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Abstract—This paper proposes a new method for the estimation of 

the grid voltage frequency using a low-pass filter (LPF) approach. 

The estimated frequency is used to tune a second order generalized 

integrator (SOGI) filter commonly used for grid monitoring 

purposes and applications requiring parameter estimation from 

the grid. A first-order LPF is used first for the estimation that 

behaves identically to the reported normalized SOGI-FLL. A 

second-order LPF is proposed instead to overcome this 

circumstance. The behavior of this approach is dynamically 

analyzed and a linearized model useful for design purposes is 

derived. The behavior of the proposed system is checked with 

simulations, showing that the model matches well with the real 

system and has a smoother transient response to step frequency 

perturbations and also a better rejection to harmonic distortion 

than previous approaches. 
 

Keywords – Grid voltage monitoring, SOGI filter, harmonic 

distorion, power quality. 
 

I. INTRODUCTION 

The electrical network today suffers from different kind of 

distortions that created a great concern about the power quality 

issue [1]-[3]. Power converters should estimate the parameter of 

the grid voltage in a context that can be polluted by harmonic 

distortion. Therefore, the obtained estimations can be distorted, 

which can be the cause of a bad inverter operation [4]-[9]. 

In literature the grid monitoring methods based on the SOGI 

filter become popular due to its easy implementation and good 

behavior in front of harmonic distortion [11]-[17]. These 

methods require of the tuning of the SOGI filter with the grid 

frequency in order to operate properly. This tuning had been 

usually performed till now using the frequency locked loop 

technique (FLL) proposed in [13] due to its simple structure and 

easy implementation. However, this tuning can be also 

performed now by a recent approach in [21] that uses the 

gradient descent method applied to the SOGI and results in 

three different simple gradient estimators (GE). These 

approaches, FLL and GE, are very simple to implement since 

in fact require of a single integrator and few math operations. 

In [16] a linearization and gain normalization using a small 

signal analysis of the FLL was proposed to simplify the SOGI-

FLL tuning. In [19] and [20] an additional SOGI was added as 

a pre-filter to the SOGI-FLL in order to provide robustness 

against harmonics, subharmonics, and dc-offset voltage. In 

these last two works a deep analysis about the SOGI trade-off 

between settling time response and harmonic rejection was 

provided for design considerations and system tuning. In [18] a 

complete dynamic analysis and linearization of the SOGI-FLL 

system was presented. 

This paper presents a novel method for estimating the grid 

voltage frequency using a LPF and the estimated of the grid 

phase using the inner SOGI state variables and SOGI outputs. 

The LPF provides the estimated frequency to the SOGI for 

being adaptive with the grid frequency variations. 

A first-order LPF is used first for estimating the grid 

frequency that results in a good system performance. However, 

the analysis of the system demonstrates that this approach 

achieves similar dynamic behavior than the normalized SOGI-

FLL in [13]. So, the response to step frequency perturbations 

and the rejection to harmonic distortion is identical to the 

SOGI-FLL and both systems are equivalent. 

Then, a second-order LPF is proposed for the estimation 

scheme. The dynamic analysis of this approach now reveals to 

behave with less oscillation during the transient to a step 

frequency perturbation than the SOGI-FLL. Moreover, the 

system has a better rejection to harmonics than the SOGI-FLL. 

Thus, it is clear that this proposal can be employed in the SOGI-

related structures for improving the dynamic behavior and 

capability to reject harmonic distortion. 

This paper is organized as follows: in section II the LPF 

approach and the dynamic analysis are explained. Section III 

shows the simulation results and section IV exposes the 

conclusions. 
 

II. LPF BASED FREQUENCY ESTIMATION METHOD 

The SOGI filter, Fig. 1, is a band-pass filter used in grid 

monitoring applications for estimating the frequency, phase and 

voltage amplitude of the grid. The SOGI is formed by a 

generalized integrator (GI) synchronized with the input voltage 

vin by means of an outer loop between the output 𝑣𝑑 and 𝑣𝑖𝑛, 
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with a gain that regulates the transient response and the 

bandwidth of the system [12]-[21]. The SOGI provides an 

orthogonal output 𝑣𝑞 , that is used with 𝑣𝑑 for the estimation of 

the grid parameters. 

 

_ 

+ 
2ξ 

vd vin 

SOGI Filter 

e 

+ _ 

1 

s 

1 

s 

vd 

 

GI 

vq 

 

vq 

 
Fig. 1. Block diagram structure of the SOGI filter. 

 

a) First-order LPF frequency estimation 

The SOGI filter center frequency ω needs to be tuned with 

the grid frequency in order to operate well, which had been 

usually performed by the FLL algorithm reported in [13] and 

which can also be with any of the three gradient descent 

estimators proposed in [21]. In this paper, the frequency is 

obtained from direct calculations using the SOGI orthogonal 

outputs and some inner SOGI state variables. 

Let us consider a SOGI input voltage  

𝑣𝑖𝑛 = 𝐴𝑖𝑛𝑠𝑖𝑛(𝜔𝑜𝑡 + 𝜑) = 𝐴𝑖𝑛𝑠𝑖𝑛(𝜃𝑜),           (1) 

where 𝐴𝑖𝑛 , 𝜔𝑜 , 𝜑 and 𝜃𝑜  are the amplitude, frequency, initial 

phase angle and phase angle of 𝑣𝑖𝑛, respectively. If the SOGI is 

properly tuned, i.e., 𝜔 = 𝜔𝑜 , the following steady state 

expressions will hold: 𝑣𝑑 = 𝐴𝑖𝑛𝑠𝑖𝑛(𝜃𝑜) , 𝑣𝑞 = −𝐴𝑖𝑛𝑐𝑜𝑠(𝜃𝑜) , 

�̇�𝑑 = 𝜔𝑜𝐴𝑖𝑛𝑐𝑜𝑠(𝜃𝑜)and �̇�𝑞 = 𝜔𝑜𝐴𝑖𝑛𝑠𝑖𝑛(𝜃𝑜). 

When the former expressions for vd, vq and their time 

derivatives are substituted into the signal 

𝑣 = 𝑣𝑑 ∙ �̇�𝑞 − �̇�𝑑 ∙ 𝑣𝑞 ,                         (2) 

it is obtained 

𝑣 = 𝜔𝑜𝐴𝑖𝑛
2 (𝑠𝑖𝑛2(𝜃𝑜) + 𝑐𝑜𝑠2(𝜃𝑜)) = 𝜔𝑜𝐴𝑖𝑛

2         (3) 

So, the grid frequency from (3) can be obtained as 

𝜔𝑜 =
𝑣𝑑∙�̇�𝑞−�̇�𝑑∙𝑣𝑞

𝐴𝑖𝑛
2 .                              (4) 

With the aim of using the right hand side of (4) for tuning the 

SOGI center frequency ω with the grid frequency ωo, a LPF is 

added in order to avoid an algebraic loop and the adverse effects 

of the time derivative terms in (4). The LPF will provide the 

average of the obtained frequency, having a filtering effect on 

the distortion produced by harmonics and improving the 

response of the SOGI to this problem. So, the frequency 

calculation is formulated as 

�̇� + 𝑎 ∙ 𝜔 = 𝑎 ∙
𝑣𝑑∙�̇�𝑞−�̇�𝑑∙𝑣𝑞

𝐴2 ,                     (5) 

where A estimates Ain as: 

𝐴2 = 𝑣𝑑
2 + 𝑣𝑞

2                                 (6) 

and a is the LPF cut-off frequency in rad/s. 
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Fig. 2. Block diagram of the proposed SOGI-LPFe. 

Fig. 2 depicts the block diagram of the SOGI filter with the 

proposed grid frequency estimator. The method will be named 

from now on as "LPF Frequency Estimation" (LPFe). Fig. 3 

depicts the simulation results for a grid frequency step 

perturbation from 50Hz to 55Hz. The response of the 

normalized SOGI-FLL in [18] is also included in the plot for 

comparison purposes. The system parameters are shown in 

Table I. 

 
Fig. 3. Transient response of the SOGI-LPFe estimator to a grid frequency step 
perturbation from 50Hz to 55Hz. 

 
TABLE. I. SOGI-LPFe AND SOGI-FLL PARAMETERS 

Name Value 

SOGI-LPFe cut-off frequency, a (rad/s) 221  

SOGI-LPFe damping factor,  0.7 

SOGI-FLL gain, λ (rad/s2) 157ωn 

SOGI-FLL, damping factor,  0.6 

Rated grid frequency, ωn (rad/s) 250 

 

b) LPFe System dynamics  

The dynamics of the LPFe can be identified and linearized 

following the same procedure described in [18]. By knowing 

from the SOGI structure of Fig. 1 that  

�̇�𝑑 = 𝜔 ∙ (2𝜉𝑒 − 𝑣𝑞)                             (7) 

�̇�𝑞 = 𝜔 ∙ 𝑣𝑑                                           (8) 

Equation (5) can be expressed as 

�̇� + 𝑎𝜔 = 𝑎
𝜔∙[(𝑣𝑑

2+𝑣𝑞
2)−2𝜉𝑒∙𝑣𝑞]

𝐴2 .                 (9) 

Which, by virtue of (6) is simplified to 

�̇� + 𝑎𝜔 = 𝑎 [1 −
2𝜉

𝐴2 𝑒 ∙ 𝑣𝑞].                 (10) 

That gives the following dynamics for the frequency estimator 

�̇� = −𝑎
2𝜉

𝐴2 𝜔 ∙ 𝑒 ∙ 𝑣𝑞 .                            (11) 

Complementarily, the estimated phase angle θ of 𝑣𝑖𝑛 can be 

obtained as 

𝜃 =
𝜋

2
+ 𝑡𝑔−1 𝑣𝑞

𝑣𝑑
 ,                                   (12) 

whose time derivative is 

�̇� =
𝑣𝑑∙�̇�𝑞−�̇�𝑑∙𝑣𝑞

𝐴2 .                               (13) 

Substituting (7)-(8) into (13) gives 

�̇� = 𝜔 [1 −
2𝜉

𝐴2 𝑒 ∙ 𝑣𝑞].                         (14) 

And taking (11) into account, it is obtained the following 

dynamic relationship between θ and ω 
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�̇� = 𝜔 +
1

𝑎
�̇�                                   (15) 

The local asymptotic stability of the SOGI-LPFe can be 

assessed through its linearized small-signal model around the 

equilibrium point of (11). Thus, for the input in (1), assuming 

steady-state conditions for the fast SOGI state variables, i.e. 

𝑣𝑑 = 𝐴𝑠𝑖𝑛(𝜃)  and 𝑣𝑞 = −𝐴𝑐𝑜𝑠(𝜃) , and assuming a quasi-

locked state for the LPFe, i.e., 𝜃 ≈ 𝜃𝑜, (11) can be developed as 

   �̇� = −𝑎
2𝜉

𝐴2
𝜔[(𝐴𝑖𝑛𝑠𝑖𝑛(𝜃𝑜) − 𝐴𝑠𝑖𝑛(𝜃)) ∙ (−𝐴𝑐𝑜𝑠(𝜃))] 

= 𝑎
𝜉

𝐴
𝜔 ∙ [𝐴𝑖𝑛𝑠𝑖𝑛(𝜃𝑜 + 𝜃) − 𝐴𝑠𝑖𝑛(2𝜃) + 𝐴𝑖𝑛𝑠𝑖𝑛(𝜃𝑜 − 𝜃)]     (16) 

Due to the assumed almost locked state of the system  𝜃 ≈ 𝜃𝑜, 

𝐴 ≈ 𝐴𝑖𝑛  and applying the small-angle approximation to the 

trigonometric function leads to 

�̇� = 𝑎𝜉𝜔𝜃𝑒 ,                              (17) 

being 𝜃𝑒 ≈ 𝜃𝑜 − 𝜃 . The linearization of this small-signal 

frequency dynamics around the rated value of the grid 

frequency 𝜔𝑛 gives  

�̇� = 𝑎𝜉𝜔𝑛𝜃𝑒,                             (18) 

whose transfer function is 

𝜔(𝑠) =
𝑎𝜉𝜔𝑛

𝑠
𝜃𝑒(𝑠).                      (19) 

Fig. 5 shows the block diagram of the SOGI-LPFe linearized 

model. 
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Fig. 5. Linearized model of the SOGI-LPFe using a 1st order LPF. 

The system frequency and phase transfer functions are 

respectively 
𝜔(𝑠)

𝜔𝑜(𝑠)
=

𝑎𝜉𝜔𝑛

𝑠2+𝜉𝜔𝑛𝑠+𝑎𝜉𝜔𝑛
                      (20) 

𝜃(𝑠)

𝜃𝑜(𝑠)
=

𝜉𝜔𝑛(𝑠+𝑎)

𝑠2+𝜉𝜔𝑛𝑠+𝑎𝜉𝜔𝑛
                       (21) 

The first-order LPFe dynamics shown in (11) are identical to 

that of the normalized FLL in [18] if a is chosen to be 𝑎 =
𝜆/(2𝜉𝜔𝑛) , being 𝜆  the FLL gain. Therefore, it can be 

concluded that the LPFe proposed method is an alternative way 

to implement an FLL. 

 

c) Second-order LPF approach 

The behavior of the SOGI-LPFe is different if a second-order 

LPF with cut-off frequency a is chosen instead for filtering the 

frequency obtained by the right hand side of (4). Now, (10) 

changes to 

�̈� + 2𝑎�̇� + 𝑎2𝜔 = 𝑎2𝜔 [1 −
2𝜉

𝐴2 𝑒 ∙ 𝑣𝑞],        (22) 

which simplifies to 

�̈� + 2𝑎�̇� = −𝑎2𝜔
2𝜉

𝐴2 𝑒 ∙ 𝑣𝑞 ,               (23) 

and applying the same linearization technique employed in 

(16)-(18) leads to the following small-signal frequency 

dynamics 

�̈� + 2𝑎�̇� = 𝑎2𝜉𝜔𝑛𝜃𝑒,                         (24) 

whose transfer function is 

𝜔(𝑠) =
𝑎2𝜉𝜔𝑛

𝑠2+2𝑎∙𝑠
𝜃𝑒(𝑠).                         (25) 

And the phase-to-frequency relationship results in 

�̇� = 𝜔 +
2

𝑎
�̇� +

1

𝑎2 �̈�.                          (26) 

This relationship supposes a different dynamic behavior than 

for the first-order LPF case. Fig. 6 depicts the block diagram of 

linearized model for the SOGI-LPFe using the second-order 

LPF. 
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Fig. 6. Linearized model of the SOGI-LPFe using a 2nd order LPF approach. 

The dynamics for the frequency and the phase can be 

described by the following transfer functions 
𝜔(𝑠)

𝜔𝑜(𝑠)
=

𝑎2𝜉𝜔𝑛

𝑠3+(2𝑎+𝜉𝜔𝑛)𝑠2+2𝑎𝜉𝜔𝑛𝑠+𝑎2𝜉𝜔𝑛
                (27) 

𝜃(𝑠)

𝜃𝑜(𝑠)
=

𝜉𝜔𝑛(𝑠2+2𝑎∙𝑠+𝑎2)

𝑠3+(2𝑎+𝜉𝜔𝑛)𝑠2+2𝑎𝜉𝜔𝑛𝑠+𝑎2𝜉𝜔𝑛
                 (28) 

The LPF is of second-order and the system dynamics are of 

third-order, that can be regulated by properly designing the a 

and  parameters in order to achieve a desired dynamic 

behavior. The design can be performed in order to achieve a 

specific maximum overshoot, Mp, and settling-time for a given 

frequency step transient or to limit the impact for a specific 

harmonic to a desired value. However, it is clear that the 

second-order LPF, due to its extra filtering capability, can be 

also designed to achieve a similar transient response than the 

SOGI-FLL with enhanced rejection to harmonics. 

As apparent from (22), the second-order LPF employed in this 

section has a repeated real pole 𝑠1,2 = −𝑎 , with a as cut-off 

frequency and with the following transfer function 

𝑊(𝑠) = (
𝑎

𝑠+𝑎
)

2

=
𝑎2

𝑠2+2𝑎∙𝑠+𝑎2.                     (29) 

However, in the design process it can be considered the use of 

two first-order LPFs connected in cascade instead of (29), i.e. 

𝑊(𝑠) =
𝑏

𝑠+𝑏
∙

𝑐

𝑠+𝑐
=

𝑏𝑐

𝑠2+(𝑏+𝑐)𝑠+𝑏𝑐
.                (30) 

Thus, in this case, there will be two LPFs with a and b cut-off 

frequencies that will determine, with , the transient behavior of 

the system. The system linearized model employing the second-

order LPF in (30) corresponds to (27) and (28) but doing 𝑎2 =
𝑏𝑐 and 2𝑎 = (𝑏 + 𝑐). 
 

III SIMULATION RESULTS 

In this section simulation results of the SOGI-LPFe with a 

second-order LPF and comparative results with the normalized 

SOGI-FLL of [18] are provided to validate the linearized model 

and expose the performance in face of grid harmonic distortion. 
 

a) Linearized model validation for the 2nd-order LPFe 

Fig. 7 shows the 2nd-order LPFe transient response to a grid 

frequency perturbation from 50Hz to 55Hz and then back to 

50Hz. The parameters were =0.7 and a=215 rad/s. 

Note in this figure that the step-up and step-down responses 

are slightly different. For the step-up Mp=2.5% and peak time 

tp=0.06s and for the step-down Mp=3.1% and tp=0.059s. This 

phenomenon was already reported in [21] for the normalized 

SOGI-GE1. This phenomenon is due to the different gains that 

the SOGI outputs and sensed inner signals present when ω 

temporarily does not match ωo. The transfer function of 𝑣𝑑, 𝑣𝑞 , 

�̇�𝑑  and �̇�𝑞  regarding the input 𝑣𝑖𝑛  are of a band-pass filter 

(BPF), LPF, high-pass filter (HPF) and BPF types, respectively  
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Fig. 7. Transient response of the SOGI-LPFe using a 2nd-order LPF to a 

frequency step perturbation from 50H to 55Hz and then back to 50Hz. 

[21]. So, 𝑣𝑑 , 𝑣𝑞 , �̇�𝑑  and �̇�𝑞  have different gains at the two 

events: step-up (with ωo>ω) and step-down (with ωo<ω), which 

cause a slightly different transient behavior (see Fig. 7). In this 

case it should be remarked that the asymmetry found in Fig. 7 is 

smaller than the reported one in [21] for the normalized SOGI-

GE approaches. Then, to this regard, it can be stated that the 

second-order LPFe has better response. Nevertheless, this 

asymmetry cannot be considered as a serious problem in anyone 

of these systems, that are mainly employed by engineers due to 

its structural simplicity and easy implementation. 

Fig. 8 depicts the transient response of the 2nd-order SOGI-

LPFe to a frequency step perturbation from 50Hz to 55Hz 

plotted in blue. The linearized dynamics of (27) are also plotted 

in red. The damping factor was fixed to =0.7 and several 

simulations were performed for a=26, 210, 218 and 234, 

respectively. Note that the linearized model matches well with 

the real dynamics in every case. 

 
Fig. 8. Transient response to a frequency step perturbation from 50H to 55Hz, 

for  = 0.7 and a varied from 26 to 234. In blue: 2nd-order SOGI-LFPe 

estimated frequency. In red: Linearized 2nd-order SOGI-LFPe estimated 
frequency. 

 

In contrast, Fig. 9 depicts the transient responses for the same 

frequency step perturbation in case of fixing a=26 rad/s and for 

varying damping factors =1, 0.4 and 0.25. Moreover, Figs. 10 

and 11 show detailed parts of Fig. 9. Note that as  decreases the 

maximum overshot increases. Note that the linearized model 

also matches well with the real dynamics, which proves that the 

linearized model can be used for designing the SOGI-LPFe to 

fulfill a desired dynamic behavior. 

 
Fig. 9. Transient response to a frequency step perturbation from 50H to 55Hz, 

for a=215 and   varied from 0.25 to 1. In blue: 2nd-order SOGI-LFPe 
estimated frequency. In red: Linearized 2nd-order SOGI-LPFe estimated 

frequency. 

 

 
Fig. 10. Detail of Fig. 9. 

 

 
Fig. 11. Detail of Fig. 9. 
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b) Comparison of the 2nd-order LPFe with the FLL in terms of 

dynamic behavior and rejection to grid harmonics. 

The 2nd-order SOGI-LPFe can be compared with the SOGI-

FLL of [18] in two ways: first when they are designed using the 

same parameters and second for a design in which both are tuned 

in order to achieve the same transient response with identical 

maximum overshoot and peak time. The first one allows to 

discover the natural speed for both systems and the second one 

their harmonic rejection capability when having identical 

dynamic behavior. 

The normalized SOGI-FLL estimator of [18] can be described 

by the following equation 

�̇� = −
𝜆

𝐴2 𝑒 ∙ 𝑣𝑞,                           (31) 

where λ is the FLL gain. The linearized dynamic behavior of the 

SOGI-FLL to a frequency transient step perturbation is defined 

in (20) by considering 𝑎 = 𝜆/(2𝜉𝜔𝑛). 

Then, the 2nd-order SOGI-LPFe and the SOGI-FLL of [18] can 

be compared in a design that uses the same parameters,  and a, 

for both configurations. By doing that, Fig. 12 illustrates the 

transient behavior of both systems for the parameter pair (, 

a)=(0.7, 220rad/s). The linearized dynamic versions are plotted 

in red. 

 
Fig. 12. Transient responses of the SOGI-FLL, the 2nd-order SOGI-LPFe and 
their linearized versions to a frequency step perturbation from 50H to 55Hz, with 

=0.7 and a=220rad/s for all the models. 
 

Notice in this figure that for the same  both systems achieve 

a similar Mp with different tp, being faster the SOGI-FLL. The 

response of the 2nd-order SOGI-LPFe is slower by 19ms. Note, 

in contrast, that the dynamic response of the SOGI-FLL is more 

oscillatory than the 2nd-order SOGI-LPFe.  

Now, from the harmonic rejection point of view, Fig. 13 

depicts the responses of both systems to a grid voltage affected 

by a 3rd harmonic distortion of 5% amplitude regarding nominal 

value. Notice now that the SOGI-FLL has less harmonic 

rejection capability than the 2nd-order SOGI-LPFe. In this case, 

the peak-to-peak amplitude distortion of the 2nd-order SOGI-

LPFe has been reduced in -16.08 dB regarding the SOGI-FLL. 

Fig. 14 depicts the transient response for both systems when 

they are designed in order to achieve the same transient response 

with Mp=6.14% and tp=0.044s, i.e., =0.7 and a=220rad/s for 

the 2nd-order SOGI-LPFe and using (20), =0.397 and 

a=211.26rad/s for the SOGI-FLL. Notice in this figure the 

oscillatory characteristics in the SOGI-FLL during the transient. 

Notice also how both systems match perfectly well, especially 

in the linearized dynamics, despite the linearized SOGI-FLL is 

a second-order system and the linearized SOGI-LPFe is a third-

order one. 

 
Fig. 13. Response of the SOGI-FLL and 2nd-order SOGI-LPFe to a 3rd harmonic 
distortion with 5% amplitude in vin. 

 
Fig. 14. Transient response SOGI-FLL, the 2nd-order SOGI-LPFe and their 

linearized versions to a frequency step perturbation from 50H to 55Hz, 
parameterized for achieving Mp=6.14% and tp=0.044s for all the models. 

In order to unveil the harmonic rejection performance, Fig. 15 

illustrates the response of both systems to a grid voltage with a 

3rd harmonic distortion with a 5% amplitude, for the same 

parameterization of Fig. 14. Note in this case that the 2nd-order 

SOGI-LPFe still has a better rejection than the SOGI-FLL. The 

harmonic distortion in the 2nd-order SOGI-LPFe regarding the 

SOGI-FLL has been reduced in -6.45dB, which supposes a 

52.3% reduction. 

Finally, Fig. 16 depicts the harmonic distortion of both systems 

for a grid voltage with 3rd, 5th, 7th, 9th and 11th harmonics with a 

5% amplitude in every simulation. The peak-to peak harmonic 

induced distortions in the estimated frequency have been 

reflected in Table II. As can be seen, the 2nd-order SOGI-LPFe 

has a better harmonic rejection than the SOGI-FLL, which 

supposes an improvement to this field. 

 
Fig. 15. Response of the SOGI-FLL and 2nd-order SOGI-LPFe to a 3rd harmonic 

distortion with 5% amplitude in vin when they are designed in order to achieve 
the same transient response specifications Mp=6.14% and tp=0.044s. 
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As a summary, it can be stated that the 2nd-order SOGI-LPFe 

has the benefits of having a better rejection to harmonic 

distortion and a less oscillatory behavior than the SOGI-FLL 

during transients. The rejection to harmonics increases with the 

harmonic frequency order. Therefore, the 2nd-order SOGI-LPFe 

can be an option for enhancing the performance of the existing 

SOGI-based structures. 

 
Fig. 16. Distortion amplitude in dB in the SOFI-FLL and the 2nd-order SOGI-
LPFe estimated frequency for a grid voltage with harmonic distortion. 

 
TABLE. II. PEAK-TO-PEAK AMPLITUDE DISTORTION IN THE ESTIMATED 

FREQUENCY FOR THE SOGI-FLL AND 2ND-ORDER SOGI-LFPe FOR 

DIFFERENT GRID HARMONICS ORDERS WITH 5% AMPLITUDE. 
 3rd 5th 7th 9th 11th 

SOGI-FLL 0.2567 0.1692 0.1241 0.0976 0.0804 

SOGI-LPFe 0.1221 0.0453 0.0230 0.0139 0.0093 

Reduction (dB) -6.45 -11.45 -14.64 -16.93 -18.74 

Reduction(%) 54.64 74.17 80.78 83.76 85.57 

 

IV CONCLUSONS 

In this paper a novel method for adaptively tuning the SOGI 

filter with the grid frequency is proposed. The method uses the 

estimated frequency obtained from the SOGI inner state 

variables and SOGI outputs plus a LPF for the proper tuning of 

the SOGI filter. This approach behaves identically to the 

normalized SOGI-FLL and presents the same small-signal 

linearized behavior around the rated grid frequency than the 

SOGI-FLL variant analyzed in [18]. Therefore, a second-order 

LPFe is proposed instead that behaves better than the SOGI-FLL 

during the grid frequency transitory perturbations and has a 

higher rejection to the harmonic distortion. The simulation 

results show that the proposed 2nd-order SOGI-LPFe has less 

oscillations and a smoother response than the SOGI-FLL at the 

event of a frequency step perturbation. Moreover, it has a higher 

rejection capability to harmonics than the SOGI-FLL. 

Therefore, it is concluded that the proposed system can be used 

to enhance the performance of any SOGI-based system. 
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