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Abstract. The use of the Walsh transform in DC-AC PWM 
waveform generation allows the calculation of the switching 
angles by means of linear equations dependent on the 
fundamental amplitude.  
 
After the description of the mathematical method used to find 
the solutions, it is presented a method to reduce the computation 
time needed to find all the switching intervals that give a useful 
range variation of the fundamental amplitude. 
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1. Introduction 
 
It is well known that programmed harmonic reduction in 
DC-AC PWM waveforms needs for the solving of non 
linear equations that made its application difficult in real 
time control of the fundamental amplitude. In these cases, 
a common choice is the off-line calculation of the 
switching angles, which establishes a dilemma between 
the desired precision and the memory capacity needed. 
 
The use of the Walsh functions [1] is a mean for the 
linearization of the equation set that lead to the harmonic 
cancellation that permits the on-line calculation of the 
switching angles as a linear function of the fundamental 
amplitude [2] [3]. With this technique the use of M 
angles per quarter of period permits the cancellation of 
M-1 harmonics and the regulation of the fundamental 
amplitude. 
 
Harmonic reduction in PWM DC-AC converters using 
the Walsh transform has been studied by the authors, in 
previous published works, in different aspects: method 
description [4], non idealities of the switching pulses [5], 
computation of the harmonic distortion [6] and 
evaluation of active and reactive power [7]. In those 

works, it has been developed a method that allows the 
calculation of the switching angles as linear equations 
dependent on the fundamental amplitude. 
 
However, this technique has the drawback of obtaining a 
great number of solutions that difficult the selection 
process of the better cases and also increments the 
computation time, especially when a big number of 
switching intervals is used. 
 
Figure 1 shows the harmonic amplitudes of the PWM 
waveforms for all the intervals with solution for 4 
switching angles for a quarter period, with a fundamental 
amplitude regulation above 20%. It is considered the 
medium value of the fundamental amplitude (A1) range 
available for each interval vector.  
 

 
Fig. 1. Harmonic distribution for intervals with A1 range above 

20%. X axis: Order of harmonic, Y axis: Interval vector 
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This representation helps in the analysis of the obtained 
results, since easily allows the determination of those 
interval vectors with a better harmonic reduction. The 
chosen order is the increasing value of the distortion 
factor (DF), defined as (1). 
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From the solutions shown in figure 1, there have been 
chosen two cases corresponding to switching intervals 
m=[2 7 10 14] and m=[1 5 10 12], in order to compare 
the differences in the harmonic distribution. Both cases 
have been simulated in Matlab, with a value of 
normalized fundamental amplitude of 80%, using a 
power supply of 100 (V) DC and a frequency of 50 (Hz) 
for the bipolar PWM signals.  Figures 2 and 3 show the 
obtained results from the simulation. 
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Fig. 2. PWM signal and harmonic distribution. m=[2 7 10 14] 
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Fig. 3. PWM signal and harmonic distribution, m=[1 5 10 12] 
 
The distortion factors obtained for the signals in figures 2 
and 3 are 7.5% and 8.2%, respectively. Although the 
difference in the distortion factor is small, the differences 
in the harmonic distribution are more noticeable.  In both 
cases it can be seen that the 3rd, 5th and 7th order 
harmonics are cancelled. This comparison shows the 
need of obtaining a great number of solutions in order to 
choose the cases that allow a minimal distortion factor or 
an harmonic distribution more suited to the application 

(for instance, in some applications it would be more 
interesting that the maximum amplitudes appear in the 
greater order harmonics).  
 
In the present paper it has been developed a faster 
algorithm that improves both the computation time and 
the selection criteria of the solutions in order to reduce 
the PWM harmonic content. 
 
2. Method analysis 
 
Since the problem of harmonic elimination is inherent to 
the frequency domain, the analysis requires the 
availability of reciprocal conversion tools between Walsh 
and Fourier transforms. The relationship between Fourier 
and Walsh coefficients is the starting point to compute 
the switching angles of the PWM waveform and can be 
expressed by the transformation (2) [8], where GF and 
GW are the Fourier and Walsh coefficients corresponding 
to the expansion of the PWM signal. 
 

GF = B GW
       (2) 

 
The Walsh coefficients are obtained as follows: 
 
 GW = C δ + D      (3) 
 
where δ = [δ1 δ2 … δM ]T is the vector of switching angle 
fractions, each one referred to the beginning of its 
switching interval. δi∈(0,1).   
 
Each quarter period is subdivided in N intervals, from 0 
to N-1, but only M of which include one, and only one, 
switching angle. Those intervals, m(δi), form the 
elements of the switching interval vector (4).  
 

m = [m(δ1) m(δ2) … m(δM) ]    (4) 
 
To simplify the notation the elements of vector m would 
be referred as follows: 
 

m = [m(1) m(2) … m(M) ]       (5) 
 
The relationship between the fractions (δi) and the 
switching angles (αi) is given by (6) and is represented in 
figure 4. 
 

))i(m(
N2 ii δπα +=      (6) 

 
Fixing N as the power of 2 greater or equal to 4 times the 
number of angles, it can be made that all Walsh functions 
used in the expansion of the PWM signal have a constant 
value in each subinterval, reducing the complexity of the 
algorithm. Another simplification can be obtained fixing 
the end of the switching in the next interval if the value 
of m(i) is less than (N/2)-1, and in the same interval 
otherwise. 
 
Figure 4 shows the first quarter of a PWM signal with 
two switching angles (α1, α2) at intervals 2 and 6. In this 
case: M=2, N=8, m(1)=2 and m(2)=6.  
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Fig. 4. PWM signal with two switching angles 

 
Taking this into account, matrix C and column vector D 
are easily derived from the Walsh matrix (W) whose 
elements are obtained from (7): 
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Matrix C is formed with the M columns of W 
corresponding to vector m, multiplied by the factor 2/N. 
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The N dimension column vector D is obtained by (9), 
that makes the base for the application of the algorithm 
used in this paper. 
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The parameter εj takes the value 1 if m(j) is less than 
(N/2)-1 and 0 otherwise. 
 
3. Obtained results 
 
In order to reduce the computational time, the authors 
have done a study of the distribution of the switching 
intervals for 3 to 8 angles.  
 
As an example, the results obtained for 4 and 8 switching 
angles are depicted in tables I and II, where the more 
frequent intervals are highlighted. 

TABLE I. Distribution of switching intervals (4angles) 

Interval m(1) m(2) m(3) m(4) m(1) m(2) m(3) m(4)
0 2 21
1 21 53
2 15 65
3 26 47 6
4 3 44
5 10 21
6 16 25
7 19 54 8
8 10 2 22 28
9 6 10 14 34 2

10 21 51 12
11 22 38 22
12 9 5 18 35
13 23 7 38
14 18 2 36
15 18 41

Totals 64 64 64 64 186 186 186 186

SWITCHING INTERVALS DISTRIBUTION
Combinations with A1 range above 20% All combinations

 
TABLE II. Distribution of switching intervals (8angles) 

Interval m(1) m(2) m(3) m(4) m(5) m(6) m(7) m(8) m(1) m(2) m(3) m(4) m(5) m(6) m(7) m(8)
0 91 2284
1 820 6779
2 1353 8869 119
3 294 17 2642 1311
4 338 3677
5 913 8254 126
6 1004 6335 660
7 286 6 878 1208
8 194 1501 1
9 491 4588 23
10 587 3976 472
11 994 1 7246 426
12 286 22 1256 1687
13 184 13 1425 3
14 338 1642 12
15 947 7089 575
16 720 95 3802 2207 30
17 346 376 2366 3277 310
18 752 1432 4628 841 13
19 965 45 201 5106 2042 82
20 350 254 8 3308 3440 366
21 20 726 1036 4269 763
22 691 21 282 3547 1712 46
23 571 58 110 2691 2167 305
24 231 275 30 1718 2643 550
25 40 592 913 3219 775
26 707 554 3654 1199
27 654 207 3672 2246
28 237 246 12 1674 4202
29 14 848 443 3732
30 760 166 3703
31 704 3816

Totals 2558 2558 2558 2558 2558 2558 2558 2558 20574 20574 20574 20574 20574 20574 20574 20574

All combinations
SWITCHING INTERVALS DISTRIBUTION

Combinations with A1 range above 20%
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TABLE III. Reduced switching interval range 

angles min max min max min max min max min max min max min max min max
3 0 6 4 10 9 15
4 0 4 3 7 7 11 11 15
5 0 7 5 12 11 18 18 25 24 31
6 0 6 4 10 9 15 15 21 20 26 25 31
7 0 5 3 8 8 13 12 17 17 22 21 26 26 31
8 0 4 3 7 7 11 11 15 15 19 19 23 23 27 27 31

m(1) m(2) m(3) m(4) m(5) m(6) m(7) m(8)

 
 
 

In table I, values are shown for the 64 combinations with 
a fundamental amplitude range above 20% and for the 
186 combinations with solution. It can be observed that 
each switching interval, m(i), takes values around their 
nearest quarter, that is: m(1)=0…3, m(2)=4...7, 
m(3)=8...11 and m(4)=12...15.  
 
This property is also present in the values shown in table 
II. In this case, the total number of combinations with 
solution is 20574, where 2558 of which have an 
amplitude range above 20%. Those distributions have 
been taken into account to reduce the number of 
iterations of the algorithm. The range for each switching 
interval is shown in table III.  
 
Using these values, the processing times are drastically 
reduced. Figure 5 compares the differences in 
computational time between the use of all possible 
interval combinations or the reduced combinations of 
intervals derived from the values shown on table III.  
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Fig. 5. Computing time comparison 

 
The program was set up in Matlab 5.3 and the processor 
used was a Pentium 3 at 1.2 GHz. For comparison, figure 
6 depicts the number of interval combinations obtained in 
each case. 
 
4. Conclusions 
 
It has been developed an algorithm that reduces the 
computation time of the PWM switching angles using the 
Walsh transform. The rate of time reduction varies from 

1.2 for 3 switching angles to 18.3 for 8 angles, whereas 
the rate of number of combinations reduction varies from 
1.2 for 3 switching angles to 3.2 for 8 switching angles. 
This shows that the method increases its benefits as 
increases the number of switching angles. 
 
This method will make possible the study of a bigger 
number of switching angles that otherwise would have 
need days of processor time.  
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Fig. 6. Comparison of number of interval combinations 
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