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ABSTRACT – There is an increasing interest in 
renewable and green energy sources and the integration of 
Distributed Generation DG into the power grid system. The 
problem of optimal capacitor allocation in electric 
distribution systems involves maximizing energy utilization, 
feeder loss reduction, and power factor correction.  The 
feeder loss can be separated into two parts based on the 
active and reactive power loss components. The paper 
presents a novel method for minimizing the loss associated 
with the reactive component of branch currents by placing 
shunt capacitor optimally selected banks. This paper presents 
a novel technique for capacitor sizing using the Multi 
objective multi-stage Particle Swarm Optimization MOPSO 
to determine optimal capacitor sizes in a radial distribution 
system. The main objective functions are: 

1. Minimize the feeder current for feeder loss 
reduction, 

2. Minimum voltage deviation at each bus of the 
distribution system, and 

3. Feeder capacity release. 
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1. INTRODUCTION 
     Capacitors are widely used in distribution systems 
for voltage stabilization and reactive power 
compensation as well as power/energy reduction, 
voltage regulation and system capacity release [1]. The 
extent of these benefits depends greatly on how the 
capacitor banks are placed and sized. The problem of 
how to place capacitors on the radial distribution 
system such that these benefits are achieved and/or 
maximized against the total cost associated with fixed 
capacitor placement is termed the General Capacitor 
Placement Problem. The General Capacitor Placement 
Problem consists of determining the locations to install 
capacitors, the types and sizes of capacitors to be 
installed and the control schemes for the capacitor 
switching such that an objective function is minimized 
while the load constraints and system operational 
constraints at varying load levels are satisfied. 

 The voltage stability problem in distribution networks 
is becoming more and more critical as electric utilities 
operate their grid systems at higher capacities. 
Increasing network loading results in increases in 
active and reactive power feeder losses. An increase in 
active power loss represents loss in savings to the 
utility as well as a reduction in feeder utilization, 
whereas an increase in reactive power loss causes 
system voltages to decline, which in turn increases the 
active power loss and reduces system reliability. 
Voltage instability may also arise in heavily loaded 
distribution networks. Initially, an increase in reactive 
power requirements causes the voltage to decline 
slowly; however, the system may reach an unstable 
region where a small increment in load may cause a 
steep decline in the system voltage. Here, as load 
power is increased, the distribution network is no 
longer capable of transmitting the needed power to 
meet the load. Installing capacitor banks in distribution 
networks tends to reduce active and reactive power 
losses, increases feeder utilization, improve power 
quality and allows for the installation of more loads on 
existing distribution systems, thus increasing utility 
savings. 
   The problem of optimally selection capacitor banks 
such that the total cost (i.e., investment plus cost of 
losses) is minimized while technical constraints (e.g., 
voltage levels, power flow limits) are enforced is of a 
combinatory nature as a consequence of capacitor sizes 
and types being discrete type variables. The work 
reported in [2], [3] constitutes the reference frame 
from the point of view of classical optimization 
methods, like Mixed-integer linear programming. 
More recently, several AI-related techniques, such as 
genetic algorithms [4-6], simulated annealing [7] and 
tabu search [8], [9] have been explored. GA is an 
iterative search algorithm based on natural selection 
and genetic mechanism. However, GA is very fussy; it 
contains selection, copy, crossover and mutation 
scenarios and so on. Furthermore, the process of 
coding and decoding not only impacts precision, but 
also increases the complexity of the genetic algorithm.  
Particle swarm optimization (PSO) is a novel emerging 
intelligence which was flexible optimization algorithm 
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proposed in 1995. There are many common 
characteristics between PSO and GA. First, they are 
flexible optimization technologies. Second, they all 
have strong universal property independent of any 
gradient information. However, PSO is much simpler 
than GA, and its operation is more convenient, without 
selection, copy, and crossover. 
    The optimal capacitor selection of distribution 
network capacitors is a challenging problem since it 
often involves various conflicting objectives and goals. 
In general, to solve this optimality problem, there are 
two optimization techniques based on Particle Swarm 
Optimization (PSO). These two techniques are: 1. 
Single objective Particle Swarm Optimization SOPSO, 
and 2. Multi objective Particle Swarm Optimization 
MOPSO.  

The main procedure of the SOPSO is based on 
deriving a single aggregate objective function using 
the functional model of the shunt power filter. The 
single objective function may combine several 
objective functions using specified or selected 
weighting factors [10-12]. The objective function is 
optimized (either minimized or maximized) using the 
Particle Swarm Optimization (PSO) method to obtain 
a single near optimal solution. On the other hand, the 
main objective of the Multi-Objective (MO) problem 
is finding the set of acceptable (trade-off) Optimal 
Solutions. This set of accepted solutions is called 
Pareto front. These acceptable trade-off solutions give 
more ability to the user to make an informed decision 
by seeing a wide range of near optimal solutions that 
are near optimum from an “overall” standpoint. Single 
Objective (SO) optimization may ignore this trade-off 
viewpoint [10], which is crucial. This paper presents a 
new technique for finding the set of trade-off optimal 
solutions based on Multi objective Particle Swarm 
Optimization MOPSO. Multi objective Particle Swarm 
Optimization MOPSO can easily handle constraints of 
discrete nature. The main advantages of MOPSO 
method are: 

1. It doesn’t requires a priori knowledge of the 
relative importance of the objectives , and 

2. There is a set of acceptable trade-off near optimal 
solutions. This set is called Pareto front [10-12] or 
optimality trade-off surfaces. 

 
2. PARTICLE SWARM OPTIMIZATION 
(PSO) 
  Particle swarm optimization (PSO) is an evolutionary 
computation optimization technique (a search method 
based on a natural system) developed by Kennedy and 
Eberhart [13]-[16]. The system initially has a 
population of random selective solutions. Each 
potential solution is called a particle. Each particle is 
given a random velocity and is flown through the 
problem space. The particles have memory and each 
particle keeps track of its previous best position (called 
the Pbest) and its corresponding fitness. There exist a 
number of Pbest for the respective particles in the 
swarm and the particle with greatest fitness is called 
the global best (Gbest) of the swarm. The basic concept 
of the PSO technique lies in accelerating each particle 

towards its Pbest and Gbest locations, with a random 
weighted acceleration at each time step. 
   The most striking difference between PSO and the 
other evolutionary algorithms is that PSO chooses the 
path of cooperation over competition. The other 
optimization algorithms commonly use some form of 
decimation, survival of the fittest.  In contrast, the PSO 
population is stable and individuals are not destroyed 
or recreated. Individuals are influenced by the best 
performance of their neighbors. Individuals eventually 
converge on optimal points in the problem domain. In 
addition, the PSO traditionally does not have genetic 
operators like crossover between individuals and 
mutation, and other individuals never substitute 
particles during the run. So, in PSO all the particles 
tend to converge to the best solution quickly, 
comparing with GA. 
 
3. MULTI-OBJECTIVE 
OPTIMIZATION 
The following definitions are used in the proposed 
Multi-Objective Optimization (MO) search algorithm: 
Def. 1 The general MO problem requiring the 
optimization of N objectives may be formulated as 
follows: 
Minimize 
റݕ ൌ റሻݔറሺܨ ൌ ሾ ଵ݂ሬሬሬറሺݔറሻ, ଶ݂ሬሬሬറሺݔറሻ, … . , ே݂ሬሬሬሬറሺݔറሻሿ் 

(1) 

ݐ݆ܾܿ݁ݑݏ ݋ݐ ݃ఫሬሬሬറሺݔറሻ ൑ 0 ݆ ൌ 1,2, … ,  (2) ܯ
݁ݎ݄݁ݓ כറݔ ൌ ሾݔറଵ

,כ റଶݔ
,כ … , റ௉ݔ

כ ሿ א  Ω (3) 
 റሻ represent theݔറ is the objective vector, the ݃ఫሬሬሬറሺݕ 
constraints and ݔറכis a P-dimensional vector 
representing the decision variables within a parameter 
space Ω. The space spanned by the objective vectors is 
called the objective space. The subspace of the 
objective vectors satisfying the constraints is called the 
feasible space.  
Def. 2 A decision vector ݔറଵ א  Ω is said to dominate 
the decision vector ݔറଶ א  Ω (denoted byݔറଵ ط റଶݔ  ), if 
the decision vector ݔറଵ  is not worse than ݔറଶ in all 
objectives and strictly better than ݔറଶ  in at least one 
objective. 
Def. 3 A decision vector ݔറଵ א  Ω is called Pareto-
optimal, if there does not exist another ݔറଶ א  Ω that 
dominates it. An objective vector is called Pareto-
optimal, if the corresponding decision vector is Pareto-
optimal. 
Def. 4 The non-dominated set of the entire feasible 
search space Ω is the Pareto-optimal set. The Pareto-
optimal set in the objective space is called Pareto-
optimal front. 

 
In MOPSO [10-12], a set of particles are initialized 

in the decision space at random. For each particle i, a 
position ݔ௜ in the decision space and a velocity ݒ௜ are 
assigned. The particles change their positions and 
move towards the so far best-found solutions. The non-
dominated solutions from the last generations are kept 
in the archive. The archive is an external population, in 
which the so far found non-dominated solutions are 
kept. Moving towards the optima is done in the 
calculations of the velocities as follows: 
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௜ܸௗ ൌ ߱ ൈ ௜ܸௗ ൅ ଵܥ ൈ ଵሺ݀݊ܽݎ ௜ܲௗ െ ௜ܺௗሻ
൅ ଶܥ ൈ ଶ݀݊ܽݎ ൈ ൫ ௚ܲௗ െ ௜ܺௗ൯ (4) 

௜ܺௗ ൌ ௜ܺௗ ൅ ௜ܸௗ (5) 
Where ௜ܲௗ, ௚ܲௗ are randomly chosen from a single 
global Pareto archive, ω is the inertia factor 
influencing the local and global abilities of the 
algorithm, ௜ܸௗis the velocity of the particle i in the d_th 
dimension, c1 and c2 are weights affecting the 
cognitive and social factors, respectively. r1 and r2 are 
two uniform random functions in the range [0 , 1]. 
According to (5), each particle has to change its 
position ௜ܺௗ towards the position of the two guides 

௜ܲௗ, ௚ܲௗ  which must be selected from the updated set 
of non-dominated solutions stored in the archive. The 
particles change their positions during generations 
until a termination criterion is met. Finding a relatively 
large set of Pareto-optimal trade-off solutions is 
possible by running the MOPSO for many generations 
[12]. Figure (1) shows the flow chart of the Multi-
Objective Particle Swarm Optimization MOPSO. 

 
4. DISCRETE PARTICLE SWARM 
OPTIMIZATION (DPSO) [17-18] 
   The particle swarm optimization method works by 
adjusting trajectories through manipulation of each 
coordinate of a particle. However, many optimization 
problems are set in a space featuring discrete, 
qualitative distinctions between variables and between 
levels of variables.  In the binary version of the PSO, 
the trajectories are changes in the probability that a 
coordinate will take on binary value (0 or 1). 
Therefore, the main difference between the original 
PSO and the DPSO is equation (3) replacing equation 
(2). 
 ݂݅ ൫݀݊ܽݎሺ ሻ ൏ ܵሺݒ௜ௗሻ൯ ݔ  ݄݊݁ݐ௜ௗ ൌ 1;  
                                          Else ݔ௜ௗ ൌ 0. 

(6) 

Where S(v) is a sigmoid  limiting  transformation  
function 

ܵሺݒሻ ൌ
1

1 ൅ ݁ି௩ (7) 

and rand( )  is  a  quasi-random number selected from 
a uniform distribution in  [0.0, 1.0]. In the discrete 
version,  ܸ௠௔௫ is retained, that is |ݒ௜ௗ| ൏ ܸ௠௔௫ which 
simply limits the ultimate probability that bit  ݔ௜ௗ  will 
take on a binary value.  A smaller ܸ௠௔௫  will allow a 
higher mutation rate. 

 
5. PROBLEM FORMULATION 
   Fig. 1 depicts the sample distribution network. The 
distributed type loads are shown in the appendix (table 
4). Figures 2, 3 show the original radial distribution 
feeder and the equivalent generic single-line model 
(EGSLM) developed by the First Author. All 
distributed system loads are lumped together as 
follows: 

௅ܲ ൌ ෍ ௅ܲ௜

ଵ଴

௜ୀଵ

 (6) 

ܳ௅ ൌ ෍ ܳ௅௜

ଵ଴

௜ୀଵ

 (7) 

  And the equivalent generic single-line resistance and 
reactance are computed such that the active and 
reactive losses for full and reduced networks to be 
identical. The active and reactive losses are given as 
follows: 

௅ܲ௢௦௦ ൌ ෍ ܴ௜
௜ܲ
ଶ ൅ ܳ௜

ଶ

௜ܸ
ଶ

ଵ଴

௜ୀଵ

ൌ ܴ௘
௢ܲ
ଶ ൅ ܳ௢

ଶ

௢ܸ
ଶ  

 

(8) 

ܳ௅௢௦௦ ൌ ෍ ௜ݔ
௜ܲ
ଶ ൅ ܳ௜

ଶ

௜ܸ
ଶ

ଵ଴

௜ୀଵ

ൌ ௘ݔ
௢ܲ
ଶ ൅ ܳ௢

ଶ

௢ܸ
ଶ  (9) 

And thus the equivalent resistance and reactance are 
computed as follows: 

ܴ௘ ൌ ௅ܲ௢௦௦
௢ܸ
ଶ

௢ܲ
ଶ ൅ ܳ௢

ଶ (10) 

௘ݔ ൌ ܳ௅௢௦௦
௢ܸ
ଶ

௢ܲ
ଶ ൅ ܳ௢

ଶ (11) 

The distance of the Equivalent Generic Load (݈௘ሻ from 
the substation is determined according to the following 
electric moment equations: 

݈௉ ൌ
∑ ௅ܲ௜݈௜

ଵ଴
௜ୀଵ

∑ ௅ܲ௜
ଵ଴
௜ୀଵ

 (12) 

݈ொ ൌ
∑ ܳ௅௜݈௜

ଵ଴
௜ୀଵ

∑ ܳ௅௜
ଵ଴
௜ୀଵ

 (13) 

݈௘ ൌ ට݈௉݈ொ (14) 

Where ݈௘ is the geometric mean, 
Non linear Load model is assumed to voltage 
dependent: 

௅ܲே ൌ ௅ܲ௢ ቈ1 ൅ ଵߙ ൬ ௡ܸ

௕ܸ௔௦௘
൰

ఉభ

቉ (15) 

ܳ௅ே ൌ ܳ௅௢ ቈ1 ൅ ଶߙ ൬ ௡ܸ

௕ܸ௔௦௘
൰

ఉమ

቉ (16) 

 
The selected four Objective Functions are: 
1. Minimize the voltage drops: 

∆ ௢ܸ ൌ ൬
11 ܸܭ

√3
൰ െ ௢ܸ (17) 

∆ ௘ܸ ൌ ൬
11 ܸܭ

√3
൰ െ ௘ܸ (18) 

∆ ௡ܸ ൌ ൬
11 ܸܭ

√3
൰ െ ௡ܸ (19) 

 
2. Minimize the Feeder total active power Losses: 

௉௟௢௦௦ܬ ൌ ଵܫ
ଶ்ܴ ൅ ଶܫ

ଶ
௙ܴଵ ൅ ଷܫ

ଶ
௙ܴଶ (20) 

 
3. Minimize the Feeder  total reactive power losses: 

ொ௟௢௦௦ܬ ൌ ଵܫ
ଶ்ܺ ൅ ଶܫ

ଶ
௙ܺଵ ൅ ଷܫ

ଶ
௙ܺଶ (21) 

 
4. Minimize the cost of the three capacitor banks: 

The mathematical model for feeder loss optimization 
is based on computing the required capacitance bank 
size that will minimize the overall cost for the 
equivalent network. The cost function is given by: 

௖௢௦௧ܬ ൌן ௟ܲ௢௦௦ ൅ ௟௢௦௦ܳߚ ൅ ሺܳ௖௢ߛ ൅ ܳ௖௘ ൅ ܳ௖௡ሻ (22) 
Where α, β and γ are the associated equivalent 
dollar cost of active loss (PLoss), reactive less (QLoss) 
and the installed three capacitor banks (Qco,Qce,Qcn). 
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6. DIGITAL SIMULATION RESULTS 
   The system data studied are shown in Appendix for a 
138 kV, 5GVA (short circuit level) distribution 
network. The equivalent AC system resistance and 
reactance are shown in the Appendix. The optimal 
capacitor sizes and their selected locations are shown 
in the Appendix as well. The test results are presented 
for the capacitor placement problem on the test system 
using the solution algorithm proposed in Sec. 3. The 
selected locations to install fixed capacitors and 
optimal sizes of the capacitor banks to be installed are 
shown in table 1. The results are summarized in Table 
2-3. In each Table, the energy losses and the voltage 
profile of the systems with/without fixed capacitor 
placement are also included for continuous and 
discrete constraints. The system cost with/without 
capacitor placement is outlined in the same Tables. It 
is obvious that voltage profile, the system cost and 
energy losses have been greatly improved with proper 
capacitor placement. The MOPSO optimized solution 
results in 65% savings in cost, 84% reduction in active 
power losses, 59% reduction in reactive power losses. 

 

 
Table 1 selected location of the capacitor banks and 

PSO optimized Capacitor sizes 
 Selected 

location 
continuous 
constraint 

case 

discrete 
constraint 

case 
Co (μf) at the sending 

end 
31.73        35        

Ce (μf) at a location of 
6.356478 Km 

19.14 22       

Cn (μf) at the load bus 44.19 40 
 

Table 2 Distribution system operating condition 
without/with capacitor placement for continuous 

constraint case 
 Without capacitors 

placement 
With capacitors 

placement 

Voltage profile Vmin = 0.936758 
Vmax = 1.0 

Vmin = 0.977685 
Vmax =1.0 

Real power 
losses 1.0e+005 *0.82984 1.0e+005 *0.4507 

Reactive power 
losses 

1.0e+005 
*2.408675 1.0e+005 *1.5158 

System cost 
including 

capacitor cost 
1.0e+008 *1.29867 1.0e+008 *0.7864 

 
Table 3 Distribution system operating condition 

without/with capacitor placement for discrete 
constraint case 

 Without capacitor 
placement 

With capacitor 
placement 

Voltage profile Vmin =0.91395875 
Vmax =0.9917564 

Vmin = 0.9538756 
Vmax =1.00 

Real power 
losses 1.0e+005 *0.82984 1.0e+005 *0.498 

Reactive power 
losses 

1.0e+005 
*2.408675 1.0e+005 *1.585 

System cost 
including 

capacitor cost 
1.0e+008 *1.29867 1.0e+008 *0.8064 

Update position

Evaluate
Particles

Find Global best
then insert in archive

Update Velocity

Initialize Position,
Velocity, and archive

Update the memory
of each particle

archive

Fig. 1 Flow chart of the MOPSO optimization search 
algorithm 

 
7. CONCLUSION 
   A novel solution algorithm based on Particle Swarm 
Optimization PSO for optimal capacitor bank sizes 
selection in radial distribution networks has been 
developed and analyzed. The solution search algorithm 
can provide global optimal solution for the capacitor 
bank selections. The proposed Multi-Objective 
optimization technique can deal with different 
conflicting objectives; with continuous or discrete 
parameters and/or constraints.  The optimization 
search solution results are a set of near optimal trade-
off values which are called the Pareto front or 
optimality surfaces. Pareto front enables the utility 
system operator to choose the best compromise or near 
optimal solution that reflects a trade-off between key 
objectives. The iterative simulation results show the 
effectiveness of the Multi Objective Particle Swarm 
Optimization approach MOPSO since it allows the 
operator to find a near optimal good compromise 
among the proposed goals. Adding capacitor banks to 
radial distribution feeder results in increased feeder 
utilization reduced system losses, and enhanced system 
voltages, capacity release and improved power quality. 

 
8. APPENDIX 
Non linear Load model Parameters: 
PLo = 150 KW, QLo = 75 KVAR, α1 = 0.4, α2 = 0.25, β1 = 
2.5, β2 = 2.0. 
AC System Parameters: 
138 KV, 5GVA (short circuit level), X/R=10, XS = 3.8 Ω, RS 
=0.38 Ω. 
Distribution Feeder parameters: 
R/Km=0.3 Ω/Km, X/Km=0.35 Ω/Km 
Transformer parameters: 
XT = 6.05 Ω, RT = 1.21 Ω, 
Cost Model Weightings 
α = 1000 $/KW, β = 200 $/Kvar, γ = 10 $/Kvar 
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Distributed Loads and Locations  
Table 4 the distributed load 

Location (Km) from 
the reference 
position x=0 

PLI (KW) QLI 
(KVAR) 

1 25 12 
2 50 25 
3 75 40 
4 25 12 
5 150 75 
6 250 125 
7 150 75 
8 50 25 
9 75 35
10 150 75 

Load Bus admittance: 
௡ܻ ൌ ଵ

ோ೙
൅ ଵ

ௌ௑೙
൅ ௡ ,  ܼ௡ܥܵ ൌ ଵ

௒೙
 

Equivalent distribution network admittance: 

௘ܻ ൌ
1

ܴ௘
൅

1
ܵܺ௘

൅  ௘ܥܵ

Sending end capacitor bank admittance: 
௢ܻ ൌ  ௢ܥܵ

System Impedance: 
ܼௌ ൌ ܴௌ ൅ ܵ ௌܺ 
Transformer Impedance: 
்ܼ ൌ ்ܴ ൅ ்ܵܺ 
Feeder Impedances: 

௙ܼଵ ൌ ௙ܴଵ ൅ ܵ ௙ܺଵ  , ௙ܼଶ ൌ ௙ܴଶ ൅ ܵ ௙ܺଶ 
Generic Models Equivalent Admittance and Currents 

௡ܻ௙ଶ ൌ ଵ
௓೑మା௓೙

   , ௡ܻ௙ଶ௘ ൌ ௡ܻ௙ଶ ൅ ௘ܻ 

ܼ௡௙ଶ௘ ൌ ଵ
௒೙೑మ೐

, ௡ܻ௙ଶ௘௙ଵ ൌ ଵ
௓೑భା௓೙೑మ೐

 

௡ܻ௙ଶ௘௙ଵ௢ ൌ ௡ܻ௙ଶ௘௙ଵ ൅ ௢ܻ  ,ܼ௡௙ଶ௘௙ଵ௢ ൌ ଵ
௒೙೑మ೐೑భ೚

  ,  

ܼ௧௢௧ ൌ ሺܼௌ ൅ ்ܼሻ ൅ ܼ௡௙ଶ௘௙ଵ௢  , ௧ܻ௢௧ ൌ ଵ
௓೟೚೟

 
The feeder currents are: 

ଵܫ ൌ ൬
ܸܭ 11 כ 1.05

√3
൰ כ ௧ܻ௢௧ 

ଶܫ ൌ ଵܫ כ ൤ ௒೙೑మ೐೑భ

௒೙೑మ೐೑భ೚
൨  , ܫଷ ൌ ଶܫ כ ൤ ௒೙೑మ

௒೙೑మ೐
൨ 

The voltages for the equivalent single- line network are 
given by: 

ௌܸ ൌ ൬
ܸܭ 11 כ 1.05

√3
൰ െ  ଵܼௌܫ

௢ܸ ൌ ௌܸ െ ଵ்ܼ  , ௘ܸܫ ൌ ௢ܸ െ ଶܫ ௙ܼଵ   ,  ௅ܸ ൌ ௘ܸ െ ଶܫ ௙ܼଶ 
 
AC Distribution System parameters variations due to 
switching 
0.025 ൑ ܴௌ ൑ 0.075   Ω 
0.7 ൑ ௌܮ ൑ 3   mH 
 
Capacitor Banks for the Continues Case: 
300 ൑ ܳ௖௢ ൑ 1800   KVAR 
150 ൑ ܳ௖௘ ൑ 750     KVAR 
100 ൑ ܳ௖௡ ൑ 1500  KVAR 
Where:    ܳ௖ ൌ ܥ߱ ௅ܸ௅

ଶ  
 
Capacitor Banks for the discrete Case: 
ܳ௖௢ א ሼ300, 600, 1200, 1800ሽ          KVAR 
ܳ௖௘ א ሼ150, 300, 450, 600,750ሽ      KVAR 
ܳ௖௡ א ሼ100, 400, 700, 1000,1500ሽ  KVAR 
 
9. REFERENCE 
[1] Hsiao-Dong Chiang, Jin-Cheng Wang, Orville 

Cockitigs and Hyoun-Duck Shin “ Optimal Capacitor 
Placements in Distribution Systcins: Part 1: A New 

Formulation and the Overall Problem” IEEE 
Transactions on Power Delively, Vol. 5, No. 2, April 
1990 

[2]  M.E. Baran and F.F. Wu: Optimal capacitor placement 
on radial distribution Systems. IEEE Trans. on Power 
Delivery, vol. 4, pp. 725-734, January 1989. 

[3] M.E. Baran and EE Wu: Optimal sizing of capacitors 
placed on a radial distribution system. IEEE Trans. on 
Power Delivery, vol. 4, pp. 735-743, January 1989. 

[4] S. Sundhararajan and A. Pahwa: Optimal selection of 
capacitors for radial distribution systems using a genetic 
algorithm. IEEE Trans. Power Systems, vol. 9, no. 3, 
pp. 1499-1505, Aug. 1994. 

[5] D. Das: Reactive power compensation for radial 
distribution networks using genetic algoritm. Electrical 
Power and Energy Systems 24 (2002), pp. 573-581. 

[6] J. Riquelme Santos, A. Gomez Exposito, J.L. Martinez 
Ramos” A Reduced-Size Genetic Algorithm for 
Optimal Capacitor Placement on Distribution Feeders”  
IEEE MELECON 2004, May 12-15,2004, Dubrovnik, 
Croatia 

[7] H. D. Chiang, J. C. Wang, 0. Cockings, and H. D. Shin: 
Optimal capacitor placement in distribution systems: 
Part I, Part 11. IEEE. Trans. Power Delivery, vol. 5, no. 
2, pp. 634-649. Apr. 1990. 

[8] Y. C. Huang, H. T. Yang, and C. L. Huang: Solving the 
capacitor placement problem in a radial distribution 
system using tabu search approach. IEEE Trans. Power 
Systems, vol. 1 I , no. 4, pp. 1868- 1873, Nov. 1996. 

[9] R. A. Gallego, A. J. Monticelli, and Rub& Romero: 
Optimal capacitor placement in radial distribution 
networks. IEEE. Trans. Power Systems, vol. 16, no. 4, 
pp. 630-637, Nov. 2001. 

[10] Ngatchou, P.; Zarei, A.; El-Sharkawi, A.; "Pareto Multi 
Objective Optimization" Intelligent Systems Application 
to Power Systems, 2005. Proceedings of the 13th 
International Conference on 6-10 Nov. 2005 Page(s):84 - 
91 

[11] Berizzi, A., M. Innorta, and P. Marannino. 
"Multiobjective optimization techniques applied to 
modern power systems". In 2001 IEEE Power 
Engineering Society Winter Meeting, Jan 28-Feb 1 2001. 
2001.  

[12] C. A. Coello Coello and M. S. Lechuga. “MOPSO: A 
proposal for multiple objective particle swarm 
optimization". In IEEE Proceedings World Congress on 
Computational Intelligence,pages1051–1056, 2003. 

[13] J. Kennedy and R. Eberhart, "Particle swarm 
optimization" Proceedings, IEEE International Conf. on 
Neural Networks, Vol. 4, pp.1942–1948. 

[14]  Y. Shi and R. Eberhart, "Empirical study of particle 
swarm optimization" Proceedings of the 1999 Congress 
on Evolutionary Computation, Vol. 3, 1999. 

 [15] R. Eberhart and Y Shi, "Particle swarm optimization: 
developments, applications and resources" Proceedings 
of the 2001 Congress on Evolutionary Computation, Vol. 
1, pp. 81 -86, 2001. 

[16] Y. Shi and R. Eberhart, "Parameter Selection in Particle 
Swarm Optimization" Proc. Seventh Annual Conf. on 
Evolutionary Programming, pp. 591-601, 1998. 

[17] Zwe-Lee Gaing “Discrete Particle Swarm Optimization 
Algorithm for Unit Commitment”; Power Engineering 
Society General Meeting, 2003, IEEE Volume 1,  13-17 
July 2003 

[18] J.  Kennedy and R.  Eberhart, “A Discrete Binary 
Version of the Particle Swarm Optimization,” 
Proceedings of IEEE International Conference on Neural 
Netwroks, Vol.  IV,  pp.  4104-4108,  Perth, Australia, 
1997. 

https://doi.org/10.24084/repqj07.247 68 RE&PQJ, Vol. 1, No.7, April 2009



Load 1 Load 3 Load 5 Load 7 Load 9

Load 2 Load 4 Load 6 Load 8 Load 10
Non Linear Load

T1

138 / 11 KV

x=0

Distributed load 10 Loads / 10 Km

Utility VS Vo VL

Terminal Bus

Substation

 
Figure 2: Radial Distribution grid system with Distributed Load 
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Figure 3: Equivalent Generic Model of the Radial Distribution System with the aggregate Load 
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