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Abstract. Fuel cells based on polymer electrolyte 

membrane are considered as the most hopeful clean 

power technology. The operating principles of polymer 

electrolyte membrane fuel cells (PEMFC) system involve 

electrochemistry, thermodynamics and  hydrodynamics 

theory for which it is difficult to establish a mathematical 

model. In this paper a nonlinear data driven model of a 

PEMFC stack is developed using Neural Networks 

(NNs). The model presented is a black-box model, based 

on a set of measurable exogenous inputs and is able to 

predict the output voltage and cathode temperature of a 

high power module working at the CNR- ITAE. A 5 kW 

PEM fuel cell stack is employed to experimentally 

investigate the dynamic behaviour and to reveal the most 

influential factors. 
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1. Introduction 

 
Many studies were devoted to the development of 

techniques able to model the fuel cell behaviour through 

the polarization curves by analyzing the steady-state 

performance.  

However, the dynamic characteristics are also important 

factors for the fuel cell development, especially for 

systems where a number of variables (e.g. fuel feeding, 

load, stack temperature etc..) can frequently change.  

The knowledge of the dynamic behaviour is therefore an 

important condition to evaluate the whole system 

performance. Moreover this knowledge gives also 

guiding principles for control strategies. 

Modelling PEMFC is not an easy task considering an 

analytic approach [1] – [5]. Indeed, analytic models are 

based on the deep knowledge of physicochemical 

phenomena and usually depend on a lot of parameters. 

In process industries it is very common to identify the 

required model from historical input-output data, usually 

stored in the plant database. Models used in such a 

framework are generally known as Data driven model or 

Soft Sensors (SSs). 

The wide availability of control systems allows to 

designers and operators an easy implementation of Data 

driven model with a minimum cost. Moreover a wide 

number of applications of SSs in the field of process 

industry, have been developed in recent years for plant 

output estimation [6] – [8], fault diagnosis [9], [10] and 

“what-if” analysis [11].  

To identify the dynamical relationship between the input 

and output variables, Data driven model are often 

designed by using NNs, and Multi Layer Perceptrons 

(MLP) have been widely and successfully used to this 

end [12], [13]. 

It has been shown, in fact, that feed-forward NNs with 

one hidden layer can approximate any continuous 

function with good accuracy [14].  

The objective of this paper is to achieve behavioural 

model that simulates the performance of the PEMFC 

stack fed with different flow rates, operating at different 

temperatures and under different load demands. Few 

works of this kind have been reported in literature [15] - 

[21]. 

The model obtained will be exploited as a component of 

complex Multi-source Hybrid Renewable Energy System 

simulator able to manage the energy flows between fuel 

cell stack and batteries under different scenarios of loads 

and whether data.  

The NN based model, developed on the basis of the 

experimental data, can be hence used to investigate the 

influence of process variables for different operating 

conditions. By this approach the input/output empirical 

correlations of the PEMFC stack were expressed in terms 

of process operating variations. 

In the first part of the paper, a general description of the 

PEMFC stack is presented. Next, a brief introduction to 

Data driven model will be given. In the second part the 

test procedure is described and data driven modelling 

based on NNs applied to the fuel cell stack is proposed. 

Finally, simulation results obtained using the proposed 

model are compared to experimental data. 
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2. PEMFC Stack 

 
PEM Fuel Cell is regarded as the most competitive 

candidate to become the main alternative energy source 

to the traditional forms of power conversion because of 

its well-known features.  
It consists in a solid polymeric membrane which acts as 

electrolyte and two platinum porous catalyst electrodes 

coupled on both sides of the membrane.  

The basic chemical reactions are: 

 

Anode: H2 → 2H
+
 + 2e

-
  (1) 

Cathode: ½O2 + 2 H
+
 + 2e

-
 →  H2O  (2) 

 

Resulting in : 

  

H2 + ½O2 →  H2O  (3) 

 

Fuel Cells, like batteries, convert the energy contained 

into chemical species into DC power through 

electrochemical reactions. In Fig.1 a representative fuel 

cell system scheme is shown. A typical characteristic 

curve representing battery and Fuel Cell features is the 

polarization curve (Fig.2a), that is a representation of the 

device performance at different power generation levels. 

Fig. 2b shows the comparison of the voltage 

characteristics at a constant “discharge” current. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Fuel Cells System scheme 

 

 

Fig. 2.  Comparison between Batteries and Fuel Cell voltage. 

 a) Polarization curve; b) Voltage at constant current 

 

Differently from batteries, Fuel Cells are fed with an 

external source, like hydrogen stored as compressed gas 

or into hydrides, or by hydrogen rich gas produced via 

hydrocarbons reforming. 

In a Multi-source Hybrid Renewable Energy System the 

energy storage is a key issue for the management of the 

system itself and for the characteristics of the grid (e.g. 

micro-grids, smart-grids) which the system is connected 

to. The possibility to supply the fuel cell with hydrogen 

produced by electrolysis and natural gas as well, assures 

a more stable operation, providing a high quality power 

supplying. However, in order to allow a constant voltage 

operation, a converter (DC/DC or DC/AC) is needed. 
The device in this study was a 5 kW NUVERA PEM fuel 

cell stack consisting of 50 cells with 500 cm
2
 of 

geometric area each (Fig. 3).  

The stack works with a Cathode Water Injection system 

that dissipate heat and humidifies the cathode side by 

mixing air stream and water.  

In this work the stack was operated in a test station that 

includes an electronic load, gas mass flow controllers and 

pressure sensors and actuators, and a control and monitor 

software (Fig. 4).  

The station allowed to modify a number of process 

variables and to obtain an experimental database about 

the PEMFC stack under different operating conditions.  

The system was able to communicate with the user 

trough a graphic LabVIEW interface developed by ITAE 

personnel built for the control and monitoring of the 

stack (Fig.5).  

 

 
 

Fig. 3 Nuvera 5Kw PEM Stack 

 

 
 

Fig. 4 Test Station 
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Fig. 5.  Software interface of control and monitoring.  

 

The control system allowed to change the input variables 

(e.g. gas flows combination, load and operating range of 

stack temperatures) and to monitor thermal and electrical 

characteristics (e.g. single cell voltage, anode and 

cathode temperatures, water temperature) by more than 

20 sensors. 

The software allowed also a complete data acquisition 

that was used for the experimental validation of the data 

driven model. 

 

3. Data driven models 
 
The objective in using data driven model for a PEMFC 

stack is to obtain the nonlinear input/output relationship 

that is represented in a set of historic data. To this aim 

models based on NNs have proved to be a suitable 

nonlinear modelling method. NNs and in particular 

Multi-Layer Perceptrons (MLPs), are tools generally 

accepted for modelling complex systems, due to their 

ability to approximate nonlinear I/O relations. 

NNs are parallel computational devices consisting of 

groups of highly interconnected processing elements 

called neurons. Data driven model based on NNs are 

characterized by topology, computational characteristics 

of their elements, and training rules. The connections 

between the units are also known as synapses or weights. 

The pattern of the connections between the units 

determines the architecture of the network that depends 

largely on the desired task that the network is to perform. 

Although there are many learning algorithms that can be 

used to train multilayer NNs, backpropagation, with its 

variations, is currently the mainstay of artificial neural 

network learning.  

A commonly used artificial neuron, shown in Fig. 6 is a 

simple structure, having just one nonlinear function of a 

weighted sum of several data inputs x1, . . . , xn; this 

version, often called a perceptron, computes a ridge 

function: 

 

  

(4) 

 

and assume that the function σ is a smooth, increasing, 

bounded function. Examples of sigmoids in common use 

are: 

 

σ1(u) = tanh(u)    or 

σ2(u) = 1/(1 + exp(−u))  

  
(5) 

 
Fig. 6 Feedforward neuron 

 

The weight-adjustement algorithm will use the 

derivatives of the sigmoid functions reported in (5). The 

weights wi have to be selected or adjusted to make this 

ridge function approximate some known relation which 

may or may not be known in advance.  
In order to learn functions more complex than ridge 

functions, one must use networks of perceptrons. Thus 

the general idea of feedforward networks is that they 

allow to realize functions of many variables by adjusting 

the network weights. 
There are several neural network architectures useful for 

process modelling. The three-layer artificial neural network 

represents a feed-forward structure that is useful for many 

applications. In the three-layer NNs, the units are arranged 

into three layers: an input layer, which receives input data 

from outside the network; a hidden layer, which receives 

signals from the input layer; and an output layer, which 

receives signals from the hidden layer and represents the 

final output of the network (Fig. 7).  

In the multi-layer NNs, the calculation of the network 

activation proceeds layer by layer from the input layer 

through the hidden layers to the output layer.  
 

 
Fig. 7 Backpropagation network model 

 

The general formulation for a NMA multi-input, multi-

output model is: 

 

[Y (k)]= f[IN1(k),…, IN1(k-n1), IN2(k),…,      

IN2(k-n2),…, INm(k),…,INm(k-nm)] 

 (6) 

 

where Y(k) is the output vector at time k, INi (i= 1, 2, …, 

m) are the input variables with their respective time 

delays ni, and f is an unknown nonlinear function. 
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4. PEMFC Stack model 
 
The typical steps of data driven models based on NNs 

can be summarized as it follows: 

 

• data collection and filtering; 

• variables and model structure selection; 

• model identification; 

• validation. 

 

In this application data were been collected and filtered 

with the help of the system experts in order to represent 

the whole system dynamics. Moreover, a careful 

investigation of the available data was been performed to 

detect either missing data or outliers.  

The initial step in any modelling approach based on NNs 

requires the training of a large number of candidate 

neural models with different structures for both the model 

(number and type of inputs) and the network (number of 

hidden neurons), and different I/O data set.  

In this work the variables choice was been made taking 

into account the available know-how about the plant 

dynamics and is reported  in Tab.1.  

 
Tab. 1 Input and output variables 

 

Variable Ranges Unit 

Stack Current [30÷110] A 

Hydrogen mass flow [19÷104] slpm 

Nitrogen mass flow [7÷39] slpm 

Air mass flow [35÷184] slpm 

Cathode Temperature 
(OUT)  

[54÷76] °C 

Stack Voltage  
(OUT) 

[34÷41] V 

 

To obtain a significant stack voltage dynamic the load 

current was changed from 30 to 110 A, the air mass flow 

from 35 to 184 slpm, the hydrogen mass flow from 19 to 

104 slpm and nitrogen mass flow from 7 to 39 slpm in a 

number of different combinations (Tab.2). The anode 

preheater was fixed to 60 °C. 

 
Tab. 2 Gas flows and Stack Current combinations 

 

Flow 

Current 

 

Stoic. 

Ratio 

 

Gas  

30A 60A 90A 110A 

H2 19.6 39.2 58.8 72.8 

N2 7.26 14.52 21.77 26.96 

1.4 

Air 35÷50 70÷100 105÷150 128.8÷184 

H2 22.4 44.8 67.2 83.2 

N2 8.29 16.59 24.88 30.81 

1.6 

Air 35÷50 70÷100 105÷150 128.8÷184 

H2 25.2 50.4 75.6 93.6 

N2 9.33 18.66 28 34.66 

1.8 

Air 35÷50 70÷100 105÷150 128.8÷184 

H2 28 56 84 104 

N2 10.37 20.74 31.11 38.52 

2.0 

Air 35÷50 70÷100 105÷150 128.8÷184 

To train the different neural models, a set of patterns with 

sampling time T=10 sec., covering different process 

working points, was considered. A set of about 150 

selected I/O samples was used for the NN training, while 

a different set of about 300 samples was used for testing 

and comparing the different models.  

Data in software databases have different magnitudes, 

depending on the units adopted and on the nature of the 

process. This can cause larger magnitude variables to be 

dominant over smaller ones during the identification 

process. Data scaling was therefore needed. The z-score 

scaling method has been used for input variables (Fig. 8). 

The z-score normalization is given by: 

 

x’  =  (x – meanx ) /σx  (7) 

 

where: 

- meanx is the estimation of the mean value of the 

unscaled variable; 

- σx is the estimated standard deviation of the unscaled 

variable. 
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Fig. 8 Input variables 

 

All the networks were trained using the Levemberg-

Marquardt algorithm, with the early stopping approach to 

prevent overfitting.  

A trial and error approach was used to select the best 

model among possible candidates. Several sub-optimal 

neural models were been obtained, corresponding to a 

different number of hidden neurons and/or different set of 

learning patterns. The neural model with the higher 

correlation coefficients has 12 hidden neurons and 

indicators of performance using train and test data are 

reported in Tab.3.  

Fig.9 shows the comparison between acquired data and 

corresponding estimations using the test data for the 

model based on the proposed procedure. 

Fig. 10 and 11 and Fig. 12 and 13 show the same 

comparison for the Stack Voltage and Cathode 

Temperature using a test and a train data subset 

respectively.  

In Fig. 14 and 15 the estimation capabilities of the model, 

on the same set of test data used in Fig. 9 were analyzed 

by the 4-plot analysis of the residual. 

In more detail, the 4-plot analysis was based on visual 

inspection of the time plot, lag plot, histogram and 

normal probability plot. 
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These four graphics can be used to test specific properties 

of the model residual. In particular, the histogram and the 

normal plot will be used to investigate the normal 

distribution of the model residual. If the model 

identification works properly, the histogram will be 

approximately zero centred and bell-shaped, while the 

normal plot will be close to a straight line. The lag plot is 

used to search for any dependence of the model residual 

on its past values. 

Any discrepancy from the 4-plot ideal aspect is a 

symptom of divergence from the stated hypothesis for the 

model residual. 

 
Tab.3 Performance of the best NN model. 

 
 Variable Correlation 

Coefficient 

Mean Error Standard 

Deviation 

VStack 0.9962 0.0086 0.1980 Test 

TCath 0.9843 0.1097 0.5855 

VStack 0.9978 0.0064 0.1398 Train 

TCath 0.9958 0.0363 0.4772 
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Fig.9 Comparison of Stack Voltage and Cathode Temperature 

acquired data and corresponding model estimation for the Test 

data. 
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Fig.10 Comparison of Stack Voltage acquired data and 

corresponding model estimation for a Test data subset. 
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Fig.11 Comparison of Cathode Temperature acquired data and 

corresponding model estimation for a Test data subset. 
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Fig.12 Comparison of Stack Voltage acquired data and 

corresponding model estimation for a Train data subset. 
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Fig.13 Comparison of Cathode Temperature acquired data and 

corresponding model estimation for a Train data subset. 
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Fig.14 Stack Voltage. 4-Plot analysis for the model residual  
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Fig.15 Cathode Temperature. 4-Plot analysis for the model 

residual  

 

 

5. Conclusion 

 
This work investigated the dynamic performance of a 5 

kW NUVERA PEM fuel cell stack behaviour with the 

aim to provide an integration in a Multi-source hybrid 

alternative energy systems and to study the related issues 

such as control strategies, microgrid connection, stack 

versatility and its ability to follow the load, etc.. The 

developed model includes all important operating 

characteristics of the process using non-parametric 

approach. 

The dynamic behaviour showed particular characteristics 

during different stages of air/hydrogen/nitrogen flow rate, 

temperature and current load variation. 

The data driven obtained model performed quite 

satisfactory and stack voltage and cathode temperature 

dynamics were simulated with accuracy. The trained NN 

model is computationally fast and easy to use, especially 

in the case where physical models are not readily 

available. 
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