs, which are the NN controller 

(NNC) generating the actuating braking torque command 

and the NN model of the PBEV (NNEV) predicting its 

behaviour. Two phases of the MRC design were 

conducted (Fig. 2), namely, (a) identification of the 

NNEV and (b) training the NNC based on the identified 

NNEV.  

  

a.                                b. 

Fig. 2. Two phases of the MRC design: (a) identification of the 

NNEV, (b) training the NNC. 
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The goal of the NNEV identification is to obtain the 

NNEV parameters with the capacity of representing the 

behaviour of the unknown PBEV.  

The mean squared error (MSE) between the PBEV and 

NNEV outputs was used as the NNEV training signal. In 

the NNEV, the feedforward topology is used, and in the 

NNC – the recurrent one. In both NNs, a double-layer 

architecture is applied with delay lines that hold the 

previous values of braking torque in such a way that the 

input signals enter the input layers of the NNs in the next 

cycle.  

A variant of the Levenberg–Marquardt gradient descent 

algorithm [26] was employed for identification and 

training. Preliminary, a set of samples was prepared that 

cover the range of expected MRC inputs. The reference 

training function trainlm is utilised consisted of a series of 

steps of random heights and random intervals. Since the 

MRC output is limited to 0 and 1, the sample datasets have 

been exposed to preprocessing. Both NNs were trained for 

function approximation (nonlinear regression) so that the 

MRC output follows the reference as closely as possible. 

Some sample characteristics of the training process are 

collected in Table I. 

Table I. Characteristics of training samples 

Sample parameter Unit Value 

Sampling interval s 0.05 

Number of samples  400 

Maximum reference interval s 2 

Minimum reference interval s 0.1 

The REF block was adopted as a source to generate 

training data. In the NNEV identification phase, the batch 

mode was enforced in which all inputs in the training 

dataset were applied to the NNEV before the weight 

updating. It was performed offline based on the 

measurements of the NNEV inputs and outputs of the 

system. The NNEV output was compared to the PBEV 

output aiming to minimise the MSE between the 

responses. During identification, the sample dataset was 

shared among the training, validation, and testing phases.  

After performing identification, a final NNEV architecture 

was chosen, which has two neurons in the input layer, 10 

neurons in the only hidden layer with the sigmoid 

activation functions, and an output layer with a single 

neural linear activation function. The sigmoid tansig 

activation functions allow the NNEV to learn nonlinear 

relationships between inputs and output. The linear purelin 

activation function is suitable for solving the regression 

problem related to the braking torque estimation. It was 

found that adding more hidden layers or hidden neurons 

does not improve the performance while increasing 

computation complexity, which is not desirable in a time 

critical context. Another obstacle to increasing the number 

of hidden layers might be the opacity of the system, which 

prevents effective security checks. The convergence curve 

of the model shows that MSE has almost converged at the 

10th epoch where its value is 7.6574e−06. Therefore, the 

model can be qualified as a well-trained one and 10 epochs 

chosen for training are sufficient to meet the demands of 

the model application. The final regression value of 

0.99997 after training, validation, and testing, also 

qualifies the model as a good one. 

Once the NNEV is identified, it was used to train the 

NNC. Among the algorithms suitable for the NNC 

performance optimising, the fastest of the gradient types 

was applied, namely, the backpropagation algorithm able 

to perform computations backward through the NN. The 

NNC was trained using the PBEV model, having one 

input and one output to generate data for the MRC 

training algorithm. The strategy of training supports both 

the offline and online tuning the NNC weights in a way 

that the MSE between the reference and the NNC output 

converges to almost zero.  

The chosen NNC architecture has 3 neurons in the input 

layer, 10 neurons in the only hidden layer of the sigmoid 

activation function, and an output layer with a single-

neural linear purelin activation function. However, 

during the EV operation, the NNC can continue to learn 

and adjust the hidden layer parameters in accordance 

with changing operating conditions. As follows from the 

training results, the convergence speed of the NNC is 

very fast, and the optimization is obtained quickly. 

According to the convergence curve, the MSE has almost 

converged at the 10th epoch, where the value is 

108.35e−06. A regression value of 0.99933 qualifies the 

NNC model as well trained. 

 

4. Results and Discussion 

 

After the MRC is trained and validated, the PBEV model 

responses were estimated against different driver’s 

requests and MRC commands. To verify the effect of the 

designed control strategy in the hardware environment, a 

set of hardware-in-loop (HIL) experiments was 

preliminary conducted. The experimentally validated HIL 

emulated an electric sport utility vehicle with four 

independent in-wheel motor powertrains in dynamically 

changing and vaguely defined environmental 

conditions [6]. The core of the HIL setup is represented 

by a decoupled FB testbed developed by the ZF TRW 

Automotive® (Koblenz, Germany), connected to the 

high-precision vehicle dynamic software IPG CarMaker® 

(Karlsruhe, Germany). The mass of the sport utility 

vehicle under the study is 2117 kg and wheel radius is 0.2 

m. It was assumed that the vehicle is moving in a 

straight-line manoeuvre at a velocity of 100 km/h, 

powered by an electrical motor with a maximal 

permissible torque of 200 Nm, wheel speed of 157 rad/s, 

and inertia of 2.1 kgm2, connected to the wheel imitator 

through the gear with a ratio of 10.5. The HIL system 

under investigation provides separate control of each of 

the four wheels via two fundamentally distinct drives. An 

electrohydraulic brake of the HIL setup was connected to 

a host computer through the dSPACE® electronic 

platform. The IPG CarMaker® software was running by 

the EV model.  

In Fig. 3, several experimental results obtained from the 

HIL at braking on the changing road surface from dry to 

icy are shown. The wheel velocity curve (vw) 

demonstrates the velocity of the front left wheel, which 

follows the vehicle longitudinal velocity (vv). Its wheel 

slip (L%), friction torque (TF), and electrical torque (TE) 

curves are displayed. On the dry asphalt, since the EB 
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torque is not sufficient to retain the optimal slip, the 

control system requests additional FB torque. As the speed 

drops to about 50 km/h, the road under the EV wheels 

changes from dry to icy. On an icy road, the FB is no 

longer required, as the electrical torque is sufficient to 

slow the car down within the optimal wheel slip zone. 

Therefore, regeneration lasts all the way, while the FB 

does not participate in braking, except for the end of the 

process. At the end of the slowing down, the regeneration 

is turned off, and FB completes the deceleration alone. An 

evident chattering phenomenon at low velocity is seen in 

the experimental torque plots. 

 
a. 

 
b. 

Fig. 3. Traces obtained from experimentation: a – vehicle (blue) 

and wheel (light blue) velocities and wheel slip (purple); b –

regenerative (red) and friction (green) torque. 

In order to investigate the effect of the NN control, taking 

into account the assessment of the road surface, the motion 

of a vehicle on a changing pavement, from dry to icy, was 

simulated. Figure 4 displays the traces obtained from the 

simulation of the volatile driving conditions.  Here, in 

response to a driver’s setpoint TB*, the application torque 

was allocated between the electrical (TE*) and friction 

(TF*) fractions, the first of which was limited by the value 

of 200 Nm.  

As follows from Fig. 4, the system successfully detects a 

change of the road surface based on analysis of the torque 

gradient. At the beginning, the deceleration was around 

30 m/s2 on a dry surface. Since the road surface changes 

from dry to icy, the new gradient is recognized, and the 

total application torque needed to ensure an intensive stop 

drops to 60 Nm. The FB is no longer required, as the 

electrical torque is sufficient to slow the car down within 

the optimal wheel slip zone. Therefore, only electrical 

braking is performed further. At low velocity, the EB turns 

off, and the FB runs alone. Herewith, an obvious 

reduction in chattering is observed in the torque plots at 

low velocity. First, this is because the designed model 

takes into account an increase of friction due to its static 

fraction. Second, because the torque loop of the electrical 

drive remains closed, even without the EB. 

 
a. 

 
b. 

Fig. 4. Traces obtained from simulation: a – vehicle (blue) and 

wheel (light blue) velocities and wheel slip (purple); b –

regenerative (red) and friction (green) torque. 

Based on the energy curves (kJ, black) and assuming a 

50% regenerative efficiency, it turns out from Fig. 4 that 

nearly 22 kJ of energy is recovered when braking on all 

roads. 

 

5. Conclusion 
 

An NN-based control system offered in this paper 

ensures high quality blended braking of the green energy 

vehicles in all deceleration scenarios, with energy 

recovery at the changing road pavement. 

By imitating changes in road conditions, the robustness 

of the designed MRC was evaluated. Comparison of the 

experimental and simulation results on two different road 

surfaces has proved good braking performance 

established with MRC. When trained on a combination of 

data from different roads, the NN control model is able to 

make appropriate predictions for the road surface on 

which the EV is traveling.  
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The EV velocity, slip, and torque responses have proved 

the proper system performance. The MRC-driven system 

supports the same torque as in experimentation, 

successfully keeps optimal wheel slip in braking, and 

demonstrates the same braking times as the experimental 

system shows. At the same time, the torque chattering is 

minimal upon the NN control.  

An ability to execute accurately indicates that the model 

deals properly with the strong nonlinearity and cross 

coupling of the EV dynamics. At the same time, this 

system also has the characteristics of flexible control and 

prospective applicability. 
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