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Abstract. Modelling the operation of energy storage systems 
such as batteries in an energy model is challenging as it requires 
estimation of current and future imbalances between supply and 
demand and the value of energy stored and later returned to the 
system.  Here, an approach is developed which optimally 
prioritises the provision of stored energy to the system according 
to a specified criterion such as time-of-use tariff.  At this stage, 
the model assumes perfect knowledge of future supply and 
demand as well as a hierarchy of utility to the system operator.   
Such an operator would specify a ranked list of times of need 
from the energy storage.  The model will then allocate available 
energy from earlier times while reserving necessary space in the 
available storage.  By progressing through the times of need in 
ranked order, the model ensures best optimum use of the stored 
energy. The results show that the proposed method is very robust 
and can calculate reliably the potential of an energy storage 
system in any energy model based on time steps of balancing 
generation and demand with the mediation of storage. 
 
Key words. Energy Storage System (ESS), Energy 
Model, Optimised Energy Storage Use 
 
1. Introduction 
 
Any energy system needs to balance supply and demand 
at each point in time, where imbalances can be resolved by 
many balancing mechanisms, from responsive generation 
and exchange with other systems to the use of energy 
storage systems to absorb surplus and meet a supply deficit 
at a later time.   This is the well-established approach used 
traditionally by, for example, Pumped Hydro stations who 
fill a reservoir during off-peak hours to provide electricity 
during peak hours, and also by small hybrid systems such 
as domestic PV-battery installations. 
 
An energy model using a time series modelling approach 
needs to mimic that action at the time discretisation level 
of the model (e.g., [1]).  As soon as the value of energy 
varies over time, the energy storage system can supply 
stored energy at a time of high value and maximise its 
value by using cheap energy to charge the energy storage.  
In modern energy systems with increasing penetration of 

variable renewable generation and even local electricity 
trading by prosumers, the principle remains but the 
scheduling of energy storage becomes more challenging 
as not only demand varies but also supply [2,3], which in 
turn affects electricity price levels and volatility [4].   
 
There is significant research in the literature evaluating 
methods to optimise battery scheduling, e.g. [5].  Some of 
these based charging and discharging decisions on 
optimisation methods using knowledge of generation and 
demand over the optimisation horizon, such as genetic 
algorithms [6] or Particle-Swarm optimisation (PSO) [7].   
Others combine optimisation with forecasting, such as [8] 
combining persistence forecasting with linear 
programming, or more advanced forecasting methods [9], 
who highlight the challenge that any scheduling using 
forecasts will always be limited by forecasting errors. 
 
The aim of this paper is to present a method to simulate 
optimum storage operation against a user’s ranking as to 
when the stored energy is most useful to them.  As such it 
does not try to predict the times of need or surplus but to 
quantify the best a storage device could provide given its 
design and performance characteristics.  Its use would be 
in the optimum system design as well as a benchmark 
against which to evaluate scheduling methodologies. 
 
2. Modelling methodology 
 
The energy storage model was initially proposed by Früh 
et al. (2021) [10] within the context of a distillery using 
both, a PCM heat battery to provide heat for the 
distillation, and a standard battery to provide electricity for 
ancillary needs of the distillery.   This model has now been 
developed further for integration of an energy storage 
system (ESS) into an energy model with a variety of 
renewable generation and variable energy tariffs.  The 
particular target model for which this Energy Storage 
module was designed is the OnGen Expert System [11] but 
that does not preclude its implementation elsewhere. 
 

https://doi.org/10.24084/repqj20.292 301 RE&PQJ, Volume No.20, September 2022



The key storage technology parameters included here are 
1. Installed energy capacity [kWh] 
2. Maximum charging and discharging rates [kW] 
3. Charging and discharging efficiencies 
4. Minimum and maximum State of Charge (SoC) 

 
One parameter already implemented in the model but not 
addressed here is the self-discharge.  This is partly for 
clarity, to introduce and demonstrate the main principle, 
since self-discharge properties are not only very 
technology dependent, but can also be very complex for 
some technologies such as Li-Ion batteries [12,13].  
Parameters not yet implemented but recognised to be 
potentially important are ramp rate limitations as well as 
minimum charging and discharging rates.  The reason for 
not having them included at present is that the initial focus 
was for batteries as the ESS operating within a system 
model operating with a half-hourly time step.  
Incorporating these factors, however, pose no fundamental 
challenges to the algorithm introduced here but would 
obscure the main principle. 
 
The algorithm for the storage action, which is shown in 
Algorithm 1, has three main stages, 

1. Calculate the system balance prior to storage 
activation 

2. Ranking of times of need 
3. Operating the storage device to serve the need in 

rank order. 
This algorithm operates within a time-series framework, 
where demand, local generation, and factors for the user 
such as time-of-use tariff information or import/export 
constraints are known at a specified time interval, d	t, for 
a period of time, usually a calendar year. 
 
To provide a common and consistent unit base, all power  
quantities (kW) are expressed as energy units consumed, 
produced, or exchanged during a time interval (kW d	t).  
This enables a clear and simple balancing of energy in 
storage in the ESS and energy absorbed or delivered by the 
ESS during a particular time slot.   For example, with a 
half-hourly time stepping, a 1 MW wind turbine operating 
at its rated power provides 500 kWh during one time slot. 
 
A. System balance without storage 
 
From the known load, L, and local generation, G, three 
balance quantities are calculated at each time step, t, 
namely the amount of the demand met directly by the local 
generation, D, any surplus generation, S, and any residual 
deficit, R, which still needs to be met or would result in 
loss of supply.   

𝑫𝒕 = 𝐦𝐢𝐧(𝑳𝒕, 𝑮𝒕)
𝑺𝒕 = 𝑮𝒕 −𝑫𝒕
𝑹𝒕 = 𝑫𝒕 − 𝑮𝒕

  (1) 

These are lines 1 to 3 of Algorithm 1.  
 
B. Ranking 
 
Lines 9 to 14 of Algorithm 1 summarise the ranking 
action.  As the ranking depends on the user’s wishes, the 
details are not included in that algorithm but need to be 
defined for each application.   

Algorithm 1. Formal algorithm of the basic energy storage 
model designed to meet local demand. 

 
 
One example would be to minimise the money spent on 
buying electricity.  This would be achieved by first 
selecting all periods of deficit, and then sorting those 
periods in descending order of electricity tariff.  The task 
of the ESS would be to reduce the most expensive 
electricity residual within its operating constraints. 
 
Another example could be that a user has a contract with 
a maximum electricity import limit.  Exceeding this could 
either lead to loss of supply or incur a penalty charge each 
time the electricity bought from the grid exceeds some 
threshold,  Rcap.   An ESS with a discharging rating of 
Pd,max could avoid such events where the residual demand 
exceeds that cap by not more than its rating.  Furthermore, 
an ESS could use its available charge to either avoid many 
events which would exceed the cap only by a small 
amount, or it might use the same charge instead for very 
few events which exceed the cap by a large amount.  
Clearly, it is better to avoid a penalty often and, as a result, 
the ranking would first select only those time slots where 
the residual demand is within the band from Rcap to 
Rcap + Pd,max but not those with even higher residual.  In a 
second step, the selected time slots would be sorted by 
increasing residual demand.  In addition to the ranked list 

Algorithm 1 Basic storage model
Require: Time step δt
Require: Load L [kWδt], Generation G [kWδt]
Require: Value information, e.g., electricity tariffs T [£/kWh]
1: Demand met from generation ∀t : D ← min {L, G}
2: Surplus S0 ← G−D
3: Residual R0 ← D −G
4: procedure Initialise Storage(C,Bc, Bd)
5: Charge level [kWh] ∀t : C = Cmin

6: Charging [kWδt] ∀t : Bc = 0
7: Battery discharging [kWδt] ∀t : Bd = 0
8: end procedure

9: procedure Prioritise(R0, T )
10: Select indices I from all {i} which satisfy criterion
11: rank indices I: sort I by value T in descending order
12: Residual to be met by ESS ∀I: R̃

13: return
{

I, R̃
}

14: end procedure
15: procedure Storage(R̃, S0, C,Bc, Bd, I)
16: Initialise R1 ← R̃;S1 ← S0

17: for i ∈ I do
18: How much is missing: Ri

1/ηd
19: Available capacity at time i: Cav ← Cmax − Ci

20: Discharging capacity at i: Pd,av ← Pd,max − P i
d

21: How much to bid for: Bid← min {Ri
1/ηd, Cav, Pd,av}

22: j ← i
23: while Bid > 0 ∧ j > 1 do

24: Available capacity at time j: Cav ← Cmax − Cj

25: Available discharging potential at time i: Pd ← Bd,max −Bi
d

26: Revise Bid: Bid← min {Bid, Pd/ηd, Cav}
27: Available charging potential at time j: Pc ← Bc,max − Bj

c

28: Offered charge at time j: ∆C ← min {Bid, ηcPc, ηcS
j
1}

29: if ∆C > 0 then

30: Take offer from surplus: Sj
1 ← Sj

1 −∆C/ηc
31: Move into storage: P j

c ← P j
c +∆C/ηc

32: Carry charge forward to i: Cj+1,...,i ← Cj+1,...,i +∆C
33: Discharge from storage at i: P i

d ← P i
d + ηd∆C

34: Reduce residual load: Ri
1 ← Ri

1 − ηd∆C
35: Revise available charge: Cav ← Cmax − Cj+1

36: end if

37: Reduce bid: Bid← min {Bid−∆C, Cav}
38: Step one time step further into past: j ← j − 1
39: end while

40: end for

41: return R1, S1, C,Bc, Bd

42: end procedure

43: Consolidate residual R: R← R1 +
(

R0 − R̃
)

4
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of ‘when’, one would specify the amount needed, 𝑹., to 
reduce the residual demand not to zero but just to below 
the cap.  This ensures that the charge available in the ESS 
is used for the largest number of time slots. 
 
A further example would be ‘peak shaving’ to reduce the 
volatility of the residual demand. Here, local residual 
demand maxima would be identified and, the ESS would 
be tasked to reduce them to the average residual of the two 
adjacent time slots. To maximise peak shaving, the 
algorithm would be invoked repeatedly to gradually 
reduce peaks until the ESS is fully utilised. 
 
C. Storage operation 
 
The underlying principle of the ESS operation is to start 
each time slot i by identifying how much would be asked 
from the ESS considering its discharging efficiency 
(line 18) and how much ‘space’ (spare capacity) is in the 
ESS at that time slot, given the constraints of space in the 
ESS available for that slot (line 19) and maximum 
discharge rate (line 20).  Only the smallest of the three can 
be expected from the ESS (line 21). 
 
Then the algorithm will search for opportunities to charge 
the battery going backwards in time, one time slot at a 
time.  If it finds available charge at some earlier time j 
(lines 28 and 29), this is added to the ESS at that earlier 
time j (lines 30 and 31) and carried forward to the time of 
need i (line 32) where it is then released (line 33) to reduce 
the required residual (line 34).   Once the ESS space has 
been used, that space and charging/discharging capacity is 
reserved for all future calculations.  This searching is 
continued until the ESS is full.  After this, the algorithm 
continues to the next time of need. 
 
Since the times of need {i} are sorted in decreasing 
importance, it is guaranteed that a more costly or urgent 
need is considered before others.   Conversely, this ensures 
that any available charge should be considered within the 
searching loop without running the risk of using up any 
ESS unnecessarily.  To ensure that all available space is 
utilised but not more than that, it is important to initialise 
the state of the ESS as minimum SoC and zero 
charging/discharging at all times (lines 4 to 8). 
 
D. Results from the ESS operation 
 
Once all selected time slots in the set I have been 
considered, the battery procedure returns a reduced 
residual demand, R1, which is remaining after the ESS has 
tried to meet as much of the requested demand, 𝑹..  This is 
balanced by a similarly reduced surplus which remains 
after that taken up by the ESS, and the balance of 
charging/discharging of the ESS and its SoC at all times. 
 
If the requested demand is the full residual demand, then 
R1 is the actual new residual demand after the ESS action.  
However, if only some charge was requested, as would be 
the case for avoiding excess charge or for peak shaving, 
then the remainder, 𝑹𝟎 −𝑹., was put aside before the ESS 
consideration and needs to be added again at the end 
(line 43).  

E. Recursive application 
 

If a user has several functions of the ESS in mind, or for 
peak shaving, then one application of the Storage 
procedure only deals with one intended function, or only 
with the ‘tops of the peaks’.  For a full set of functions or 
for maximum peak shaving, the pair of Prioritise and 
Storage procedures (lines 9 to 43) needs to be repeatedly 
applied, where the consolidated residual, R, has to be the 
input to the Prioritise procedure instead of R0, and the 
updated S1 instead of S0 is the input to the Storage 
procedure alongside the updated ESS state variables, C, 
Bc, Bd.  The latter ensures that battery charge or operation 
already reserved in an earlier run of the procedure is not 
released for use again. 
 
 
3. Case study 
 
The case study used here to demonstrate the algorithm is a 
medium-sized demand node operating a variable 
electricity tariff located in a mid-latitude climate with 
moderate to good PV and wind resources.  The key 
characteristics of the system are listed in Table I.   Of the 
total annual consumption of 6640 MWh, 4554 MWh are 
met directly by the wind and PV production of 
8021 MWh, leaving an initial residual total demand of 
2086 MWh and an initial surplus of 3468 MWh.  
 
The ESS model is applied for a range of energy storage 
capacities, from 0.5 MWh to 100 MWh.  The size of one 
‘unit’ of 500 kWh was chosen arbitrarily to provide a fine 
enough resolution when exploring the ‘number of units’ 
while keeping the number of simulations reasonably 
small.  In all cases, the algorithm is applied twice, first to 
avoid excess charges when electricity import exceeds 
500 kWh, and secondly to reduce as much of the residual 
demand as possible, ranked in order of tariff to minimise 
the annual electricity bill. 
 
 

Table I. – System characteristics for the Case study 
 

Time step  (h) 0.5 
Demand  Minimum (kWh per time step) 

- Mean 
- Maximum peak 

81 
378 

1112 
Wind capacity  (kW) 2000 
Wind capacity factor (%) 29 
PV capacity  (kWp) 4000 
PV capacity factor  (%) 11 
ESS unit storage  (kWh) 500 
Min - Max SoC  (%) 20 – 80 
Max charge/discharge  (kWh per time step) 400 
Charging efficiency  (%) 95 
Discharging efficiency  (%) 95 
No. of storage units 1 to 200 
Maximum export (kWh per time step)  250 
Electricity tariff Minimum (p/kWh) 

- Mean 
- Maximum  

1 
40 

399 
Additional charge if demand > 500 kWh  (£) 10 
Gross annual electricity cost  (thousand £) 1694 
Gross annual electricity income  (thousand £) 328 
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4. Results 
 
The results are presented in three sections.  The first 
illustrates the storage action and its effect on the system 
balance for three example configurations, from a very 
small to a very large ESS.  Then the overall performance 
for all ESS sizes is presented, before the computational 
effort is considered. 
 
A. System performance examples 
 
Figures 1 to 3 show a selected week in mid-summer, 
starting on a Friday, for storage capacities of 1, 10, and 
100 MWh, respectively.  The top panel in each shows, as 
the grey line, the initial deficit (positive) and surplus 
(negative) before any ESS action (best seen in Fig.3).  The 
red line overlays the residual demand after the first round 
of ESS action and the blue line the remaining surplus. That 
week starts with moderate residuals and significant surplus 
for three consecutive days, then a day with very little 
surplus followed by another day with significant surplus 
and followed by two days with no surplus, including a 12-
hour period on Wednesday where the initial deficit 
exceeds the penalty threshold of 500 kWh.  The second 
panel shows the ESS state of charge after the first round of 
operation (light green dashed) and after the second and 
final round (dark green solid).  The third panel overlays 
the final residual and surplus over the initial balance. The 
bottom panel shows the electricity tariff for each time slot 
and highlights (in red) those time slots where electricity 
has to be bought to meet the final residual. 
 
One can see that the small ESS in Figure 1 only manages 
to eliminate a few events by fully charging on Tuesday,  
while the 10 MWh ESS in Figure 2 eliminates all of the 
excess residual through charging the battery from its 
minimum to around 60% SoC.  In the second round, where 
the ESS shifts surplus generation to times of most 
expensive electricity, the small ESS charges up rapidly 
early in the week and discharges soon after, resulting in a 
clear daily cycling of the ESS.  However, on Sunday the 
available charge is kept in storage until the weekday tariffs 
resume on Monday.  As all the storage capacity was 
needed to reduce the excess charge, there is no spare 
capacity for peak-tariff avoidance left.  The intermediate 
ESS in Figure 2 has sufficient capacity to avoid all tariffs 
until Tuesday and then only using the cheapest night tariff.   
 
The largest ESS, in Figure 3, only uses a small fraction of 
its potential in the first round but has been gradually 
building up charge in the days leading up to the selected 
week and reaching full capacity on Sunday afternoon and 
again on Tuesday afternoon.  Given that it was possible to 
reach full charge even while maximising its discharge 
before Sunday afternoon, the ESS is used to meet all 
residual demand leading up to that point, even at the 
cheapest night-time tariff.  However, the maximum charge 
limit does restrict the use of the stored energy after that 
time and reserves the stored energy for the day-time and 
evening peak.  Instead the charge accumulated by Tuesday 
evening is manged to last until the evening peak of the 
Wednesday in the following week. 

 
Fig.1. A selected week with a 1 MWh ESS. Top: initial balance 

(grey) and after eliminating excess demand , red: residual 
demand, blue: remaining surplus. 2nd: ESS SoC: light green 

after eliminating excess and dark green at end.  3rd: initial final 
residual in red/blue.  Bottom: electricity tariff as the line. Areas 

filled in are those where electricity was imported. 

 
Fig.2. As for Figure 1 but with 10 MWh storage. 

 
Fig.3. As for Figure 1 but with 100 MWh storage. 
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B. Effect of storage size 
 
The overall performance of the ESS in the system can be 
measured by the total amount of energy supplied to the 
system in the sample year.  Figure 4 shows how the energy 
managed by the ESS rapidly increases with its size while 
reducing both, surplus and residual demand.  That initial 
rapid change gradually reduces suggesting that the 
marginal benefit of increasing the storage tails off rapidly 
at around the 10 to 20 MWh storage size. With the mean 
half-hourly consumption (Table I), this equates to a time 
scale of 13 to 26 hours, confirming a common observation 
[2,14] that much of an ESS addresses the daily demand 
and generation cycle.  Addressing imbalances across 
several days or weeks requires significantly larger 
capacities.  This observation is also reflected in the annual 
electricity bill shown in Figure 5.  In this sample system, 
where up to 250 kWh could be exported per half hour time 
slot, the income opportunities lost by using surplus to 
charge the ESS reduces less rapidly than the savings from 
avoiding import.  Despite losses, measured by the round-
trip efficiency of the ESS, the strategy to avoid the most 
expensive residuals more than outweighs losses, reducing 
the net costs to zero for the largest ESS included here. 
 
Given that the scheduling has to work around the 
minimum and maximum SoC, the operation of the ESS 
can also be illustrated in the typical time between being 
successively ‘full’ or ‘empty’.  Figure 6 shows both, mean 
and the median of the time between the ESS reaching each 
extremum SoC.   While the mean or average time between 
the ESS reaching successive maximum SoC appears to 
increase almost linearly with storage capacity, the other 
three measures show a levelling off.  It is worth to note 
that the mean and median are very close to each other for 
the smaller ESS, up to about 20 MWh.  This again 
suggests that the storage size up to 20 MWh is regularly 
used to meet the daily and weekly cycles but capacities 
beyond that are used less frequently to cover more variable 
periods of persistent deficit.  The median of the cycling 
limited by the maximum SoC levels off at around 7 days, 
suggesting that the larger ESS exploit their capacity for 
half the time to carry over spare weekend capacity into the 
week. In stark contrast, the ESS being exhausted to its 
minimum SoC limits both, the average and median times 
to much shorter periods, 3 to 4 days on average, with half 
of the periods only around a single day. 
 

 
Fig.4. ESS performance against storage capacity: Annual 
electricity supply to the demand from storage (blue dots), 

remaining surplus (filled upward triangles) and residual demand 
(open downward triangles) 

 
Fig.5. Annual electricity expenditure and income against 

storage capacity. 
 

 
Fig.6. Mean and median period between the ESS reaching its 

minimum or maximum capacity against storage size. 
 
 
C. Computational considerations 
 
The computational costs involved in implementing this 
algorithm are considered.  The average total number of 
iterations of the loop in lines 23 to 39 is shown against the 
storage size in Figure 7, showing the number of iterations 
during the first round to try to reduce the excess charge 
(red open circles) and the total number of both rounds 
together (filled blue circles).    Initially, the first round 
completes more iterations than the first: the first round 
reserves a significant amount of the available storage, 
leaving fewer opportunities for the second round.  At 
around 3 MWh, both rounds spend an equal amount of 
iterations charging and discharging the ESS, after this the 
second round always has more scope for using the ESS.  
Above a storage capacity of 20 MWh, all opportunities to 
reduce the excess in the first round have been addressed, 
and the number of iterations levels off.  In contrast, the 
number of iterations in the second loop appears to continue 
to increase fairly linearly without showing any sign of 
levelling off, even though the resulting energy transfer 
(Figure 4) increases less and less.   This suggests that the 
algorithm spends an increasing amount of work finding 
and transferring available electricity.  This can be 
measured in the number of iterations needed for each 
MWh provided to the load by the ESS, shown in Figure 8.  
This indeed shows a range where the operation is most 
effective in the 15 to 40 MWh range. 
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Fig.7. Average number of storage iteration loops per time slot 

selected against storage capacity for 2 rounds of ESS procedure. 

 
Fig.8. Number iterations needed per MWh of electricity 

delivered by the ESS, against storage capacity. 
 
Translating the number of iterations into actual computing 
time,  the CPU time needed by a relatively low-spec laptop 
(Macbook Air from 2015, 1.6. GHz Dual-core i5), even 
the largest ESS capacity used here on a data set of half-
hourly data (17 568 slots) was completed in less than 20 s. 
 
4.  Conclusions 
 
This paper has introduced a simulation tool to model the 
optimum operation of an energy storage system in a time 
series energy model using known or prescribed load and 
generation data.  As such it implicitly assumes perfect 
knowledge which can be used to simulate the optimum or 
benchmark performance of an ESS.  This model has been 
demonstrated in a case study to work reliably and produce 
results fully consistent with expectations. 
 
As such, the model can be implemented for a broad range 
of energy systems models which are commonly used to 
understand the system dynamics as well as to provide a 
guide in the systems design process.    It could be used in 
in conjunction with forecasts of generation and demand.  
In this case, it would show the optimum scheduling for the 
estimated prediction horizon.  The only change to 
implement the model in predictive scheduling would be to 
initialise the ESS not at its minimum SoC but at the actual 
SoC at the beginning of the predicted period (line 5). 
 
Currently, the ESS is represented by a small number of 
typical performance characteristics and is therefore 
flexibly to be applied across a large range of energy 
storage technologies.  Given the transparent nature of the 
algorithm, it is easy to incorporate technological 

constraints, such as ramp rates.   The most challenging, but 
not insurmountable, aspect appears so far to be complex 
self-discharge characteristics if they depend on current 
state factors as well as its history, as found with Li-Ion 
batteries [12,13], which show an initial rapid loss after 
charging followed by a more gradual self-discharge, as 
well as a degradation of capacity over time and use. 
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