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Abstract. The wind speed represents the main exogenous 
signal applied to a Wind Energy Conversion System (WECS) and 
determines its behavior. The erratic variation of the wind speed, 
highly dependent on the given site and on the atmospheric 
conditions, makes the wind speed quite difficult to model. 
Moreover, wind modelling for medium and large time scales is 
poorly treated in the present literature. This paper presents 
methods for generating realistic wind speed profiles based on real 
measurements. The wind speed profile is divided in a low-
frequency component (describing long term variations) and a 
turbulence component (corresponding to fast, high frequency 
variations). For modelling the low frequency component two 
methods are implemented and compared: one based on the Van 
der Hoven spectrum and one based on auto regressive models. 
The importance of the turbulence component is also analyzed and 
modelling methods based on white noise filtering are presented.  
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1. Introduction 
A wind turbine converts the wind energy into mechanical 
energy and then through the generator in electrical energy. 
The energy contained in the wind depends on the air 
density, the rotor area and the wind speed. 
The density of air influences directly its mass, and 
therefore the kinetic energy in the wind. In other words, 
the higher the density, the heavier the air and more energy 
is received by the turbine.  
Secondly, the rotor area, or rotors swept area, determines 
how much energy a wind turbine is able to produce from 
the wind. The rotor area increases with the square of the 
rotor radius, and so is the output power of the turbine.  
And finally, the most important factor for the total 
available energy a turbine can convert into electricity is the 
wind speed. The energy in the wind varies with the cube of 
the average wind speed. Considering all the above, the 
power available in the wind is defined by Eq. (1):   
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where P is the instantaneous energy (power) in the wind, 
A is the rotor area, ρ is the air density and V is the wind 

speed. 
The energy available in the wind is derived from Eq. (1) 
by integrating the wind speed over a period of time tp, 
typically one year [1], resulting the following: 
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It is necessary to highlight that taking the average wind 
speed (from a Weibull distribution) and then estimating 
the average energy based on that value could lead to 
nonrealistic results when computing the total energy 
using Eq. (2). This is because the contained energy in the 
wind is considerably larger for high wind speeds. 
Therefore the need of accurate wind models, especially in 
the area of energy storage investigation, can easily be 
identified. 
The erratic variation of the wind speed, highly dependent 
on the given site and on the atmospheric conditions, 
makes the wind speed even more difficult to model. A 
common simplification is to assume thermic equilibrium 
of the atmosphere nearby Earth (neutral atmosphere [2]). 
Therefore, turbulence results mainly from the friction 
between air and ground, due to the ground roughness [3]. 
Wind near the Earth’s surface is characterized in a 
general sense by a spatial (3D) speed distribution. 
However, assuming that the turbine is equipped with 
yawing equipment, and that changes in wind direction are 
sufficiently slow, then the turbine rotor is maintained 
normal to the wind direction. Hence, the wind turbine 
model requires only the longitudinal wind speed to be 
modelled [3]. Therefore, in the present paper only scalar 
(1D- fixed-point) wind speed models will be addressed. 
Another assumption is that the wind turbine runs in 
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normal operating regimes, so the developed models will 
not include extreme operating conditions like wind gusts. 
With these assumptions in mind, the fixed-point wind 
speed model has been developed in the literature [1, 2, 3, 
4] considering the wind dynamics as a result from 
combining meteorological conditions with particular 
features of a given site. Thus, wind speed is modeled by a 
non-stationary random process, obtained by superposing 
two components, as seen in Eq. (3): 

)()()( tvtvtv tm +=   (3) 

where )(tvm  is the low-frequency component (describing 

long term, low-frequency variations) and )(tvt is the 

turbulence component (corresponding to fast, high 
frequency variations) [2]. 
These components can be identified in Van der Hoven's 
large band (six decades) model, presented in Fig. 1, 
developed by Van der Hoven (1957), from long and short 
term records at Brookhaven, New York, and first 
published in [5]. The spectral gap of around 0.5 mHz 
suggests that the turbulence component can be modeled as 
a zero average random process (there is little energy in the 
spectral range between 2 h and 10 min). 

 
Figure 1. Van der Hoven's spectral model of the wind speed [3] 

 
2.  Modelling of mean wind speed 
The low frequency component of the wind speed, 
corresponding to the geostrophic winds, is usually referred 
to as quasi-steady mean wind speed or just mean wind 
speed. The value of the mean wind speed is obtained as the 
average of the instantaneous speed over an interval tp [1]. 
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The knowledge of the mean wind speed that can be 
expected at a potential site is crucial to determine the 
economic viability of a wind energy project. These data 
are also essential to select the WECS in order to maximize 
efficiency and durability [1]. The probability distribution 
of the mean wind speed is predicted from measurements 
collected during several years. All these data are usually 
arranged in a histogram. The wind distribution 
experimentally obtained can be approximated by a Weibull 
distribution, such as that shown in Fig. 2. The Weibull 
distribution is given by Eq. (5). 
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where α  and β  are shape and scale parameters. These 

parameters are adjusted to match the wind data at a 
particular site [1]. The Weibull probability function 
reveals that large mean wind speeds rarely occur whereas 
moderate winds are more frequent. 

 
Figure 2.Weibull probability distribution of mean wind  

speed [1]. 
In the particular case of Fig. 2, the most probable mean 
wind speed is approximately 5.5 m/s whereas the average 
wind speed is 7 m/s.  
As was mentioned in the previous section, the averaging 
period is chosen to lie within the energy gap, more 
common around 10 to 20 minutes. When this is the case, 
the macro meteorological changes in wind speed appear 
as slow fluctuations of the mean wind speed [1]. 
Starting from these presumptions, a wide variety of 
methods for generating and forecasting wind time series 
based on wind speed measurements have been developed 
[6, 7] in the literature, Weibull distribution method, 
spectrum methods, autoregressive methods, Markov 
chain methods, wavelet decomposition or neural 
networks based methods. 
In the following two of most commonly employed 
methods for generating wind speed time series will be 
presented and analyzed. 
 
A. Van der Hoven spectrum method 
Maybe the most common and simple method for 
generating accurate and persistent wind speed time series 
is by sampling the Van der Hoven spectrum. The idea, 
presented in [4], is quite simple and intuitive. Starting 
from the Van der Hoven spectrum, prior calculated for 
the desired time span and sampling accuracy (usually 10 
minutes to 1 hour samples), from the available 
measurement data, the spectrum is sampled in order to 
obtain a new wind speed time series. 
More specifically, the frequency range below 1/tp is 
divided into m intervals. Then, the mean wind speed is 
computed at every step as:  
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where 1,1 += miω ; is the discretized angular frequency, 

iξ  is a stochastic variable uniformly distributed in 

],[ ππ−  [4], 0V  is the mean speed measured during a 
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One important advantage of this method, besides its 
simplicity, is that the generated wind speed time series has 
a similar Van der Hoven spectrum in the low frequency 
side as the original measurement data, preserving 
periodical trends. Moreover the generated data is 
persistent. 
Fig. 3, Fig. 4 and Fig. 5 show the results obtained by 
applying this method and using 10 minutes wind speed 
averages. The 10 minutes average data has been recorded 
during an entire year at the Capel wind site, UK (courtesy 
of www.winddata.com). 
 

 
Figure 3. Comparison between the Van Der Hoven Spectra of the 
measured data (red) and data generated using the Van der Hoven 

spectrum method (blue). 

 
Figure 4. Comparison between the distribution of the measured 
data (red) and data generated using the Van der Hoven spectrum 

method (blue). 

 
Figure 5. Comparison between the time evolution of the 

measured data (red) and data generated using the Van der Hoven 
spectrum method (blue). 

 
 
B. Autoregressive method 
 
The use of autoregressive models for generating hourly 
mean wind speed time series is reported in the literature 
very commonly [6, 7, 8]. The reason for this widespread 

use is because of the high dependence of hourly mean 
wind speed time series [6]. This property particularly 
requires a wind speed data generation model 
incorporating the dependence structure of the 
observations. Weibull distributed random numbers 
(another simple method of emulating wind speed) do not 
take this property into account as they are independent, 
but autoregressive models are of correlated type and 
hence capable of simulating this property of the wind 
speed data series [6].  
Two of the most often employed auto regressive models 
used are the p-th order autoregressive model, presented in 
Eq. (7), and the p; q-th order autoregressive moving 
average models, presented in Eq.  (8), also known as 
Box-Jenkins models [6, 7]. 
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where jφ  are the autoregressive, kθ  the moving average 

parameters and iε  is a random component of normal 

distribution, with zero mean and unity variance. 
These two models were fitted in [8] and [9], yielding 
very good results. The methodology used in both papers 
is similar, and takes into account the non-Gaussian 
distribution, the diurnal non-stationarity, and the auto-
correlated nature of wind speed [8]. 
 

 
Figure 6. Comparison between the Van Der Hoven Spectra of 

the measured data (red) and data generated using the 
Autoregressive method (blue). 

The advantages of this method, although complex, are 
numerous, and take into account several characteristics of 
the wind speed, namely auto-correlation, non-Gaussian 
distribution and diurnal non-stationarity. And since no 
assumptions or previously estimated factors are 
introduced in the models, this approach ensures that there 
is no inherent distortion in the resulting model [9]. 
Time series models of wind speed developed using this 
methodology have many potential uses, including 
simulation and short period forecasting of wind speed 
and at a single site [8]. 
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Figure 7. Comparison between the distribution of the measured 
data (red) and data generated using the Autoregressive method 

(blue). 

 
Figure 8. Comparison between the time evolution of the 

measured data (red) and data generated using the Autoregressive 
method (blue). 

 
Fig. 6, Fig. 7, and Fig. 8 present the results obtained by 
this method using as a starting point the same measured 
data as in the previous case.  
It can be observed that the autoregressive methods are 
superior to the spectrum methods, providing results that 
approximate better the statistical characteristics of the real 
data.  
 
3. Modelling of local effects 
As mentioned earlier, the wind speed at a fixed point can 
be divided in two components: the mean speed 
(determined as 10 or 20 minutes averages) and the 
turbulence. Section 2 has presented methods for 
mathematically describing the wind in terms of 
frequencies above the energy gap in the Van der Hoven 
spectrum.  
In order to model the fast changing components in the 
wind also known as turbulence and the local effects, one 
has to start by looking at the shape of the Van der Hoven 
spectrum at high frequencies. 
The common approach used in the literature in order to 
model wind turbulence is to approximate the wind 
spectrum at high frequencies with the Kaimal or the von 
Karman spectrum. According to [1] the following models 
can be adopted for the two spectrums: 
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Both models are parameterized by Kv and Tv and 
according to [1] they are dependent on the mean wind 

speed and parameters of the site, like the turbulence 
length scale and the turbulence intensity. 
It is difficult to say which of the two models is more 
suited for turbulence modelling. Even though the 
frequency response of the two does not present any major 
differences, Kaimal is widely accepted and suggested by 
the Danish standard for loads and safety of wind turbines 
construction. 
Common practice, presented in [4] as well as in [10], 
used in order to obtain the desired shape of the spectrum 
in the high frequency area is to pass white noise through 
a shaping filter tuned based on the von Karman or the 
Kaimal spectrum. 
The methods presented so far for modelling the mean 
wind speed together with the turbulence offer a clear 
overview of the wind speed at a fixed point for time 
scales ranging from seconds to years. However, placing a 
wind turbine in the wind flow generates extra 
turbulences, mainly because of the tower shadow and the 
wind shear. The distribution of wind is altered by the 
presence of the turbine tower. According to [10] the wind 
speed in the front of the tower can be reduced with up to 
20%, the tower having an averaging low-pass-filter effect 
on the wind speed. Also, the rotating blades experience 
different wind speeds according to their position; for 
example a blade pointing upwards will experience higher 
wind speeds than when pointing downwards because 
wind speed varies with height as stated by the Prandtl 
logarithmic law. 
Not taking these aspects into consideration when looking 
at power fluctuations analysis will yield non-realistic 
results. In order to make the prediction of the wind speed 
experienced by a wind turbine as accurate as possible, 
models that take into account wind shear and tower 
shadow were used for modelling the turbulence 
component.  
There are at least three methods for modelling the local 
effects of the wind speed. In this paper focus was set on 
the harmonics filter method from [11, 12] and on the 
spatial/rotational filter method from [3]. 
The harmonics filter method, implemented in [12], uses 
the Kaimal spectrum for modelling the turbulence, and 
admittance filters for covering the effects of wind speed 
averaging and rotational sampling effects. The proposed 
structure can be better pictured by analyzing Fig. 9. 
 

 
Figure 9. Harmonics filter method. Block Diagram. 
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The problem that arises is related with the tuning of the 
three filters: Kaimal, Zero Harmonic Admittance Filter and 
Third Harmonic Admittance Filter.  
Firstly the Kaimal filter will be described. Extensive work 
on this topic has been done in [11], where rational filters of 
different orders have been fitted to experimental data, in 
order to provide an approximation as good as possible to 
the initial shape of the Kaimal filter spectrum. For the 
work presented in this paper, the usage of a second order 
filter has been chosen. The work presented in [12] uses the 
same filter, and by analyzing the data provided by [11] it 
can be seen that it provides a good compromise between 
complexity and accuracy. The transfer function of the filter 
is the one presented in Eq. (11), where c = Vm/Lt and K = 

22 σt
m

L

V , with Lt being the turbulence length scale, Vm the 

mean wind speed and σ the turbulence standard deviation. 
Both Lt and σ are parameters related to the location. 
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The next question is related to the two admittance filters, 
and the answer was found in [11]. Once again rational 
filters of different orders were fitted to measured data, and 
the results for second order filters are presented in the Eq. 
(12) and Eq. (13) where d = R/Vm with R being the rotor 
radius and Vm the mean wind speed. 
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The idea behind this method is to produce a single 
equivalent wind speed, which is further used as input to 
the aerodynamic model. Some aspects are taken into 
consideration while developing this model. Firstly is that 
the wind model contains only the zero and the third 
harmonic due to the fact that the three bladed rotor is 
perfectly symmetrical [13]. Another aspect that is 
considered is that the wind turbine structure acts like a low 
pass filter [13], averaging the wind speed. 
In order to achieve the desired output, firstly the zero and 
third harmonic of the fixed point turbulence are generated 
using shaping filters tuned based on the Kaimal spectrum. 
Then two admittance filters, fitted in [11], are applied to 
the two harmonics. The one applied to the zero harmonic 
is tuned so that it simulates the averaging effect, while the 
one applied to the third one, takes into account the 
variations due to the rotational turbulence and tower 
shadow in the wind speed field over the rotor disk. 
The two filtered harmonics are added in the end in order to 
obtain the equivalent wind speed. 
The second model, proposed in [3], takes a similar 
approach as the previous one. Two filters are introduced 
after the fixed point wind speed: one that takes care of the 
averaging effect (the Spatial Filter), and one that takes into 
account the effect of the shear, the tower shadow and other 
effects introduced by the rotating blades (the Rotational 
Sampling Filter). The way these filters are interconnected 
with the fixed point wind speed is different from the 
previous method, hence the new structure can be found in 
Fig. 10. Another difference that can be noticed is that for 

the generation of the fixed point speed a von Karman 
filter is used this time. The transfer function  
 

 
Figure. 10 Spatial/rotational filter method. Block Diagram. 

 

 
Figure 11. Effect of the spatial and rotational filter on the 

spectrum and time characteristic 
 
chosen for this filter is the one proposed by [4], here 
presented in Eq. (14) where TF=Lt/Vm and 
KF=

s

F

T

T

B
⋅

)3/1,2/1(

2π with B(x; y) being the beta function and 

Ts the sampling time. 
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For the spatial filter the transfer function is presented in 
Eq. (15), where asf = 0…55 is an empirical factor, and bsf  

is a parameter describing the correlation between wind 
speed in different points across the rotor; bsf  equals  
1.3⋅(R/Vm), where R is the blade length and Vm the 
average wind speed experienced by the hub. 
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Equation (16) presents the transfer function proposed in 
[3] for the Rotational Sampling Filter. In the equation Nb 
represents the number of rotor blades, lΩ  the rotational 

speed of the rotor, whileε  and σ  are two parameters 
that determine the magnitude of the power density 
concentration and the characteristic's selectivity at the 
Nb⋅ lΩ  frequency [3]. Direct indications on how to 

choose ε  and σ  are not provided in the previously cited 
work, so after some tuning the following values were 
selected as default values: ε  = 0 and σ   = 1 for the 
work presented here.  
The two presented methods provide similar results in 
modelling the fast components of the wind speed. As 
emphasized before, it is very important to take into 
consideration the effects produced by the interaction 
between the wind and the turbine when dealing with 
problems related to power estimation. Figure 11 presents 
the spectrum and the time series for three cases: the top 
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one represents the fixed point wind speed, the one in the 
middle emphasizes the averaging effect of the spatial filter, 
while the graphs in the bottom of the figure show the 
effect of the rotational sampling filter. Clear differences 
can be spotted in the spectrum as well as in the time series. 
Ignoring these differences and considering just the fixed 
point wind speed could over-estimate the wind resource at 
a certain location. 
 
4.  Conclusion 
Reliable and consistent wind speed testing data is 
imperative for the realistic study and validation of a wind 
energy conversion system and consequently of an energy 
storage system. Since various wind speed scenarios need 
to be developed with various time scales and wind site 
characteristics, and appropriate wind speed measurements 
are not always readily available, two methods for 
generating synthetic mean wind speed have been 
implemented and compared. These two methods were 
chosen from among a broad range of available and 
currently developing methods for generating and 
forecasting mean wind speeds, because of their good 
agreement on ease of use and accuracy of results. 
The next important aspect that has to be taken into 
consideration when generating synthetic wind speed is the 
high frequency components (turbulence), below 10 
minutes time periods, which are not included in the mean 
wind speed, but have a significant impact on short period 
variations of the WECS's power output. This phenomenon, 
as mentioned before, is of great importance to energy 
storage and has been studied in detail. Two approaches for 
dealing with these site specific local effects have found 
consensus in the research community, and have 
consequently been implemented and compared.  
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