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Abstract. In this paper, non-integer order control is applied 
to improve the performance of a buck-boost dc-dc power 
converter with ultracapacitor based on state feedback 
techniques. The approach is based on stabilization in the 
Lyapunov's sense for linear rational-order systems. The 
ultracapacitor can overcome the classical problems of energy 
losses due to the use of batteries, giving more accuracy, 
autonomy and efficiency to the electrical vehicles. 
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1. Introduction 
 
With the decrease of fossil fuel reserves, there is an 
increased demand for hybrid vehicles. Hybrid vehicles 
under development provide cheap, dependable and clean 
improvements in fuel economy. Essentially, all hybrid 
electric vehicles including fuel cell vehicles require 
energy storage systems, commonly battery packs. 
Problems exist with battery packs including the inability 
to absorb and discharge large current loads during 
regenerative braking and boost assist, performance 
degradation over their life, weight, size and 
environmental concerns regarding disposal. 
Ultracapacitors can eliminate these problems. Moreover, 
the use of DC-DC switching converter is mandatory in 
this kind of applications [1]. 
In fact, the advantages of DC-DC switching converters 
are evident opposite to other kind of DC-DC converters 
like, for instance, linear regulators: the efficiency of 
them, in spite of not arriving at the 100% due to the 
omnipresent circuit losses, is near to this optimal value. 
In addition, there is a wide variety of structures such as 
step-down (buck) converters, step-up (boost) converters 
and buck-boost converters. 
However, notice that switching converters show some 
important problems that restrict the general applications 

in many power supply systems (for example, the design 
and implementation of this sort of converters is a more 
complex process than in other DC-DC converters such 
as, for instance, linear regulators, especially their control 
loops when both line and load regulations are desired; the 
intrinsic switched nature of these converters produces 
ripples in the output voltage and an increment of the 
EMIs in neighboring electronic systems, etc.). 
Ultracapacitors are storage devices which store the 
energy within the electrochemical double layer at the 
electrode/electrolyte interface.  
Usually, the ultracapacitors are modelled with a semi-
infinite RC transmission line with losses this model can 
describe the behaviour of the ultracapacitor at low or 
high frequencies, but this model is not valid when the 
frequency range is in medium frequencies. This zone is 
characterized by diffusion effect, and according to some 
papers is better characterized in the Warburg domain 
(jw)1/2 [2] than in the classical Laplace domain (jw). In 
other words, ultracapacitors are characterized by non-
integer order differential equations according to the 
frequency range of operation. Figure 1 displays Nyquist 
diagram of both devices. 

 
Fig. 1. Nyquist diagram of a capacitor (real and ideal) and an 

ultracapacitor.. 
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The idea of non-integer order derivatives is not new, in 
the last years many authors [4] have modelled and 
controlled many physical phenomena based in fractional 
calculus. This mathematical phenomenon allows to 
describe a real object more accurately than the classical 
integer methods.  
Real objects are generally of fractional order; however, 
for many of them the fractionality is very low.  
The control systems used so far were all considered as 
integer-order systems, regardless of the reality. But these 
works have usually theoretical character, whereas the 
number of works in which a real object is analyzed and a 
rational-order controller is designed and implemented is 
small. The main reason for this fact, taking into account 
the theoretical advantages of fractional controllers for 
some control problems, is the difficulty of controller 
implementation. 
In this paper, non-integer order control is applied to 
improve the performance of a buck-boost DC-DC power 
converter with ultracapacitor-based on state feedback 
techniques.  
The buck-boost converter is a type of DC-DC converter 
that has an output voltage magnitude that is either greater 
than or less than the input voltage magnitude. This 
converter is conceived to be used as a controlled energy-
transfer-equipment between the main energy source of an 
electric vehicle (a battery pack in this case) and an 
auxiliary energy system based on ultracapacitors. 
In all switching converters, the output voltage is a 
function of the input line voltage, the duty cycle and the 
load current, as well as the converter circuit element 
values [1]. In a DC-DC converter application, it is 
desired to obtain a constant output voltage in spite of 
disturbances in the input voltage and load current, and in 
spite of variations in the converter circuit element values. 
Note that the sources of these disturbances and variations 
can be many (periodic variations of the input voltage 
produced by rectifier circuits, significant variations of the 
load, etc.).  
Therefore, we cannot expect to simply set the DC-DC 
converter duty cycle to a single value, and obtain a given 
constant output voltage under all work conditions. Then, 
a negative feedback control loop is mandatory in order to 
obtain a circuit that automatically adjusts the duty cycle 
as necessary to achieve the desired output voltage with 
high accuracy, regardless of disturbances in the input 
voltage and output current or variations in component 
values. 

 
Fig. 2. General structure of a DC-DC buck-boost converter. 

A typical block diagram of the feedback system for a 
buck-boost converter is shown in Fig. 2. The output 
voltage V and the inductor current i(t) are measured using 
sensor devices. These measured signals are applied to the 
controller block in order to achieve the control law up(t) 
at its output. This control signal is applied to the pulse-
width modulator block that produces a binary signal that 
commands the converter power transistor Q1 to switch on 
and off. The function of the pulse-width modulator is to 
produce a duty ratio that is proportional to the analog 
control voltage up(t), achieving the desired output voltage 
V=Vd . 
 
Let us consider the tangent linearization model of the 
average normalized Buck-Boost converter system, whose 
impedance of the ultracapacitor includes an additional 
parameter θ, 
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where the variable x1 represents the normalized inductor 
current, x2 is the normalized output voltage and up 
represents the average control variable. 
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where Vd is the normalized reference voltage, v(t) is the 
output voltage, i(t) is the output current, E, R, L and C are 
the parameters of the passive components that present the 
circuit. 
So, in this paper, an average linear state feedback 
controller will be designed, driving the average 
stabilization error state to zero in a generalized 
exponentially stable fashion. The approach is based on 
stabilization in the Lyapunov's sense for linear rational 
order systems. 
 
2.  A Survey of Fractional Calculus 
 
The idea of non-integer order derivates is as old as 
regular calculus. Fractional calculus has been used for 
modelling different physical phenomena [3] and in 
control theory ([4]; [5]; [6]). We can notice systems in 
nature with fractional behaviour, but many of them with a 
very low fractionality [7]. 

https://doi.org/10.24084/repqj08.470 774 RE&PQJ, Vol.1, No.8, April 2010



The fractional integral operator is defined by [3] 
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and we adopt the Caputo definition for fractional 
derivative of order α of any function f(t): 
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where nn  1 ,  and the gamma function 
Γ(ν) is defined for ν > 0 as: 
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3. State Feedback Controller Design 
 
The ultracapacitors can be modelling by zones. At low 
and higher frequencies is similar to a classical capacitor 
(α=1) and at medium frequencies is characterized by 
diffusion effect and is better characterized in the Warburg 
domain (α=0.5). The impedance of the inductor is 
considered as ideal (σ=1). 
Let us consider the tangent linearization model of the 
average normalized ideal Buck-Boost converter system 
defined by (1) whose linearization of the average model 
is given by 
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where exxe 111  , exxe 222   and e
ppe uuu  . 

The objective is to find an stabilizing control law ue(t) 
such as: 

1) The equilibrium point e = 0 of (5) – (6) is 
locally and asymptotically stable. 

2) The control system must reject constant 
disturbances. 

3) The eigenvalues of the average feedback state 
can be arbitrarily assigned. 

Because ultracapacitors can be modelled by zones, 
integer and non-integer order controls are proposed. The 
response of the system is compared for each case in the 
simulation results. 
 
A. Integer Order (IO) Controller. 
 
In this case, it seeks an average integer and linear state 
feedback control of the form: 
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1

1 ekekeIkue     (7) 

which drives the average stabilization error state e to zero 
in an exponentially stable fashion. It design such a 
controller with the help of the average tangent 
linearization system and will use, for the average 
nonlinear system, the control input: 

 23121
1

1 ekekeIkuu e
pp     (8) 

 
At low and higher frequencies (α=1), the equivalent 
closed loop tangent system is given by: 
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and whose characteristic polynomial is given by 
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For medium frequencies (α=0.5), the equivalent closed 
loop tangent system is given by: 
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B. Non-Integer Order (FO) Controller. 
 
In this section, the degree of freedom afforded by 
fractional models in state space is used to offer fractional 
controllers for each plant. 
For low and higher frequencies, it seeks an average 
integer and linear state feedback control of the form: 
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which drives the average stabilization error state e to zero 
in an exponentially stable fashion. It designs such a 
controller with the help of the average tangent 
linearization system and will use, for the average 
nonlinear system, the control input: 
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The equivalent closed loop tangent system is given by: 
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and whose characteristic polynomial is given by 
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For medium frequencies (α=0.5), it seeks an average 
non-integer and linear state feedback control of the form: 
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Equating these polynomials to a desired closed loop 
characteristic polynomial can be obtained the feedback 
gains for the rational linear controllers. 
 
C. Simulations 
 
Simulations are performed to assess the effectiveness of 
the proposed full state feedback controllers, computed on 
basis of the tangent linearized systems, to accomplish a 
stabilization around a normalized equilibrium point value 
for initial conditions set at origin of coordinates. 
 
In order to compare the performances of the different 
control laws (IO and FO controllers for IO and FO 
plants), the same poles placement to closed loop system 
is used for determinate the feedback gains. All roots of 
the characteristic polynomial are defined by ζ. 
 
The following parameters and design values are used: 
 

Q=0.75, E=10 V, Vd=-5 V, ζ=0.15 
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Fig. 3. Response of average Buck-Boost converter based on 
ultracapacitors to linear state feedback controllers (α = 1). 

 
An slower response is proposed because values of ζ that 
demand faster responses the average control input 
initially take negative values. This would cause a 
temporary saturation to zero of the corresponding 
switched controller. In order to verify that the control 
system rejects constant disturbances, at t=25s is used a 
step signal as disturbance on output. Fig. 3 depicts the 
response of the of nonlinear average Buck-Boost 
converter circuit based on ultracapacitors for low 
frequencies to IO and FO control actions of state 
feedback controllers computed on the basis of the 
linearized tangent average system complemented with the 
nominal equilibrium control input.  
Similarly, Fig. 4 depicts the response of the nonlinear 
average Buck-Boost converter circuit for medium 
frequencies. In both plants (IO and FO plants), FO 
controllers show a best behaviour at closed loop system. 
The responses are softer and the convergence to the 
origin is higher. 
 
4.  Conclusions 
 
In this work, fractional modelling of a DC-DC buck-
boost converter based on ultracapacitors, suitable for 
many powered electrical systems, is presented. As the 
fractional model of the system changes according to the 
frequencies range, FO and IO models are proposed. 
Therefore, FO and IO linear feedback controllers are 
designed and compared in each plant. In simulation 
results is showed that FO controllers are more suitable 
for both plants (IO and FO plants) than IO controllers, 
which represents a strong motivation to the modelling 
and control of powered electrical systems via fractional 
control techniques. 

 
Fig. 4. Response of average Buck-Boost converter based on 
ultracapacitors to linear state feedback controllers (α = 0.5). 
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