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Abstract. The work deals with the application of artificial 

neural networks (ANNs) in the modeling of switched reluctance 

machines (SRMs). The performance of a SRM is determined by 

its geometry, materials used and levels of excitation. In this way, 

this work investigates the influence of the stator and rotor back 

iron thickness in the performance of SRM. A multilayer neural 

network is proposed to learn the nonlinear characteristics of the 

motor. Data of flux linkages and torque are obtained through 

simulations of finite elements and used for ANN training. The 

algorithm developed in Octave allows the user to adjust the 

network parameters. The results presented confirm the feasibility 

of using ANN to establish a predictive model of SRM 

performance, thus enabling further investigation in the future. 
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1. Introduction 
 

Switched Reluctance Machines (SRMs), due to its 

simplicity of construction and low cost has gained 

importance and has been considered for applications in 

various fields. SRM has a number of advantages: simple 

construction with no rotor coils, low phase tolerance, 

ruggedness, low production costs, high speed and variable 

speed applications, high temperature operation and intense 

temperature variations [1]. Its main disadvantages are the 

discontinuous torque and the ripple effect on the torque, 

which cause noise and vibration [2]. 

The traditional design model is usually composed of an 

iterative process in which the engineer creates a basic 

design using experiences and engineering skills in specific 

motor-specific solutions. At each stage of the project, the 

motor can be recalculated and the results used to modify 

the previous motor design. The process using Finite 

Element Analysis (FEA) in 2D or 3D has many 

advantages over the previous process, however it takes a 

lot of computational time for the specific simulation [3]. 

As known, the inductance and torque in an SRM are 

nonlinear functions of phase voltage, current, rotor 

position and rotor speed. They are difficult to measure 

during operation and difficult to express with analytical 

functions [4].  

Torque can be measured directly through a torque sensor, 

but requires the motor to be built and properly mounted 

on an axle [5]. During the design stage, the most 

appropriate method to obtain torque is the finite element 

simulation. 

Some studies of estimation or analytical calculation of 

the torque profile have been presented to date. Chapter 2 

of reference [2] is devoted to the analytical calculation of 

the SRM flux linkages. Artificial neural networks 

(ANNs) are used to model reluctance machines in [3], [4] 

and [6]. A nonlinear model of a synchronous reluctance 

motor was defined by the magnetic flux density along the 

air gap in [3]. In [4], the motor parameters are estimated 

through the application of ANN. A model for estimating 

concatenated flux and torque as a function of stator 

current and rotor position is given in [6]. Already article 

[5] proposes a way to calculate the torque per SRM phase 

using ANN to interpolate motor magnetization data, 

measured without blocking the rotor, thus reducing costs. 

The proposal of this work is to use artificial neural 

networks (ANNs) to estimate the flux linkages and torque 

produced by SRM through the variation of the two 

internal dimensions.  

The data used for the training and verification of results 

are all taken from the 2D finite element simulation made 

using the FEMM (Finite Element Method Magnetics) 

software [7]. 

The ANN verification will be done through tests, 

comparing the values obtained by the finite element 

simulation and the values found by ANN. The times of 
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each simulation are shown as well. Thus, the presented 

modelling is attested. 

 

2.  Principles of SRM Operation 

 

The production of torque in a SRM can be explained by 

the elementary principle of electromechanical energy 

conversion. In the case of a rotating machine the increase 

in mechanical energy can be written in terms of the 

electromagnetic torque and a change in the position of the 

rotor, such as: 

 em TW  (1) 

Where Te is the electromagnetic torque and  the increase 

in the angle of the rotor. Consequently, the 

electromagnetic torque is given by: 




 m

e

W
T  

(2) 

For the case of constant excitation, the increment of 

mechanical work done is equal to the rate of change of co-

energy W’t, which is simply the complement of energy 

stored in the field. The expression for the increment of the 

mechanical work and calculation of the co-energy are 

presented in equations (3) and (4), respectively. 
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The inductance L and flux linkages   are functions of the 

position of the rotor and current in equation (4). This 

change in the co-energy value occurs between two rotor 

positions, 1  and 2  therefore the torque in the air gap as a 

function of co-energy can be represented as a function of 

the rotor position and the excitation current. 
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If the inductance varies linearly with the position of the 

rotor for a given current, which usually does not occur in 

practice, then the torque can be derived as: 
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For a switched reluctance machine, the inductance is not 

constant and varies continuously with the position of the 

rotor. This has the implication that the switched reluctance 

motor will not have a steady-state equivalent circuit in the 

sense that the dc and ac motors have [2].  

The equivalent circuit of the SRM must be able to explain 

the behavior of the SRM under all operating conditions. 

Such as: with and without magnetic saturation, continuous 

and discontinuous conduction of current, operation in the 

four quadrants [8]. For this, the equivalent circuit must 

have variable parameters, as shown in [8]. 

 

3. ANN and Retropropagation Error 

 
Artificial neural networks are information-processing 

systems inspired by biological neural networks. These 

neural networks present mathematical models of an 

artificial neuron that aim to learn patterns based on 

training to take later decisions [9].  

In a neural network several units called neurons are 

interconnected maintaining binding weights and this set 

forms a network. Through this network the input units are 

processed in the neuron and the output is determined by 

this processing and by an activation function. This 

network is able to learn patterns based on the training in 

which it is submitted [9]. Neural networks are used to 

solve problems involving pattern recognition, prediction, 

optimization, associative memory and control. 

Multi-layer neural networks consist of a set of sensory 

units that constitute the input layer, one or more hidden 

layers of neurons and an output layer, as shown in Figure 

1 [10]. The signal propagates forward through the 

network, layer by layer. These networks are called 

multilayer perceptrons, which represent a generalization 

of the single-layer perceptron [10]. 

Multiple layer networks can solve more complicated 

problems than single layer networks, however their 

training is more difficult [9]. The training is supervised 

through the backpropagation algorithm [10]. 

The backpropagation algorithm tries to find iteratively 

the minimum difference between the desired outputs and 

the outputs obtained by the neural network, with the 

minimum error. Thus, by adjusting the weights between 

the layers through the backpropagation of the error found 

in each iteration [10]. 

Basically, learning by backpropagation of error consists 

of two steps through the different layers of the network: a 

step forward, propagation, and a step backwards to retro 

propagation, according to Figure 2. 

 

 
Fig.  1. Artificial neural network of multiple layers. 

 

 
Fig.  2. Flows of the input and error signals. 

 

In the step forward, an activity pattern (input vector) is 

applied to the sensory nodes of the network and its effect 

propagates through the network, layer by layer. Finally, 

an output set is produced as the actual network response. 

During the propagation step, the synaptic weights of the 

network are all fixed. During the back step, on the other 

hand, the synaptic weights are all adjusted according to 

an error correction rule. Specifically, the actual network 

response is subtracted from a target response to produce 
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an error signal. This error signal is then propagated back 

through the network, against the direction of the synaptic 

connections - hence the name back-propagation error. The 

synaptic weights are adjusted to cause the actual network 

response to move closer to the desired response, in a 

statistical sense [10]. 

A multilayer perceptron has three distinctive features: 

• The model of each network neuron normally includes 

a nonlinearity in its output. A sigmoidal nonlinear function 

is typically used. 

• The network contains one or more layers of hidden 

neurons that are not part of the input or output of the 

network. These hidden neurons enable the network to learn 

complex tasks by progressively extracting the most 

significant characteristics of input patterns. 

• The network exhibits a high degree of connectivity, 

determined by the network synapses. 

 

4. Model of SRM with ANN 

 

SRM performance, both electric and magnetic, depends on 

its geometric construction, materials used and level of 

excitation [3]. It is almost impossible to determine exact 

mathematical equations that take into account all these 

influential parameters [3]. In this way, the main idea of 

this work is to develop a model that incorporates the 

influence of some parameters and is able to give useful 

results to calculate the performance of the electric 

machine. 

The dimensions of the SRM that will be varied are the 

stator and rotor back iron thickness, Figure 3 presents 

these dimensions in general SRM. 

 

 
Fig.  3. Dimensions in a single-phase SRM. 

 

In Figure 3: 

βs = stator pole arc; 

 βr = rotor pole arc; 

 lps = stator pole width; 

 lpr = rotor pole width; 

          cs = stator back iron thickness; 

 cr = rotor back iron thickness; 

hs = stator pole height; 

 hr = rotor pole height; 

 Dsh = rotor shaft diameter; 

 Di = stator inner diameter; 

 D0 = stator outer diameter; 

 g = air gap. 

In the design step these values are determined from a 

relation with the stator pole width. The stator back iron 

thickness must be wide enough to support half of the flux 

density passing through the stator pole. Therefore, the 

stator back iron thickness must be at least half the width 

of the stator pole. However, to improve robustness and 

minimize vibration and noise an additional factor should 

be considered [2]. Thus, the value of the stator back iron 

thickness must be chosen in the interval presented in 

equation (8).  

pssps lcl 5.0  (8) 

psrps lcl 75.05.0   (9) 

The choice of rotor back iron thickness value is based on 

structural integrity and operating flux density.  It need not 

be as much as the stator back iron thickness and neither 

has to be equal to the minimum value equal to half the 

stator pole width. The range of values to be chosen from 

has to account for the larger interpolar air gap to provide 

a high ratio between the aligned and unaligned 

inductances, but at the same time it is desirable to have 

shorter rotor poles to generate minimum vibration in the 

rotor. Based on these considerations, the rotor back iron 

thickness must be determined in the interval presented in 

equation (9).  

The motor performance parameters evaluated in this 

work are the flux linkage per phase, inductance and the 

torque per phase, these values will be obtained through a 

simulation of finite elements, carried out in FEMM 

software, for several rotor positions. 

The details of the prototype studied in this work are 

presented in Table I. Figure 4 shows the three-

dimensional plot of the inductance versus position of the 

rotor for a variable current applied to a phase of the 

SRM. Figure 5 presents the torque developed by a SRM 

phase versus rotor position for different current values. 
 

Table I – Motor details [2]. 

Number of stator poles 8 

Number of rotor poles 6 

Stator pole arc 18 degrees 

Rotor pole arc 22 degrees 

Air gap length 0.5 mm 

Outer stator diameter 190 mm 

Bore diameter 100.6 mm 

Stack length 200 mm 

Shaft diameter 28 mm 

Stator back iron thickness 12 mm 

Rotor back iron thickness 16 mm 

Height of stator pole 32.7 mm 

Height of rotor pole 19.8 mm 

Turns per phase 154 

Conductor area of cross section 1,588 mm² 

Rated current 13 A 

Lamination material M43 
 

For the rotor position equal to 30º, the stator and stator 

poles are aligned for the analyzed phase, it's when the 

motor experiences a higher saturation and the higher 

inductance values occur, see Figure 4. This value will 

decrease as the rotor goes to the unaligned position. 

In Figure 6, the flux linkage versus rotor position and 

phase current is shown. The saturation of phase winding 
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at high currents is clearly represented. At unaligned  

position, the winding presents linear behavior. At aligned 

position, the winding is highly saturated at rated current. 

 

 
Fig.  4. Phase inductance vs. rotor position for different current 

values. 

 

 
Fig.  5. Torque developed by a SRM phase vs. rotor position for 

different current values. 

 

 
Fig.  6. Flux linkage by a SRM phase at different currents and 

different rotor positions. 

 

For this motor, the back iron thickness values can be 

chosen in the range, as follows: 

mmsenDl s
inps 74,15

2












 

(10) 

mmcs 87.774,15   (11) 

mmcr 8.1187.7   (12) 

The motor presented in Table I was taken from [2], and for 

this specific case the value of the rotor back iron thickness 

was 16mm, corresponding to psl , so the interval considered 

in this study is the same as sc . 

5. ANN Implementation  
 

For this work, the rotor position, stator and rotor back 

iron thickness was considered as input data and the user 

can choose two output data to perform the training, the 

flux linkage and the developed torque. For each vector 

 rs cc ,  a finite element simulation was performed, from 

which the flux linkage and torque values were extracted 

to 60 different rotor positions. The rotor was rotated 60° 

from 1 in 1, totaling 60 different positions. The ANN will 

be trained to reproduce the flux and torque curve given 

by FEMM. 

The implemented ANN has an input layer, a hidden 

layer, and an output layer. The training uses the back-

propagation algorithm of the error presented previously 

with the presence of the momentum factor. The program 

was implemented in Octave software, and several 

training tests were performed in order to adjust the 

network parameters appropriate to each function, flux 

linkage and torque.  

The data acquisition for the training was done through an 

Octave script and FEMM simulation. The script 

automatically draws the SRM into FEMM, allowing you 

to change back iron thickness values, rotate the rotor, and 

save the flux and torque values for each position in a 

worksheet.  

For the flux linkage, ANN was adjusted in 8 neurons in 

the hidden layer, learning rate equal to 0.2, momentum 

equal to 0.5. With these parameters ANN performed the 

training with a quadratic error equal to 0.0397 in 21670 

cycles. The trained curve and the curve obtained through 

FEMM are shown in Figure 7. The graph of the quadratic 

error by the number of cycles is shown in Figure 8. 

 

 
Fig.  7. Flux linkages training by the ANN. 

 

 
Fig.  8. Mean squared error per epochs for flux linkages 

training. 
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As can be seen in Figure 5, approximately half the torque 

curve can be neglected because it corresponds to the 

negative part of the torque that does not exist in an actual 

motor prototype. For ANN training this part of the curve 

was neglected, because it represents a high cost of 

performance for the training of the network. 

For the developed torque, 20 neurons in the hidden layer, 

learning rate equal to 0.08 and momentum equal to 0.4 

resulted in a quadratic error of 0.0399 in 123645 cycles. 

The trained curve and the curve obtained through FEMM 

are shown in Figure 9. The graph of the quadratic error by 

the number of cycles is shown in Figure 10. 
 

 
Fig.  9. Torque training by the ANN. 

 

 
Fig.  10. Mean squared error per epochs for torque training. 

 

6. Modelling of SRM using ANN  
 

As shown in the previous section, ANN can quickly 

reproduce the flux and torque curves with a small error. 

Thus, the SRM modeling will be done through the training 

of several networks, so that they learn the behavior of the 

machine for different values of sc  and rc , allowing the use 

of these networks to estimate flux values for other back 

iron thickness values, avoiding the simulation of finite 

elements and reducing the total simulation time.  

First, we performed the training of 9 vector variations 

 rs cc , , comprising the upper and lower limit of equation 

(11) and an intermediate value. However, it was realized 

that only 3 variations were required for the program to 

satisfactorily estimate the flux value for a given pair of 

back iron thickness. Considering the vector  rs cc , , the 

vectors  8,8 ,  12,12  and  16,16  were used for the 

training of 3 networks. 

Figures 11 and 12 show the network-trained flux curve and 

the curve obtained by the FEMM for two modeling tests 

presented. The maximum relative error presented between 

the two curves was 0.4787% and 2.4587%, showing that 

the model presented can be used to predict SRM 

performance in other studies. 

Table II presents the comparison of the performance of 

the two models presented, the finite element modeling 

and the modeling through artificial neural networks. 

Computational resources: Intel Core i7 processor - 

6500U CPU @ 2.50GHz, 8GB of RAM. 

 

 
Fig.  11. Test 1: mmcs 11  e mmcr 13  

 

 
Fig.  12. Test 2: mmcs 13  e mmcr 11  

 
Table II – Performance comparison. 

 ANN (3 

networks) 

FEMM Test 1 Test 2 

Time (s) 305.0286 850.2309 9.6643 10.0259 

 

Through Table II we can conclude that the total mean 

time for ANN modeling is s72.2855 , including finite 

element simulation and training of 3 networks. After this, 

the flux curve estimation time for each test was in 

average s10 , a very low value when compared to finite 

element simulation. Therefore, we can conclude that 

ANN modeling is fast and efficient, has a low error value 

and can be used to predict SRM performance in future 

studies. 

 

7. Conclusions 
 

In this work, a method of applying artificial neural 

networks for the modeling of the performance of 

switched reluctance machines was established. The ANN 

training data were obtained through finite element 

simulations using the FEMM software. The geometric 

construction of the SRM was made by varying the values 

of the rotor and stator back iron thickness, and the 
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simulation output parameters were the value of the flux 

linkages and torque developed per phase. 

The artificial neural network topology used in this work 

was the multilayer network, with a hidden layer and 

learning by backpropagation algorithm. This type of 

network proved adequate and the program implemented 

efficient to solve the proposed problem. 

In comparison to finite element simulation, the ANN 

modeling was shown to be fast and efficient for estimating 

the SRM flux curve. To obtain 60 values of concatenated 

flow through the ANN model an average of s10  is spent, 

by the simulation of finite elements this value was on 

average 85 times higher. 

Thus, the model presented in this article makes it possible 

to use finite element simulation data in studies that require 

a large volume of tests. For example, SRM design 

optimization, study of the influence of dimensions on 

machine performance, among others, contributing with 

satisfactory results and a drastic reduction in simulation 

time. 
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