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Abstract. This work presents a universal state-space 
average model of three-phase four-wire shunt active power 
filter based on current-controlled voltage-source inverters. In 
this type of inverters two topologies are commonly used, 
namely the Four-Leg Full-Bridge (FLFB) topology, and the 
Three-Leg Split-Capacitor (TLSC) topology. Combining these 
topologies, a third topology can be obtained, namely the Four-
Leg Split-Capacitor (FLSC) topology. This last topology 
exhibits very interesting characteristics for active filter 
applications. By means study of FLSC topology a state-space 
average model can be obtained, which will allow long-time 
simulations with a low cost of computation time. The behaviour 
of FLFB and TLSC converters can be obtained as particular 
cases of this universal model. Likewise, a generic technique for 
injected current control is proposed, offering as main advantage 
a decoupled control of the different legs, so full-bridge 
converters can be implemented without using space-vector 
based current control techniques. 
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1. Introduction 
 
In recent years, three-phase four-wire shunt active power 
filters have appeared as an effective method to solve the 
problem caused by harmonic and unbalanced currents as 
well as to compensate load reactive power. In these 
filters, two topologies for current-controlled voltage 
source inverter are commonly used, namely the Four-Leg 
Full-Bridge (FLFB) topology, and the Three-Leg Split-
Capacitor (TLSC) topology. These topologies, shown in 
Fig. 1, were presented at the beginning of the 90’s [1], 
and numerous publications on their control have 
appeared ever since [2]-[5]. 
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Fig. 1.  Active power filter based in: 
 (a) FLFB converter. (b) TLSC converter 

 
The FLFB converter shows better controllability thanks 
to its greater number of semiconductor devices. 
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However, the interaction between the legs connected to 
the utility phases and the leg connected to the neutral 
conductor makes necessary space-vector based current 
control in order to achieve suitable reference current 
tracking. The TLSC converter, having a smaller number 
of switches, permits each of the three legs to be 
controlled independently, making its current tracking 
control simpler than the previous topology. However, in 
this case all the zero-sequence injected current flows 
through the dc-bus capacitors. This current gives rise to 
imbalance in the capacitors voltage sharing, forcing to 
increase the capacitors rating to constantly ensure that 
capacitor voltages have a sufficiently high absolute value. 
 
Merging topologies shown in Fig. 1, an alternative 
topology, shown in Fig. 2 and recently presented for 
active filter applications [6]-[7], can be obtained. This 
Four-Leg Split-Capacitor (FLSC) topology solves the 
cited problems of the previous topologies. In this work, 
the study of FLSC topology will allow to obtain an 
average model that will hugely accelerate the simulation 
tasks for this kind of applications. Besides, it will be 
evidenced that the obtained model also depicts the 
behaviour of FLFB and TLSC converters, and even 
contemplates the behaviour of the Three-Legs Full-
Bridge (TLFB) converter for three-wire applications. 
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Fig. 2.  Active power filter based in FLSC converter 

 
2.  Phase-leg average model 
 
The switching elements in Fig. 2 can be described by a 
generic switch S shown in Fig. 3, whose control function 
is exposed in (1). 
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Fig. 3.  Generic switch S 
 
In the current-bidirectional switch based converters, a 
generic switching unit, called switching-leg, can be 
identified, as shown in Fig. 4 whit { }i a b c d= , , , . Each 
leg if composed of two switching elements, and has a 
voltage source (or a capacitor) on one side and a current 
source (or an inductor) on the other. These features make 
the phase leg a generic switching unit. 
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Fig. 4.  Generic switching-leg in current-bidirectional 
converters 

 
The necessary compatibility between switching-leg states 
is guaranteed if it is accomplished that: 

s si i1 2 1+ =  (2a)

s si i1 2 0⋅ =  (2b)

As a result, the switching-leg can be represented by a 
single-pole, double-throw switch, as shown in Fig. 5. In 
this figure, the input and output variables of interest are 
also defined.   
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Fig. 5.  Switching-led represented as a single-pole, 

double-throw switch 
 
Supposing C1=C2=C, a simple analysis of circuit shown 
in Fig. 5, permits to obtain the expressions (3) and (4),  
which relate the different variables in each switching 
interval. In these expressions TSi is the switching period, 
and di ∈[ , ]0 1  is the duty cycle of the leg.  
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From (3) and (4), the generic switching-leg can be 
represented by means of a  state-space  average model, in 

https://doi.org/10.24084/repqj01.423 554 RE&PQJ, Vol. 1, No.1, April 2003



which the state equation is (5a) and the output equation is 
(5b). To simplify notation, variables in these equations 
represent averaged values over a switching period, that 
is: i iFi Fi≡ , v vSi Si≡ , etc. 
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Now, a new control variable ci ∈ −[ , ]1 1  is defined, and 
its relationship with di is shown in (6). 

c di i= − +1 2  (6a)
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Then, the state-space equations shown in (3) can be 
expressed as: 
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Based on (7b), the averaged output voltage of the 
switching leg can be written as: 

( ) ( )[ ] ( )v c v c v c v vFi i C i C i dc dc= + + − = +
1
2

1 1 1
21 2 ∆ (8)

where v v vdc C C= −1 2  represents the dc-bus absolute 
voltage, and ∆v v vdc C C= +1 2  represents the dc-bus 
differential voltage. Now, the control variable ci can be 
expressed as a function of the leg voltages, obtaining: 
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Substituting (9) in (7b), and taking into account that the  
averaged value of leg output voltage is: 

v v L di
dtFi Si Fi

Fi= + ,  (10)

then the current in capacitors are given by: 
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From (8) and (11), the average model of the switching-
leg controlled by ci is shown in Fig. 6. Note that node m 
is virtually connected to the reference node. 
 
 
3.  Four-wire active filter average model 
 
Once the average model of the switching-leg is justified, 
the average model of the active filter is readily obtained 
by connecting four averaged switching-legs and the rest 
of the circuit components. In Fig. 7, a universal model is 
shown. This model, besides describing the behaviour of 
four-leg active filters shown in Figs. 1 and 2, it also 
contemplates the behaviour of the three-leg four wire 
converters for three-wire systems (TLFB).   
 
From (7), the four-wire model can be depicted by the 
state equations shown in (12). 
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Fig. 6.  Average model of the switching leg controlled by ci 
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Fig. 7.  Universal average model of shunt active power filters 
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In Fig. 7, S1 and S2 represent generic switches like those 
shown in Fig. 3, and in function of their control variables, 
the model of this figure describes the behaviour of the 
converters enumerated in Table I.   
 

TABLE I. – Active filter topologies as a function of s1 and s2 
 
s1 s2 Converter Variables 
0 0 TLFB v n0 0≠   ;  i i iF Fd Fn0 0= = =  
0 1 FLFB v n0 0≠  ; iF0 0=  ;  i iFd Fn= −  
1 0 TLSC v n0 0=  ; i iF Fn0 =  ; iFd = 0  
1 1 FLSC v n0 0=  ; i i iF Fd Fn0 = +  

 
For s1=0, and taking into consideration an active filter 
implemented by means of FLFB converter, voltages of 
model in Fig. 7 can be written as (14), where i={a,b,c,d}, 
and vSd-n=0. 
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then (14) can be expressed as (17). 
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Therefore, voltage between the utility neutral point (n) 
and the reference node (0) will be: 
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The expression (18) would also be valid for the three-leg 
full-bridge converter (TLFB), with the only exception of 
considering vFd-0=0 and assigning a value of 1/3 to the 
multiplier constant. 
 
Expression for current flowing through capacitors in Fig. 
7 will be obtained by the sum of terms shown in (11) for 
the different legs, keeping in mind that vSd=0. See (19). 
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Or also: 
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where iF0 is the injected current in dc-bus midpoint, and 
pF is the instantaneous active power developed by the 
filter. 
 
Supposing vC1(0) = -vC2(0), dc-bus differential voltage 
will be given by (21). 
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And taking into account (20), then: 
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Equation (22) evidences, as logic, that dc-bus differential 
voltage lineally depends on injected current in dc-bus 
midpoint. 
 
Moreover, energy stored in dc-bus will be calculated by 
means of (23). 
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In this last equation, it can be appreciated how energy 
stored in dc-bus depends on the instantaneous active 
power developed by the filter and on the energy stored in 
the coupling inductances. 
 
4.  Injected current control 
 
Based on what exposed in Section 3, utility connection of 
a leg in a four-wire generic filter is described by circuit 
shown in the Fig. 8. The source v0n corresponds to (18) 
and it represents the voltage that relates the different legs 
in full-bridge converters. Therefore, this circuit leads to 
the diagram show in Fig. 9. 
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c vi dc
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Fig. 8. Utility connection circuit of a leg in a four-wire 
generic filter 
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Fig. 9. Utility connection diagram of a leg in a four-wire 

generic filter 
 

From diagram shown in Fig. 9, the evolution of injected 
current by a leg in four-wire active filter can be expressed 
by: 

( )di
dt L

c v v v vFi

F
i dc dc Si n= + − +





1 1
2 0∆  (25)

In (25) it can be observed that injected current evolution 
not only depends on control variable ci and dc-bus 
voltage, but it is also affected by the dc-bus voltage 
imbalance, the utility voltage, and the behaviour of the 
rest of legs. Keeping in mind that all these voltages are 
measurable or evaluable, a schema for current control 
shown in Fig. 10 is proposed, where a feed-forward 
signal fi has been applied, being: 
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dc

dc Si n= − + −
1 2 2 0∆  (26)

With the control schema shown in the Fig. 11 will be 
achieved that: 
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1
2

1
2

* *  (27)

where the symbol ´*´represents the convolution product 
of current error signal and the temporal expression of the 
chosen controller, g. In (27) injected current control now 
only depends on the control variable ci, and on the actual 
dc-bus voltage, so decoupling between legs has been 
achieved, which is a great advantage in full-bridge 
converters, since now is not necessary to use space-
vector based techniques for the injected current control. 
 
 
5.  Conclusions 
 
The average model presented in this work offers valuable 
contributions in the design and simulation tasks of 
current compensation systems for four-wire networks, 
since it is completely generic, being able to simulate the 
different topologies used in these applications by means 
of acting on two switches. 
 
The computational cost that presents the proposed model, 
regarding the commuted model is minimum, obtaining 
reliable simulations results  in infinitely inferior time.  
 
The technique presented for the injected current control is 
also generic, presenting as main advantage a decoupled  
control of the different legs, so full-bridge converters can 
be implemented without using space-vector based current 
control techniques. 
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Fig. 10. Current control schema for a leg in four-wire active power filter 
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