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Abstract. At this paper the performance of different 
artificial neural networks (ANN) topologies has been analized  
for harmonic detection by distorted waveforms. With this 
information, it’s possible to obtain the reference signal for an 
active power filter (APF) control by nonlinear loads 
compensation. In particular, two ANN types, the static 
multilayer perceptron (MLP) and the dynamic MLP, stand out 
as the most suitable for distorsion identifying. Acceptable 
results were also obtained with recurrent networks, but with a 
lower performance than with the other topologies. Two 
different control strategies have been applied. One of them is 
based in the static MLP, neural network that has proved to be 
the most appropiate by measuring the rectangular components 
of the signal harmonics. The other strategy, based in the 
dynamic MLP, permits extracting the instantaneous value of the 
fundamental waveform. The three mentioned ANN topologies 
have been conveniently trained and simulated with waveforms 
distorted by several harmonics. Finally, the obtained results 
with practical cases of harmonic distorted waveforms are 
presented and discussed. 
 
Key words 
 
Harmonics, Artificial neural network, Active power 
filter,  Electric power quality. 
 
1. Introduction 
 
In the last years a high increase of problems in the 
electric power distribution networks due to the presence 
of harmonics has been observed. At the moment, one of 
the most important tools for correcting the lack of electric 
power quality are the active power filters (APF), that, 
thanks to the recent development of signal processing and 
power converters, are a growing reality, [1],[5]. 
 
The objective of this work has been to find the most 
suitable design strategies for use of the ANNs by the 
APFs. In this way, different network topologies have 
been analyzed, following two different strategies or 
working methods for harmonic distortion detection. The 
diagram in Fig. 1 shows the application of the neural 
network to an ANN-controlled APF (Fig. 1). [5],[6]. 
 
The used neural networks are of those with off-line 
training, so that the performance times are shorter than in  

 
another systems such as the application of adaptative 
techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The distortion current is used in the APF as the reference 
signal for controlling of the power stage. The two 
different strategies, from the point of view of the way in 
which the distortion current is obtained, are the 
following: 
 
1) Obtaining the content of harmonics present in the 
current signal, expressed as in the Fourier series 
expansion. By each period of the acquired signal, the 
ANN outputs the rectangular components coefficients of 
the more relevant harmonics. With this set of 
coefficients, the distortion current can be generated and 
used for controlling of the power converter (Fig. 2). 
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2) In the second strategy, the acquired signal is 
sequentialy introduced in the ANN, and as a result, this 
network outputs the fundamental waveform in real time. 
The distortion current is hence obtained as the difference 
between the original signal and its fundamental 
component, Fig. 3. 
 
 
 
 
 
 
 
  
 
 
2.  Artificial neural networks for harmonic  

detection 
 
A.  Neural Networks 
 
A neural network is an interconnection of processing 
units (artificial neurons). These neurons consists of  three 
components, as can be seen in Fig. 4: the weighted 
connections, the combination function and the transfer 
function. The input signals flow through the connections 
and then accumulate in the summing node. The 
connection weights can be positive or negative. By 
means of these weights, the connection modulates the 
amount of information passing between to the summing 
node. The most common combination function is an 
addition. The summed signal, n, flows to the output 
through a transfer function, f. These function can be 
linear or nonlinear type. Among the nonlinear ones the 
most frequently used are sigmoidal. This transfer 
function produces the neuron output. 
 
 
 
 
 
 
 
 
 
 
 
The transfer functions of the ANNs applied in this work 
are shown in Table I. The first function is linear. The 
other two are sigmoidal nonlinear functions, and are by 
neural networks commonly employed to give then a 
nonlinear feature. In all topologies of this work a 
combination of linear and nonlinear functions is used. 
 
Neural networks are organized into layers of neurons. All 
neurons in a layer have the same inputs and the same 
trasnfer function. There is also the so called “input 
layer”, formed by input units, that are not neurons, but 
constitute one more component in the ANN topology. 
The different layers of a typical ANN can be seen in   
Fig. 5. There can be one or more hidden layers. The 
number of layers and the number of neurons in each layer 

depend on the complexity of the problem being solved 
and the desired accuracy. 
 
 
 
 
 
 
 
 
 
B.   Selected topologies 
 
There are many different ANN topologies. A 
classification can be made depending on the existence of 
feedback in the network. In the so called recurrent 
networks the interconnections of the neurons make 
possible feedback of the data flow between layers. With 
this, a certain “shortterm memory” is achieved, since the 
information introduced into the network temporarily 
influences the later response of their neurons. The Elman  
network belongs to this group, and another examples are 
Jordan, Kohonen or Hopfield networks, [2],[3]. 
 
By the networks without feedback (feedforward 
networks), the information always flows fordwards. So 
the inputs for the elements of a layer can only come from 
the ouputs of the preceding neurons in the direction of 
data flow. The main ANN type at this group is the 
Multilayer Perceptron network. 
 
The perceptron network contains neurons with nonlinear 
functions, what gives the network the ability to emulate 
nonlinear mapping properties, and it makes the network  
suitable for many applications, without the limitations of 
pure linear networks. Furthermore, it is proved 
(Kolmogorov’s Theorem) that a two neuron-layer 
perceptron network with nonlinear function can generate 
any function as output with the desired approximation. 
This all, together with the results obtained by other 
authors at the application to sinusoidal waveforms       
[5]-[7],[10], was the reason for selecting this topology for 
the purpose of harmonic detection in distorted 
waveforms. In particular, the MLP has shown to be an 
appropiate network for the first strategy. A set of 
waveform values corresponding to a period is introduced, 
obtaining at the output the rectangular components of the 
harmonics of interest. The topology of this ANN can be 
seen at the  Fig. 5. Here appears a simplified network 
consisted of  3 input units, 3 neurons in the hidden layer 
and 2 neurons in the output layer. 
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The transfer functions are tan-sigmoid (with values 
between -1 and 1) or log-sigmoid (with values between 0 
and 1) in the hidden layer, and linear in the output layer. 
The applied learning algorithm is the Backpropagation. 
 
For the second working method applied to the detection 
of the harmonic distortion, by which the fundamental 
harmonic is extracted in a dynamic way, by introducing 
the signal data sequentially, networks are proposed, that 
have the property of the “shortterm memory”, so being 
able to mantain temporarily information of the former 
input data, as is the case of the recurrent networks. The 
Elman network has been taken as a typical recurrent 
ANN, very often applied to problems with common 
characteristics with the purpose of this work. This 
network consists of two neuron layers and has internal 
feedback from the outputs of the hidden layer to the input 
layer, so being these signals again introduced as inputs 
for the neurons of the hidden layer. The employed 
transfer functions are in both layers as in the case of the 
MLP already described. As learning algorithm for the 
training of the network it will be used again the 
Backpropagation. Fig. 6 shows this topology, with 2 
inputs, 3 neurons in the hidden layer and 2 neurons in the 
output layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
And another topology that owns the efectiveness of the 
MLP networks, as also the dynamic features of the 
recurrent networks, in the way that it mantains memory 
of the last values of the input signal, is the Dynamic 
Multilayer Perceptron. Good results are being achieved 
with this type of ANN in a lot of applications 
[4],[5],[8],[9]. At this topology the input layer to the 
neural network is a time delayed series of input signal 
values. The first input unit receives the instantaneous 
value of the signal, sequentially introduced. The other 
input units have the delayed values of the input signal. 
These set of time delayed input values can be observed in 
Fig. 7. 
 
 
 
 
 
 
 
 
 
 
 
 

3. Harmonic detection by using Multilayer  
Perceptron. 
 
The different described neural networks have been 
trained and simulated in many different ways with the 
goal of getting the parameter values that produce the 
optimal performance for each of the topologies. Two 
different performance indices were chosen to evaluate the 
efectiveness of each studied network by both of the 
operation strategies: the reached accuracy level (in terms 
of the error rate) and the required training time. With 
respect to the accuracy level, at the measuring of the 
harmonic coefficients an error rate of 1% were estimated 
as minimum desired accuracy. With respect to the 
training time, network topologies and parameters were 
desired, that could be trained in so short times as 
possible. For this purpose it were compared the needed 
times to achieve similar accuracy levels. 
 
The software tool employed has been the Neural 
Networks Toolbox of Matlab. All types of available 
training algorithms were used and tested, and the most 
efficient was found to be the Levenberg-Marquardt 
modified Backpropagation. 
 
A. Approach to the problem and parameter adjustments 
 
The detection of the parameters that define a sinusoidal 
waveform (the amplitude and the phase angle) is a good 
previous step for testing the capabilities of this ANN at 
the more general task of obtaining the distortion 
harmonics coefficients. At this first stage an approach to 
the more important parameters is made. These are the 
number and type of the needed training pairs, and the 
suitable number of neurons, among others. The general 
equation of a sinusoidal voltage or current waveform to 
the angular frequency ω is as follows: 
 

(1) 
 
where X is the amplitude and φ is the initial phase angle. 
This equation can be substituted with the following 
expression, more appropiate for the desired working 
method to apply: 
 

(2) 
 
So the objective is to detect the rectangular components 
A and B of the wave. For this, the network must be 
trained with a set of training pairs that are representative 
enough of all possible sinusoidal waveforms. At this first 
stage the work deals particularly with what could be a 
voltage waveform, with amplitudes between 210 and 230 
VRMS , and phase angles between −90º and 90º. The more 
suitable sampling frequency was found to be of 32 points 
per period. This showed to be valid for all proofs and 
network topologies used at this work. 
 
The set of training pairs was formed by a number of 
waveforms with different amplitudes and phase angles 
within the described ranges. The minimum number of 
necessary training pairs for the networks to learn with 
enough accuracy was 20. And as regards the number of 

     Fig. 6.  Elman recurrent network 
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hidden layers of neurons, better results were obtained 
with a single layer as with two ones. The optimal number 
of neurons was 8. In Table II some results are shown with 
different numbers of neurons within the range from 4 to 
12.  For this proof a minimum accuracy was required, 
measured by means of the mean square error (mse) of the 
network outputs for the full set of training example 
waves comparing with the exact values of the training 
pairs. It was established an error mse = 1E−10 as goal. 
The first column in the table shows the reached accuracy, 
and in the other two columns it can be seen the time it 
required in terms of seconds and  number of iterations, 
executed in a PC Pentium 1.7 GHz and 256 MB RAM. 
 
 

 
Next the generalization for inputs different of those used 
as training pairs were proved. The proofs are made with 
the 8+2 neurons network. 8 neurons in the hidden layer 
and 2 neurons in the output layer (for the two 
coefficients). The input layer has 32 units in all 
simulations. This was the minimum number of data per 
period necessary for supplying the network enough 
information of the wave. With 64 inputs the times are 
longer and no improvement could be seen, and that was 
so with all other ANNs and proofs in this work. After the 
training with 20 different waveforms, all error rates with 
other different inputs were around 0.01%, as can be seen 
at the example shown in Table III. 
 

 
 

 
 

B.  Harmonic detection by distorted waveforms 
 
Next trainings and simulations till the end of this work 
were carried out with unitary wave amplitudes for the 
fundamental harmonic, given that the use of higher 
values doesn’t mean any difference for the ANN, because 
in these cases input normalization is done, with the 
consequence that the network operation is the same.  
 
Now the MLP network is applied to the detection of the 
coefficients of the several harmonics present in a 
distorted waveform. For this purpose a proper set of 
training pairs are generated. They were distorted waves 
with different combinations of harmonics. The content in 
each harmonic was determined by the values of its 
rectangular components, making all possible 
combinations with either 0 or 0.2 as value for the 
different Aj y Bj of the several used harmonics. That is, 

either 0% or 20% of the amplitude of the fundamental 
wave. And that means that the amplitude of each 
harmonic oscillates between 0 and 28.28% and the phase 
angles go from −90 to 90 degrees.  
 
With 5 harmonics the number of resulting distorted 
waveforms was 1024. The required training times were 
relatively low (some minutes; always less than an hour in 
the PC above mentioned), and as results, a high accuracy 
could be reached. The mse reached with the training pairs 
by the training were of order 1E−8. The needed number 
of neurons in these networks were 15+10 neurons. And 
the errors at the outputs for distorted waveforms different 
of those of the training were clearly lower than 1% (of 
the order of 0.1%).  
 
Fig. 8 shows a waveform distorted with different 
amplitudes and phase angles for harmonics 3º, 5º, 7º, 9º 
and 11º. The training time with this particular harmonics 
was approx. 5 minutes. Table IV illustrates the results for 
the wave of Fig. 8. It shows the values for the 
coefficients corresponding to the rectangular components 
Aj y Bj of these five harmonics. In one column the exact 
values of the waveform spectrum are shown, and next 
column contains the network outputs. In last column the 
resulting errors can be seen. 
  
 
 
 
 
 
 
 
 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For higher number of harmonics the detection is possible 
too, although by means of an increasing number of 
neurons and increasing training times. In particular, this 
times grow exponentially with increasing number of 
coefficients. 

number of 
neurons mse time (s) number of 

iterations 
4 9.9e-10 42 998 
6 7.3e-10 4.4 35 
7 5.3e-10 4.1 24 
8 1.1e-12 3.8 16 

10 6.1e-10 5.2 10 
12 7.9e-10 10.8 13 

waveform 
coefficients network output error (%) 

288.3829 288.3694 0.005 
134.4744 134.4891 0.01 

coeffs. exact 
values 

network 
output 

error 
(%) 

A3 0 0.0000 - 
B3 0.05 0.0501 0.2 
A5 0.1 0.1001 0.1 
B5 0.15 0.1502 0.13 
A7 0.2 0.2000 0 
B7 0 -0.0002 - 
A9 0.05 0.0499 0.2 
B9 0.1 0.0998 0.2 

A11 0.15 0.1501 0.07 
B11 0.2 0.2003 0.15 

     TABLE II.  Optimization of the number of neurons 

TABLE III.  Results for a waveform not used at the training 
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4.  Harmonic detection by using Elman 
Recurrent Network and Dynamic MLP 
 
First of all, these ANN topologies were tested for results 
by detecting harmonic amplitudes, then in case it works 
they could have certain advantages with respect to the 
static MLP, because of the way in which the inputs are 
introduced to the network. In other words, these networks 
have better dynamic features than the static MLP due to 
the more frequently updating of the output, with every 
new sample value from the signal that is introduced to the 
network, without having to wait for a set of values 
corresponding to a full period of the wave. Besides, the 
sequential introduction of the data is simple and more 
direct. 
 
Nevertheless, the achieved results were of very low 
accuracy, compared with those of the static MLP. So the 
work with these two topologies centered on the second 
strategy above described. 
 
A.  Approach to the problem and parameter adjustments 
 
At this second strategy it was tried to get as network 
output a fundamental frequency wave from a distorted 
waveform. Hence it seemed to be interesting to make an 
estimation of the basic parameters and ability of the 
network by obtaining a sinusoidal waveform in real time 
as output of the ANN when this same sinusoidal wave is 
introduced as input. So the training pairs consist of the 
same sinusoidal wave for both input and output of the 
neural network. 
 
The best results with Elman network were obtained with 
20 neurons in the hidden layer. In Fig. 9 it can be seen 
the result of a simulation after the training: two curves 
are represented, the sinusoidal input and the network 
output. The mean square error reached was                  
mse = 6.5E−5. It isn’t a high accuracy, but can be 
considered acceptable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
But the generalization of the trained network to waves of 
different amplitudes with Elman network resulted to be 
very poor. To improve it trainings were carried out with 
two learning pairs of different amplitudes for getting 

better results in the range between both amplitudes. 
Waves of amplitudes 0.5 and 1.5 were used for this 
purpose, and the mean square errors obtained were all of 
the order of 1E−4 for waves within this range. In other 
words, an improvement was achieved. But out of the 
range the accuracy was so lower as by the former 
trainings made. 
 
By the application of the dynamic MLP, however, it was 
possible to generate the sinusoidal waveform at the 
network output with a very high accuracy 
(mse=2.5E−11), and, surprisingly, with a single neuron in 
the hidden layer, and in a training time of only 10 
seconds. Fig. 10 contains both the input and the response 
of this dynamic MLP network, although it seems to be a 
single curve, then the output follows the input with a so 
low error. Besides, the network was able to generalize in 
a proper manner for amplitudes differents of that of the 
learning wave employed, including a wide range between 
0 and 10. Fig. 11 shows the input and the output for the 
cases of amplitudes 0.5, 0.7, 0.9, 1.1, 1.3 and 1.5. As in 
the case of introducing the learning waveform, it can’t be 
appreciated the small distances between input and ouput 
curves. 
 
With respect to the generalization for phase angle 
fluctuation, the accuracy was as high as with the learning 
wave. This could be expected for both Elman and 
dynamic MLP topologies, due to the sequential way of 
introducing the values and the “shortterm” memory of 
these topologies. 
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B.  Extracting the instantaneous value of the fundamental 
wave  from a waveform distorted by several harmonics 

 
Once known the parameters of both topologies for the 
previous case, it can be tried to extract the instantaneous 
value of the fundamental wave from a distorted  
waveform, not a pure sinusoidal one. The used training 
pairs were taken as the addition of a sinusoidal wave of 
amplitude 1 and combinations of 4 harmonics of 
amplitude 0.2 (15 different training waveforms). And as 
desired output a fundamental sinusoidal wave of 
amplitude 1 is employed. 
 
The Elman network required 100+1 neurons, while the 
dynamic MLP needed only 3+1 neurons and shorter 
training times. The obtained results with both topologies 
are shown in Table V. The first columns indicate the 
different training waveforms, specificating the harmonic 
content in each one. As can be seen at the other columns, 
where the mse for both ANNs appear as a result of 
simulating the network with these 15 waveforms, the 
dynamic MLP network has a much higher performance 
than the recurrent network. It is seen that this structure, 
with a secuentially introduced input and a set of delay 
units in the input layer confers the ANN a high 
performance, as could be proved too in other 
applications.[4],[8],[9]. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 12 a waveform highly distorted by the 5th  
harmonic is presented, and Fig. 13 shows the 
fundamental wave of such a waveform and the output of 
the dynamic MLP. It can be observed how after the 
necessary time for the network to get enough information 
of the waveform, i. e. one complete cycle, the network 
ouput superposes the fundamental wave, meaning this 
fact that the mse is very low.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
5.  Results discussion and conclusion 
 
The different neural networks are able to detect the 
harmonics present in voltage or current distorted 
waveforms. From the different architectures or types of 
networks, it were selected the most suitable ones 
depending on the detection strategy to be used for the 
APF or on the results obtained with them, by us and by 
other authors, in different types of applications. 
 
By the strategy for detection of the harmonic spectrum, it 
is the MLP the one with the highest performance, getting 
to detect with enough accuracy, in short trainings (shorter 
than an hour in a personal computer) up to 5 or 6 
harmonics, with a low number of neurons (from 8 to 15 
for the hidden layer). In other works we could increase 
the number of harmonics detected into 10, by using two 
MLP networks parallel-connected, each one of them 
detecting 5 different harmonics. This amounts of 
harmonics are in most of the practical cases a number 
enough to make able with the APF the elimination of the 
most distortion at the load. Besides, the network training 
can be adapted to the type of usual harmonic distortion at 
the load where they are going to be applied. Also the 
other two studied topologies have been applied to this 
first strategy trying to obtain the rectangular 
componentes of the harmonics, but only with low 
performance. They don’t reach the minimum accuracy 
stablished as goal (1% of relativ error). 
 
The second strategy permits to extract the instantaneous 
value of the fundamental wave from a distorted 
waveform. The suitable neural networks are those with 
dynamic features, in other words, the ones with 
“shortterm memory”. In particular the dynamic MLP 
showed its ability to obtain the fundamental wave in real 

wave 5º 7º 11º 13º mse Elman mse MLP Din. 
1 x    0.0019 2.4e-7 
2  x   0.0016 3.7e-7 
3   x  0.0021 4.6e-7 
4    x 0.0009 4.5e-7 
5 x x   0.0027 2.1e-7 
6 x  x  0.0034 2.7e-7 
7 x   x 0.0022 2.5e-7 
8  x x  0.0031 3.5e-7 
9  x  x 0.0020 3.7e-7 

10   x x 0.0024 4.5e-7 
11 x x x  0.0043 2.1e-7 
12 x x  x 0.0032 2.3e-7 
13 x  x x 0.0036 2.7e-7 
14  x x x 0.0034 3.4e-7 
15 x x x x 0.0046 2.1e-7 

TABLE V.  Results Elman and Dynamic MLP networks 
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time with a high accuracy, requiring for this a very low 
number of neurons. Only 3 neurons in the hidden layer 
were needed for waveforms distorted by 4 harmonics. 
The training times in this case were very short (a few 
minutes at a Pentium 1.7 GHz Personal Computer). On 
the other hand, the Elman recurrent network requires a 
very high number of neurons (aprox. 100 neurons for the 
mentioned task), reaching accuracy levels much lower 
than those of the dynamic MLP. And the training and 
operating times are longer because of the high number of 
neurons contained in the network. Thus, we consider this 
ANN topology not appropiate for application to the 
active power filters. 
 
In short, from the comparative analysis made between 
different topologies of neural networks, it can be 
concluded that: 
 
      1)    The static MLP network is the most appropiate  
              for the first of the strategies. 
      2)    The dynamic MLP network is the suitable 
              topology for the second control strategy. 
 
Both types of configurations or working methods result 
appropiate for determining of the reference signal at the 
APF control, were the second of them could have 
advantages in terms of higher application simplicity, due 
to the sequential data input, and the real time response of 
the network. 
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