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Abstract. In this paper, events registered in power 

distribution systems are analyzed to recognize sequences of 

events associated to faults occurred in the network. The events 

considered in this study are basically voltage sags generated by 

homopolar faults and registered by power quality monitors 

installed in the secondary of transformers in distribution 

substations. The events registered in a measuring point have 

associated the time of occurrence, and the list of increasing-

time ordered events corresponds to a sequence.   The aim of this 

work is to discover the collection of events associated with 

failures in the network that can be viewed as sequences of 

events related with the actuation of the protection system. Two 

algorithms are proposed to recognize these sequences. The 

methodology is tested with data gathered in different 

substations which have been manual grouped by the utility1. 
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1. Introduction 

 
A typical power distribution system is composed of 

hundreds of individual components such as transformers, 

cables, switches, insulators, surge arresters, etc. The 

failure of a single component cause problems related with 

power quality and reliability both in the affected circuit 

and others adjacent circuits [1]. In recent years the size 

and complexity of power distribution networks have been 

increasing, so the number of failures are also increasing. 

These failures can be due to external causes such as 

lightning, snow, rain, etc., or to degradation of 

components.  

 

Electrical components of a network present degradation 

when his normal designed limits of work are exceeded. In 

addition, a phenomenon called fatigue is produced when 

they are subjected to dynamic cyclical workloads which 

may be less than rated work load.   
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When a fault occurs in an electrical network, the system 

protections actuate to remove or to isolate the point or 

network section failed and be able to supply energy to the 

rest of the system.  Faults cause voltage dips whose 

duration depends on the time of operation of the 

protection system. Then, the voltage sags are a reflection 

of the failures that occurring in the system. The records 

of these events allow to analyze the fault magnitude, 

location, etc [1]. 

 

Voltage sags are usually accompanied by other effects 

such as overcurrent and overvoltage, which may 

eventually cause damage to other network components. 

Overcurrent increases the temperature of the wires, which 

results in premature degradation in the dielectric 

isolation. Also, overcurrents affect the mechanical 

strength of the bus bar or connectors. Likewise, 

overvoltages deteriorate the insulation and its effects are 

cumulative [2].  

 

Incipient faults occur when network component are 

beginning to degrade. For example, abnormal and 

intermittent variations of voltage and/or current, which 

becomes more frequent and visible until final damage 

occurs [3].  

 

This work analyzes the historical records of events 

collected over two years in 48 substations of a power 

distribution system. Events are phenomena which only 

happen once in a while and can be described by 

parameters as depth and duration (voltage sags). To 

describe sequences of events we need also to include the 

time between consecutive events in the description (all 

these parameters in stochastic sense). “Voltage events” 

(interruptions, transient overvoltage and voltage sags) are 

the main class of events, but only voltage sags are 

considered in this work. Origin of voltage sags is diverse 

but they can reflect faults occurring in the power 

distribution system and are characterised by a reduction 

in the supply voltage magnitude (depth) followed by a 

voltage recovery after a short period of time (duration). 

According to IEC, a supply voltage sag is a sudden 

reduction in the supply voltage to a value between 90% 
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and 1% of the declared voltage, followed by a recovery 

between 10 ms and 1 minute later. For the IEEE a voltage 

drop is only sag if the during-sag voltage is between 10% 

and 90% of the nominal voltage [1]. 

 

A. Dataset Description 

 

The database available contains the events recorded over 

two years in the lower voltage level of several substations 

(132/25 kV, 110/25 kV) of power distribution network. 

Table I shows an example of events recorded in a 

substation. Each row in Table I corresponds to an event. 

Each logged event has six attributes: index is the 

occurrence order of the events; t_begin is the date of 

occurrence of the event; devent is the duration of the 

event in the network; pevent is the depth of the voltage 

sag generated by the event and corresponds to the 

percentage that the RMS voltage value decreases during 

the event; vpeak is the percentage that the RMS voltage 

value increases during the event; phases_afect shows the 

phases affected by the event and describes if the voltage 

decreases “H” or increases “S” preceded by the identifier 

of the respective phase (1, 2 or 3).    

 
Table I. - Example of Events Registered in Several Substations 

Index t_begin 
devent 

(s) 

pevent 

(%) 

vpeak 

(%) 
phases_afect 

1 
07-09-22 

12:28:11.145 
1,081 62 70 1S2S3H2H 

2 
07-09-22 

12:31:57.231 
0,501 61 68 

3S1H2S1S2H1H3H
1S2S3S 

3 
07-09-22 

14:30:02.287 
1,001 57 67 1S2S3H3S2S 

4 
07-10-21 

06:07:36.491 
0,881 70 62 3S1H2S1S3S 

5 
07-10-22 

14:57:10.262 
0,760 75 74 1S3S2H2S3S1S 

6 
07-12-25 

21:44:24.553 
0,862 61 67 

1H2S3S2H3H3S1S

2S 

7 
08-01-20 

18:05:02.142 
1,100 64 57 2S1S3H3S1S 

 

 

2.  Problem Statement 

 

The main goal is the identification of event sequences 

related with the occurrence of faults in network 

components. The selection of the attributes of the 

recorded events that are useful in the description and 

discovery of such patterns will be studied.  

 

In presence of damages, multiple events can be generated 

due to the actuation (automatic and manual) of the 

protection system during the fault, which isolates and 

locates the area where it has been originated. In 

consequence, pattern sequences described by those faults 

can be diverse. In case of auto-extinguishing faults, the 

number of successive events generated will be lower than 

when there is a permanent damage according to the 

number of times that the protection system operates 

(openings and reclosings) in order to clear the fault.  

Additionally, voltage sags of events related whit the same 

fault should show similar depths and durations. Also, 

different sequences of events with similarities in their 

attributes will indicate that have occurred in the same 

area or region of the network. 

 

Table II shows typical reclosing settings (automatic and 

manual coordination strategies) for a distribution network 

with overhead and underground lines. Reclosing strategy 

depends on the line to protect. In this case there are four 

options for reclosing different types of line, as it is shown 

in Table II 

 
Table II. - Typical Reclosing Settings in Distribution Systems 

PHASE OF 

RECLOSING 

OPTION 

1 

OPTION 

2 

OPTION 

3 

OPTION 

4 

Fault detection 5 ms 5 ms 5 ms 5 ms 

Automatic reclosing 500 ms 500 ms 500 ms 500 ms 

Slow automatic 
reclosing 

40 s 1 min 40 s 1 min 

Manual reclosing 

overhead line 

------- -------- 3 min 3 min 

Manual reclosing 
underground cables 

1 min 1 min ------- ------- 

Handling 

(telecontrol) 

8 min 8 min 8 min 8 min 

Handling (on-site) 25 min 25 min 25 min 25 min 

Option 1: underground cables type1 

Option 2: underground cables type 2 

Option 3: overhead lines type 1 
Option 4: overhead lines type 2 

 

If D is a set of events registered in the same substation of 

the system as showed in Table 1,  D can be written as: 

𝑫 =   (𝑨𝟏, 𝐭𝟏), (𝐀𝟐 , 𝐭𝟐), . . . , (𝐀𝐧, 𝐭𝐧) , where an event is 

a pair (Ai, ti), Ai is the type of event (an event can have 

different attributes) and ti is the instant of occurrence. A1 

is the first event and An is the last event. Given that at the 

same point of fault can pertain several events, then set D 

can be viewed as 

𝑫 =   𝑺𝟏,  𝒕𝒔𝟏, 𝒕𝒆𝟏  , (𝑺𝟐, [𝒕𝒔𝟐, 𝒕𝒆𝟐]), . . . , (𝑺𝒌, [ 𝒕𝒔𝒏, 𝒕𝒆𝒏])  
where Si is a subset of events related whit the same point 

of fault, tsi is the star time of the subsequence i and tei is 

the end time of the subsequence i. The discovery of these 

subsequences is based on a criteria of similarities 

between attributes of events and considering also the 

temporal proximity of occurrence.  

 

One criteria in the analysis is to group the nearest events. 

If w is the time constraint and if   t1, t2, ...,tn are the sort 

dates of the events then the subsets of events  

 (𝑨𝒊, 𝒕𝒊), . . . (𝑨𝒌, 𝒕𝒌)  such that 𝒕𝒌 − 𝒕𝒊  ≤ 𝒘 are probably 

produced in the same point of failure. Another criteria is 

to verify that the events within a temporal window occur 

in the same phase and to define a percentage of 

similarities between depths of events classified in the 

same sub-set through these two considerations.  

 

3. State of the Art 
 

Pattern discovery in sequential data has been widely 

applied in different fields (financial series, alarms in 

communication networks, sequences of queries in 

databases, sequences of customer transactions, etc.) but 

never to characterise and predict faults in power systems. 

The common goal in those domains is to automatically 

discover interesting patterns according to different 

criteria [4]; but depending on the nature of the data, the 
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identification of patterns can follow different approaches. 

For example, if the dataset consists of a collection of 

sequences containing different items, the task may be to 

discover ordered subsequences of items that occur in 

many of these sequences (sequential patterns [5]). On the 

other hand, if the dataset consists of a unique and 

extensive sequence, the task may be focused on 

discovering temporal patterns that occur many times 

throughout the sequence (frequent episodes [6]). This 

approach has been used for mining data from assembly 

lines in manufacturing plants [7] and to analyze 

neurobiological data [8] under some explicit time 

constraints with respect to the original approach. Another 

exiting approach is based on the assumption that in an 

event sequence there are events at each time slot in terms 

of various intervals (hours, days, weeks, etc.) such 

sequences  must satisfy more complex representation [9].  

 

Development of automatic strategies for dealing with 

power quality monitoring problems (disturbance 

recognition and classification, failure analysis and 

forecasting, fault location, etc.) in power distribution 

systems are present topics. An extensive review and 

formulation of problems related to power quality, 

focusing primarily on voltage sags and interruptions can 

be found in [1]. Incipient fault detection and analysis of 

failures is a recent topic of great interest for the 

development of predictive maintenance policies of the 

electrical system. For example, in [9] abnormal and 

intermittent variations of voltages and/or currents are 

studied for an early recognition of apparition of those 

incipient faults. The idea of analyzing the evolution of 

incipient faults is introduced in [3] and [10] and it is 

based on the identification of parameters that can predict 

failures of components. An artificial intelligence 

methodology to predict and detect faults at an early stage 

in power systems is used in [11]. Artificial neural 

networks (ANNs) are employed to monitor the states of 

some components in power networks, such as 

switchgears and transformers, with the aim of detecting 

and alerting the operator before a catastrophic fault 

occurs. Fault distribution modelling for stochastic 

prediction of voltage sags in power networks are 

developed in [12] and [13]  with the goal of predicting 

the performance of the power network under transient 

conditions. A fault diagnosis model, based on data 

mining of sequences of events (SOE), for fault diagnosis 

of high-voltage transmission line systems (HVTLS) is 

presented in [14]. SOE is a log that records the signals 

and alarms produced by the protection systems and the 

proposed model makes use of spatio-temporal 

characteristics contained in the SOE logs to identify 

faulty components based on real-time alarm information 

occurred in accidents. 

 

4. Recognition of Events Sequences Related 

whit Individual Faults 
 

Given a set of events identified as homopolar faults, 

sorted by their time of occurrence, the proposed solution 

shows a first development to find the sub-sets of events 

related with a particular point of fault, based on the 

recognition of the nearest events beginning from the date 

of occurrence of the event. The assumption is that, 

according to Table II ,a permanent fault will have 

successive near events by the actuation of the protection 

system. The necessary information is contained in the 

attribute “t_begin”, as it is shown in Table I. An 

algorithm development to solve the problem is showed 

below.       

Algorithm 1.   

Input: A sorted set D of n successive homopolar faults, a 

temporal window width w. 

Output: A set of events identified with the index 

“id_fault” of corresponding event sequence. 

Method: 

1. for i:=1 to n–1 do 

2.      if t_begin (event i+1) – t_begin (event i) <= w 

then group in the same id_fault; 

3. Output id_fault; 

 

A second solution is based on the similarities of the 

duration, depth and faulted phases, since the assumptions 

are that for a particular fault the events will be similar 

too. The necessary information is contained in the 

attributes “d_event”, “pevent” and “phases_afect”, as it is 

shown in Table I. An algorithm development to solve the 

problem is showed below.     

Algorithm 2.   

Input: A sorted set D of n successive homopolar faults, a 

threshold of similarity in the depth of the events th, a 

threshold of similarity in the duration of the events td, 

and a maximum temporal width w. 

Output: A set of events identified with the index 

“id_fault” of corresponding event sequence. 

Method: 

1. for i:=1 to n–1 do 

2.      if  |devent i – devent i+1| <= td and |pevent i – 

pevent i+1| <= th and  t_begin (event i+1) – t_begin 

(event i) <=w and (phases_afect i  phases affect 

i+1) ≠Ø then group in the same id_fault; 

3. Output id_fault; 

 

To intersection of the phases affected only the phases 

with voltage depth are compared.  

 

5. Test of Proposed Solution 

 
The proposed solution to recognize the events sequences 

related whit individual point of failure was tested with a 

database that contains about of 3000 events classified 

manually by the utility. It is shown the test for a 

measurement point of the network to illustrate the results 

of the algorithms. For this point, 18 faults were identified 

manually across to six months. These faults resulted in a 

total of 40 events.   

 

Table III shows the results of the analysis of the events 

classified through the algorithm 1 that are equal to the 

obtained by manual grouping. A total of 14 faults (78%) 

and 26 events (65%) were recognized the same as the 

grouping made by the utility. The only attribute taken 
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into account was “t_begin” with a temporal width w 

equal to 3 hours. 

 

 
Table III. - Events Sequences Recognized by Algorithm 1 in the 

same way as Manual Grouping in one Measurement Point 

id_fault t_begin devent pevent vpeak phases_afec 

1 

08-01-20 

18:05:02.142 
1.1 64 57 

2S1S3H3S1S 

08-01-20 

18:05:03.762 
1.34 60 58 

2S1S3H3S2S3S 

08-01-20 
18:06:05.132 

1.119 63 56 
3H2S1S 

 

08-01-20 

21:04:25.999 
1.181 66 55 

1S3H2S 

08-01-20 
22:15:27.612 

1.08 68 59 
3H1S2S3S2S1S 

08-01-20 

22:49:18.041 
1.04 69 58 

1S2S3H3S3S1S 

08-01-20 

23:57:43.211 
1.001 70 63 

2S1S3H3S1S2S 

2 
08-02-09 

22:29:11.768 
0.681 85 69 

1S3S2H2S3S 

3 

08-03-05 

08:08:20.552 
0.702 84 66 

1S3H2S3S2S3S 

08-03-05 
08:21:05.488 

0.582 71 65 
1S3H2S1H1S3
S1S2S 

08-03-05 

08:50:02.052 
0.562 71 66 

2S3H1S1H1S3

S2S3S 

4 
08-03-15 

10:16:42.588 
0.981 56 63 

3S1S2H1S2S3S 

5 

08-03-27 

08:00:27.797 
0.762 83 65 

2S3H1S3S3S 

08-03-27 

08:00:29.059 
0.94 75 63 

1S3H2S3S3S 

08-03-27 
08:01:30.017 

0.98 69 60 
1S3H2S3S2S3S 

6 
08-03-27 

08:02:42.449 
0.321 65 57 

1S3H2S2H2H3

S2S 

7 
08-03-27 

08:02:42.449 
0.321 65 57 

1S3H2S2H2H3
S2S 

8 

08-03-27 

08:02:43.329 
0.918 65 57 

3S1S2H2S 

08-03-27 
08:03:44.296 

0.94 65 57 
1S3S2H 

08-03-27 

08:05:15.980 
0.999 61 57 

1S3S2H 

9 
08-04-14 

15:19:32.423 
0.24 71 25 

1H3H2H3S2S1

S 

10 
08-04-14 

15:19:32.423 
0.24 71 25 

1H3H2H3S2S1
S 

11 
08-05-26 

01:44:54.305 
0.681 76 69 

2S3S1H2H3H1

S2S3S2S3S1S 

12 
08-06-06 

20:26:53.125 
1.14  64   61 2S1S3H3S1S2S 

13 
08-06-17 

14:53:06.335 
0.881 70 67 

3S2S1H1S 

14 
08-07-09 

20:39:49.360 
0.821 72 71 

1H3S2S1S3S2S
3S 

 

In Table III, “id_fault” identifies the fault and it contains 

the event sequence related with it an observation of the 

attributes of the events shows that, for a fault, the events 

can have differences in their features. For example, in the 

id_fault number 3, the first event has a depth and 

duration larger than the others events of the sequence. 

These dissimilarities may difficult the correct recognition 

of the event sequences associates to a particular fault.  

For the same measurement point, Table IV shows the rest 

of the events which were not classified as the same way 

as manual grouping made by the utility. 

 
Table IV. - Events Sequences No Recognized by Algorithm 1 in 

similar groups that Manual Grouping in one Measurement Point 

manual 

grouping 

calculated 

id_fault 
t_begin devent pevent vpeak phases_afec 

15 

15 

08-03-09 

19:06:05.905 
0.441  57   21 

3H1H2H2

S1S3S 

16 
08-03-09 

19:06:06.926 
0.779  73   70 

2S3S1H1S

2H2S1S2S 

17 

08-03-09 

19:06:08.225 
0.78  73   67 

2H1S3S2S

1S2S 

08-03-09 

19:07:09.020 
0.762  73   68 

2H1S3S2S

1S2S 

08-03-09 

19:13:23.244 
0.741  73   67 3S1S2H2S 

08-03-09 

21:04:29.830 
0.762  73   68 

1S3S2H2S

3S1S 

08-03-09 

21:52:07.769 
0.761  73   75 

2H1S3S2S

3S1S 

08-03-09 

22:25:53.196 
0.8  73   68 

2H3S1S2S

1S2S1S 

08-03-09 

22:59:58.284 
0.781  73   69 

1S2H3S2S

1S2S3S 

 

18 

16 

08-06-06 

20:26:53.125 
1.14  64   61 

2S1S3H3S

1S2S 

08-06-06 

20:26:54.785 
1.039  67   62 

1S2S3H3S

2S1S 

08-06-06 

20:27:55.834 
0.939  70   57 2S1S3H 

08-06-06 
20:30:30.165 

1.001  69   57 
2S1S3H3S
2S 

17 
08-06-07 

00:12:54.408 
0.98  70   58 

3H2S1S3S

2S 

  

In Table IV “manual grouping” represents the events 

sequences that were manually recognized by the utility. 

Column “calculated id_fault” contains the identifier of 

the events sequences found by means of Algorithm 1.  

The sequences found by Algorithm 1 are formed by 

nearest events in time but the manual grouping shows 

that the sequences are composed slightly different. In the 

most of the cases, only the information of the attributes is 

not enough to recognize the sequences because the 

attributes are very similar. For example, the “manual 

grouping” number 16 has an event with the same 

characteristics that the 7 events that belongs to the 

“manual grouping” number 17.     

 

Table IV also shows that only considering the nearest 

events in time is not adequate to find the sequences since 

in some cases the events can have dissimilarities in its 

attributes. For example, the first event in the “calculated 

id_fault” number 15 has a depth and duration lower than 

the others events in the same sequence.  

 

In short, after analyzing a total of 3378 events by means 

of algorithm 1, the results showed that 57.5% of the 

events were recognized in the same sequences as the 

obtained by the utility manually.        

Algorithm 2 makes use of the other attributes to 

recognize the sequences. The temporal window of the 
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algorithm 1 is replaced by a maximum temporal width w 

to search the events related with a particular sequence. In 

this case a w equal to 24 hours is used. Table V shows the 

comparative result with the “manual grouping”. 

 
Table V.  -  Events Sequences Recognized by the Algorithm 2 

in the same way as Manual Grouping in one Measurement Point 

id_fault 
t_begin devent pevent vpeak phases_afec 

1 

08-01-20 
18:05:02.142 

1.1 64 57 
2S1S3H3S1
S 

08-01-20 

18:05:03.762 
1.34 60 58 

2S1S3H3S2

S3S 

08-01-20 
18:06:05.132 

1.119 63 56 
3H2S1S 

08-01-20 

21:04:25.999 
1.181 66 55 

1S3H2S 

08-01-20 
22:15:27.612 

1.08 68 59 
3H1S2S3S2
S1S 

08-01-20 

22:49:18.041 
1.04 69 58 

1S2S3H3S3

S1S 

08-01-20 
23:57:43.211 

1.001 70 63 
2S1S3H3S1
S2S 

2 
08-02-09 

22:29:11.768 
0.681 85 69 

1S3S2H2S3

S 

3 

08-03-05 
08:08:20.552 

0.702 84 66 
1S3H2S3S2
S3S 

08-03-05 

08:21:05.488 
0.582 71 65 

1S3H2S1H1

S3S1S2S 

08-03-05 
08:50:02.052 

0.562 71 66 
2S3H1S1H1
S3S2S3S 

4 
08-03-09 

19:06:05.905 
0.441 57 21 

3H1H2H2S

1S3S 

5 
08-03-15 

10:16:42.588 
0.981 56 63 

3S1S2H1S2
S3S 

6 

08-03-27 

08:00:27.797 
0.762 83 65 

2S3H1S3S3

S 

08-03-27 
08:00:29.059 

0.94 75 63 
1S3H2S3S3
S 

08-03-27 

08:01:30.017 
0.98 69 60 

1S3H2S3S2

S3S 

7 
08-03-27 

08:02:42.449 
0.321 65 57 

1S3H2S2H2
H3S2S 

8 
08-03-27 

08:02:42.449 
0.321 65 57 

1S3H2S2H2

H3S2S 

9 

08-03-27 
08:02:43.329 

0.918 65 57 
3S1S2H2S 

08-03-27 

08:03:44.296 
0.94 65 57 

1S3S2H 

08-03-27 

08:05:15.980 
0.999 61 57 

1S3S2H 

10 
08-04-14 

15:19:32.423 
0.24 71 25 

1H3H2H3S

2S1S 

11 
08-04-14 

15:19:32.423 
0.24 71 25 

1H3H2H3S

2S1S 

12 

08-05-26 

01:44:54.305 0.681 76 69 

2S3S1H2H3

H1S2S3S2S
3S1S 

13 
08-06-06 

20:26:53.125 
1.14 64 61 

2S1S3H3S1

S2S 

14 

08-06-06 
20:26:53.125 

1.14 64 61 
2S1S3H3S1
S2S 

08-06-06 

20:26:54.785 
1.039 67 62 

1S2S3H3S2

S1S 

08-06-06 
20:27:55.834 

0.939 70 57 2S1S3H 

08-06-06 

20:30:30.165 
1.001 69 57 

2S1S3H3S2

S 

08-06-07 
00:12:54.408 

0.98 70 58 
3H2S1S3S2
S 

15 
08-06-17 

14:53:06.335 
0.881 70 67 

3S2S1H1S 

16 
08-07-09 

20:39:49.360 
0.821 72 71 

1H3S2S1S3
S2S3S 

In this case, all the attributes were taken into account to 

obtain the sequences.  The threshold to the compare the 

depth th is equal to 15, the threshold to compare the 

duration dh is equal to 15% and the phases_afect whose 

voltage decreases were compared. 

 

Table V shows the results of the analysis of the events 

classified by means of algorithm 2 that are equal to the 

obtained by manual grouping.  A total of 16 fault (89%) 

and 26 events (80%) were recognized in the same way as 

the grouping made by the utility.  

For the measurement point analyzed, the results found by 

Algorithm 2 are better than the obtained by Algorithm 1.   

     
Table VI. - Events Sequences No Recognized by Algorithm 2 in 

similar groups that Manual Grouping in one Measurement Point 

manual 

id_fault 

calculated 

id_fault 
t_begin devent pevent vpeak phases_afec 

17 

17 

08-03-09 

19:06:06.926 
0.779  73   70 

2S3S1H1S

2H2S1S2S 

18 

08-03-09 

19:06:08.225 
0.78  73   67 

2H1S3S2S

1S2S 

08-03-09 

19:07:09.020 
0.762  73   68 

2H1S3S2S

1S2S 

08-03-09 
19:13:23.244 

0.741  73   67 3S1S2H2S 

08-03-09 

21:04:29.830 
0.762  73   68 

1S3S2H2S

3S1S 

08-03-09 
21:52:07.769 

0.761  73   75 
2H1S3S2S
3S1S 

08-03-09 

22:25:53.196 
0.8  73   68 

2H3S1S2S

1S2S1S 

08-03-09 

22:59:58.284 
0.781  73   69 

1S2H3S2S
1S2S3S 

 

The sequences found by Algorithm 2 are formed for 

events with similarities in all attributes but in Table VI 

the manual grouping showed that the sequences are 

composed by other events. Although the sequences found 

by Algorithm 2 have similarities in all its attributes, the 

faults can be originated in different elements or circuits 

of the network because in a measurement point there are 

several lines monitored. Other problem is that some 

faults have events that are different from each other, 

especially in the attributes devent, pevent and vpeak. This 

occurs because the conditions of fault change along the 

time (evolutive faults).     

 

In short, a 53.4% of the totals of events analyzed by 

Algorithm 2 were recognized in the same event 

sequences as the manual grouping made by the utility. 

The global results obtained by the Algorithm 2 are not 

better than the obtained by the Algorithm 1 for the 

existence of the evolve faults.  

 

6. Conclusion 

 
The analysis of registered events and the proposed 

solution has shown that useful information about the 

behavior and evolution of the faults in the electrical 

system may be extracted, as a first step in the exploitation 

of events recorded in power distribution systems for the 

recognition of future failures. 
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The test of the proposed solution showed that the 

assumptions of the problem are not performed in all the 

cases because the events monitored in a measurement 

point are associated to the lines that are feed in that point. 

Then, a overlapping of sequences may occur.   

 

Future work should continue with the search of 

similarities between different sequences of events 

associated to faults of specific elements of the network, 

in order to discover patterns or mine frequent episodes 

and exploit other information contained in the events 

recorded. 
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