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Guayaquil, Ecuador

Phone number:+593 958621189, e-mail:cjtutive@espol.edu.ec

3Universidad ECOTEC
Km. 13.5 Vı́a a Samborondón

Guayaquil, Ecuador

4Control, Modeling, Identification and Applications
Department of Mathematics

Escola d’Enginyeria de Barcelona Est
Universitat Politècnica de Catalunya
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Abstract. This work proposes a fault prognosis methodology to
predict the main bearing fault several months in advance and let
turbine operators plan ahead. Reducing downtime is of paramount
importance in wind energy industry to address its energy loss
impact. The main advantages of the proposed methodology are the
following ones. It is an unsupervised approach, thus it does not
require faulty data to be trained; ii) it is based only on exogenous
data and one representative temperature close to the subsystem to

diagnose, thus avoiding data contamination; iii) it accomplishes the
prognosis (various months in advance) of the main bearing fault;
and iv) the validity and performance of the established methodology
is demonstrated on a real underproduction wind turbine.
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1. Introduction
Nowadays, the challenge to attain energy while mini-

mizing costs and pollution is the matter in hand, due to
climate change and global warming concerns. In particular,
renewable energies are a significant opportunity. Among
renewable energy sources, the wind energy sector has grown
significantly within the last two decades. However, to really
unleash the massive potential of wind energy is crucial
to reduce its levelized cost of electricity (LCOE), see [1].
In this matter, the reduction of operation and maintenance
costs, through the use of condition monitoring strategies, is
imperative.

Condition monitoring is the crux of the matter to move
from time-based preventive maintenance (which is still the
current mainstream practice for wind turbines) to predictive
maintenance. A significant amount of research on fault
prognosis for wind turbines exists, see [2]. The main subsys-
tems that the majority of the research focuses on includes:
blades (e.g., [3], and [4]), gearbox (e.g., [5], and [6]), and
bearings (e.g., [7], [8], and [9]). These aforementioned works
use the data from specific and costly condition monitoring
sensors as they are mainly based on high-frequency vibration
analysis, acoustic emission signals, or oil analysis sensors.
By contrast, in this work, the proposed predictive mainte-
nance strategy is achieved without needing to invest in extra
hardware, but only through the already available SCADA
(supervisory control and data acquisition) data.

These SCADA data are highly variable due to the con-
stantly changing environmental conditions, are affected by
seasonality, have a low sampling ratio (usually, as in this
work, 10 minute average value) compared to the kHz fre-
quency of traditional condition monitoring strategies, are
rarely standardized, and the description of work orders is
generally not clear. Thus, resulting in challenges for re-
searchers in contextualizing these data to be used for fault
prognosis, see [10], [11], and [12]. However, recent research
has focused on this approach, and there are some success sto-
ries about using solely SCADA data from real wind turbines
for condition monitoring. For example, in [13] the diagnose
and prediction of wind turbine faults from SCADA data is
accomplished using support vector machines, and in [14]
a framework for automatically identifying periods of faulty
operation using rules applied to the turbine alarm system is
presented and applied to perform fault classification.

The previous works use SCADA data and validate their
approach on real wind turbines, but all of them require faulty
data. In particular, historical SCADA data must be accurately
labeled with the periods when turbines were down due to
faults, as well as with the reason for the fault. This is time

consuming, error prone, and likely to result in a set of labeled
vectors with an unbalanced number of classes. By contrast,
in this work, there is no need of historical fault data, thus,
the proposed strategy can be applied to any wind farm (even
when no faulty data has been yet recorded). In particular,
in this work, a one-class support vector machine (SVM)
anomaly detection method is proposed. Thus, the model is
built by using only normal (healthy) operation data.

Finally, this work deals with wind turbine main bearing
faults because, as stated by the European Academy of Wind
Energy (EAWE) [15],

The wind industry has identified the main bearing
failures as being a critical issue in terms of increas-
ing wind turbine reliability and availability, as they
lead to a major repair with a high replacement cost
and long downtime period.

The proposed methodology to prevent this important fault is
demonstrated in this work on a real underproduction wind
turbine.

2. Brief Wind Turbine Description
The wind turbine under study belongs to an onshore wind

park located in Poland. It has a power of 2300 kW and a
diameter of 101 m. Figure 1 shows its major components.
A summary of the wind turbine technical specifications is

Fig. 1. Main components of the wind turbine [16].

given in Table I.
The wind farm SCADA data contain different variables

that can be broadly grouped in environmental variables, elec-
trical variables, component temperature variables, hydraulic
variables, and control variables. The mean, maximum, min-
imum, and standard deviation of the 10-minute averaging
period of 1 Hz sampled values are available for all these
variables. In this work, the prognostic model is constructed
based only on the exogenous variables mean wind speed and
ambient temperature together with the mean low speed shaft
temperature.
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TABLE I
TECHNICAL SPECIFICATIONS OF THE WIND TURBINE.

Number of blades 3
Nominal power 2300 kW
Rotor diameter 101 m
Wind class IEC IIb
Swept area 8012 m2

Cut-in wind speed 3 m/s
Rated wind speed 12 m/s
Cut-out wind speed 20 m/s

Note that, apart from the SCADA data, there is available
information about the maintenance and repair actions. These
data provide information on the failures occurred, when did
they occur, when the work was carried out, and information
about the subsystem that was repaired or replaced. In par-
ticular, from this aforementioned information, it is known
that the wind turbine under study had a main bearing fault
on June 11, 2018. This information is used in this work to
test whether the proposed methodology is capable to predict
months in advance the appearance of this fault.

3. Failures Description
The studied wind turbine uses a double spherical main

roller bearing. This part is composed by machine elements
that permit rotary motion of shafts [17], such as a cage, the
rolling elements (that are in contact under heavy dynamic
loads and relatively high speeds), an outer race and an inner
race, see Figure 2. Any of these parts is at risk of failure
[18].

Fig. 2. Main components of the rolling bearing. [19].

Bearing damage and failure can be classified in different
ways and use different terminology. Because of that, in
1995, a working group was formed to define a common
classification method and terminology for bearing failure
types. This group classified the failure into 6 main modes
and thereafter into sub-modes [20]. The main modes are:
i) fatigue, ii) wear, iii) corrosion, iv) electrical erosion, v)

plastic deformation, and vi) fracture and cracking. There
are 14 failure modes in total, see Table II. All the named
modes have different causes and behaviors, and could de-
velop/appear progressively (slow degradation) which could
allow them to be predicted months in advance. For more
detailed information about the mentioned failures modes, see
[20].

TABLE II
SKF BEARING FAILURE CLASSIFICATION ADAPTED FROM ISO

15243:2004.

Failure Mode Failure Sub-modes
Fatigue Subsurface initiated fatigue

Surface initiated fatigue
Wear Abrasive wear

Adhesive wear
Corrosion Moisture corrosion

Frictional corrosion Fretting corrosion
False brinelling

Electrical erosion Excessive current erosion
Current leakage erosion

Plastic deformation Overload deformation
Indentations from debris

Fracture and cracking Forced fracture
Fatigue fracture

Thermal cracking

4. Methodology
This work is focused on developing a methodology to pre-

vent the main bearing failure in wind turbines. Particularly,
it is proposed a anomaly detection method, analyzing the
SCADA data using a one-class SVM algorithm. Besides, an
indicator is stated based on monthly grouping the anomalies
and using a predefined threshold, to minimize the number of
false positives alarms.

As previously mentioned, in this work a 2300 kW wind
turbine is used. The work orders show that the wind turbine
presents the main bearing failure on June 11, 2018. The main
challenge of this research is to predict the failure several
months in advance. The strategy uses the data between the
dates of January 01, 2014 until December 11, 2017 to train
the one-class SVM. Then, data from December 11, 2017
until December 12, 2019 is used to test the model (making
predictions). Figure 3 details the split into train and test
datasets.

Train data Test data

Failure on June 11, 2018 December 12, 2019

6 months to failure

December 11, 2017January 01, 2014

Fig. 3. Wind turbine data for training and test.
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The proposed fault prognosis strategy follows the next
steps. First, knowledge based selection of variables is per-
formed. Second, the data is split, cleaned and pre-processed.
Third, a one-class SVM with two inputs is trained for
anomaly detection. Finally, an indicator is stated. The next
subsections describe in detail the aforementioned procedure.

A. Variable selection

Variable selection, also called feature selection or attribute
selection, is the process of selecting a subset of relevant
features to use in the model construction [21]. In this work,
variable selection is carried out to construct a model based
only on exogenous variables and the temperature measure-
ment closely related to the studied failure.

The SCADA data used in this work were obtained from
a 2300 kW under operation wind turbine, where continuous
operational data were collected from the beginning of Jan-
uary 2014 to December 12, 2019. This data contains 434
different variables of the monitored wind turbine systems
(pitch, main shaft bearing, gearbox, generator,etc.) with
a sampling time averaged over 10 minutes, with a total
of 312433 samples. In this work, only two environmental
SCADA data (mean wind speed and ambient temperature)
together with the mean low speed shaft temperature are used.
The wind speed is the exogenous measurement that most
directly affects the behavior of the wind turbine as it defines
the different operating regions [22].

B. Data cleaning and preprocessing

As stated previously, the dataset is divided into two parts:
the first one that presents a normal operating behavior is used
as training (from 01/01/2014 to 11/12/2017, with 207192
samples), and the second one that has a failure report is used
as test dataset (from 11/12/2017 to 12/12/2019, with 105241
samples). The first step in the data cleaning preprocess is
to eliminate missing data in the selected features. Then, to
eliminate seasonality in the main bearing temperatures, the
mean ambient temperature is subtracted to it. Finally, a Z-
score normalization is employed,

z =
x− µ
σ

, (1)

where z is the value normalized, x is the original value, µ
is the mean value of x and σ is the standard deviation.

It is important that the data in the training set must corre-
spond to a normal functioning behavior, a healthy behavior,
to train the normality model. Thus, strictly speaking, it is a
semisupervised algorithm.

A plot of the training and test sets is given in Figure 4,
where the temperature variables and the wind speed variable

are shown. In this Figure also the moving average is plotted
for better interpretation, but it is not used by the model.
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Fig. 4. In blue color the data used for training dataset and in green color
the data used for test dataset, those variables with their respective moving
average just for a better understanding of visualization.

C. One-class Support Vector Machine

The SVM algorithm has shown excellent results for con-
dition monitoring systems. However, the vast majority of
these studies are based on training the model using both
healthy and failure samples, as the basic SVM paradigm
suggests. However, for many applications where there is
an absence of negative (failure) samples, or is difficult to
obtain them, as happens with wind turbine systems, applying
this algorithm is nonviable. One alternative is the one-class
SVM algorithm. One-class SVM is an extended algorithm of
SVM [23], that is trained only on the ‘normal’ data, in our
case the healthy samples. It learns the boundaries of these
points and is therefore able to classify any points that lie
outside the boundary as anomalies or outliers. Because of
that, this algorithm widely used to discover anomalies in an
unsupervised learning. In particular, the one-class SVM main
objective is to classify the data as follows [24]:

f(x) =

{
1, if x ∈ S
−1, if x 6∈ S,
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where S is a subset of a high dimensional feature space H .
The main idea is that the algorithm maps all the samples
into H by using an appropriate kernel function [25]. Then,
it attempts to find the hyperplane that separates the mapped
vectors from the origin with maximum margin. In this case,
it has to determine how far from the origin a point can be
before it can be classified as an anomaly. In our context, let
x1, x2, ...xl, be training examples belonging to the healthy
class X . Note that l is the number of training samples and X
is a compact subset of RN . Then, given Φ : X → H , a kernel
map which transforms the training examples to the feature
space, to separate the data set from the origin, the following
quadratic programming problem needs to be solved:

min
1

2
‖w‖2 +

1

vl

l∑
i=1

ξi − ρ,

subject to

wT · Φ(xi) ≥ ρ− ξi i = 1, 2, ..., l ξi ≥ 0

where ξi > 0 are the slack variables, v ∈ (0, 1) is a parameter
that controls the trade off between maximizing the distance
from the origin and containing most of the data in the region
created by the hyperplane, wT is the vector transpose of w,
and · stands for the scalar product. Assuming w and ρ are
the optimized parameters, then the decision function

f(x) = sign((wT · Φ(x))− ρ)

will be positive for most examples, xi, contained in the
training set.

The hyperplane makes a linear division. However, most
data sets are not linearly separable. Thus, kernel functions,
such as polynomial kernel and radial basis kernel, are widely
used in SVMs to map from the original input data sets to a
high dimensional feature space to make the data sets linearly
separable [26]. In this work the radial basis function (RBF)
kernel is used.

D. Indicator

Recall that SCADA data is 10 minutes averaged, thus at
the end of the day it stores 144 samples of data for each
sensor. Assuming a 30-day month, at the end of this period
4320 samples are registered. When testing a wind turbine,
all these samples go through the proposed algorithm and
they are classified as an anomaly or as a normal sample.
Next, for each month, the total number of reported anomalies
are counted and when this value exceeds the threshold of
1000 samples, then an alarm is triggered. In a nutshell, the
indicator is based on the number of samples reported as
anomalies per month.

5. Results
Recall that the studied wind turbine has a main bearing

failure on 11/06/2018, and our main objective is to be able
to predict it several months in advance.

The indicator of anomalies reported for each month in the
test dataset is shown in Figure 5. The representation of the
moving average shows a clear growing trend, exceeding 1400
samples classified as anomalies in the month of April 2018,
thus leading to trigger the alarm two months in advance prior
to the fault. On the other hand, after the month of June (after
the repair), the report of anomalies drops noticeably going
back to values below the threshold.

It is also interesting to note that in the months of August
and September 2019 there is an unusual increase in the
number of reported anomalies, but without trespassing the
threshold. This behavior could be related to an atypical
behavior in the wind speed variable, which causes some
samples to be classified as anomalies.
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Fig. 5. Number of samples in the test dataset classified as anomalies
grouped by month of the year and representation of the two-month moving
average of reported anomalies.

6. Conclusions
In this work, a fault prognosis methodology to predict the

main bearing fault is stated. It is based only on SCADA
data and needs only healthy data to be trained. Moreover,
the proposed methodology works under the different and
varying operating and environmental conditions to which
wind turbines are subject to. Finally, the methodology is
demonstrated on a real underproduction wind turbine. The
results show that the alarm is triggered several months in
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advance from the total breakdown, thus giving time to the
plant operator to schedule maintenance.
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