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Abstract. This paper presents a neuro-fuzzy approach to 
power quality assessment. Electrical equipment susceptibility to 
disturbances varies from type to type. Additionally, not only 
one physical phenomenon (e.g. harmonics) can cause 
equipment malfunctioning or damage, but more likely a 
superposition of some different disturbances. The authors 
propose an automated neuro-fuzzy approach to power quality 
indicia bundling which is correlated to equipment susceptibility. 
Whereby distortion power is seen as one of the power quality 
indices. 
The neuro-fuzzy analyzer matches logically different indices 
and gives as output one value describing the possible thread to 
electrical equipment. A reduction of data amount to be analysed 
by a system engineer is aimed.  
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1. Introduction 
 
Allowed power quality disturbances’ levels and 
acceptable parameters deviations are defined in 
international standards, e.g. [1], [2]. They are under 
constant monitoring and supervision. There are numerous 
reasons for still growing importance of Power Quality 
(PQ) indices [3],[4], [5]. Nevertheless, it seems advisable 
to make logical interconnection between equipment 
malfunction and severity of different disturbances 
interfering at a time and not only observe power quality 
indices one by one. In some cases it is not necessary to 
install sophisticated PQ enhancement devices, because 
the load does not suffer from a specific disturbance even 
higher then allowed in standards. On the contrary, 
superposition and interference of different disturbances 
which are within limits given in standards may cause 
malfunction or damage of appliances.  

This paper proposes a method for a multi criteria power 
quality assessment applying a neuro-fuzzy system to 
handle the dependency between superposition of different 
disturbing phenomena and specific device susceptibility 
to disturbances. 
Neural networks have the ability do learn and to adapt, so 
they seem flexible enough to be applied to parameterize 
an adaptive fuzzy system. Fuzzy logic interference 
algorithm [6] may be successfully applied to handle the 
dependence between numerous superimposed 
disturbances and an unique susceptibility pattern. It was 
successfully applied for classification in the past [7],[11]. 
Further, there is a proposal of incorporating the values of 
reactive power and distortion power as PQ indices into 
the multi criteria assessment. 
The authors aimed to evaluate the applicability of a 
neuro-fuzzy system for bundling or in other words for 
joined  of disturbing phenomena.  
 
2. Neuro Fuzzy System 
 
Fuzzy logic is seen as an extension of binary Boolean 
logic [8], [9]. 
In many situations the assumption of crisp membership 
or non-membership of an element x to set A is too 
restrictive. Contrary to a classical set a fuzzy set is a 
model in which the transition from membership to non-
membership is gradual rather than abrupt [10]. Such a 
transition is usually characterized by membership 
function. A membership function is a curve that defines 
how each point in the input space (sometimes referred as 
the universe of discourse) is mapped to a membership 
value between 0 and 1. Fuzzy sets proposed by Zadeh are 
uniquely described by their membership functions. A 
fuzzy set A in the universe of discourse U is defined as a 
set of ordered pairs:  

AA {x,   (x)  x U}= µ ∈  (1) 

where A (x)µ  is the membership function of x in A. 
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Fuzzy logic systems have been developed based on 
Zadeh’s theory. These systems consist of a knowledge 
base and a reasoning mechanism called fuzzy inference 
engine [10]. The simple, general structure of a fuzzy 
system has four blocks (Fig.1) named fuzzification, fuzzy 
rule base, fuzzy inference engine and defuzzyfication [8]. 
A fuzzification has the effect of transforming crisp data 
into fuzzy sets. A fuzzy rule base consists of a collection 
of fuzzy if-then rules. A fuzzy inference engine combines 
these rules into a mapping from the input of the system 
into its output, using fuzzy reasoning methods. The 
defuzzification block extracts crisp value from the output 
fuzzy set. 

Fuzzy
Rule-Base

Fuzzy
Inference
Engine

Fuzzification Defuzzification
Input Output

 
Fig. 1.  Fuzzy system structure 
 
The basic problem in fuzzy system design is obtaining a 
set of fuzzy if-then rules [10]. For automatic fuzzy rules 
generation an artificial neural network was used as far as 
there was no expert knowledge to be used instead [11]. In 
the tests the adaptive neuro-fuzzy inference system 
(ANFIS) was utilized (Fig. 2), where only measurement 
information has been processed [12]. The fuzzy rules are 
implicitly acquired into the network itself. The 
parameters associated with the membership functions are 
tuned through the learning process. ANFIS uses a 
combination of least squares estimation and a back-
propagation algorithm for network parameters estimation. 
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Fig. 2.  Adaptive neuro-fuzzy inference system 
 
3. Power computation for nonsinusoidal 

currents 
 
Power factor or the amount of reactive power consumed 
by the end user is limited. Violation of limits causes 
financial penalties and technical problems, e.g. 
distribution line overload [5].  
The definition and computation of reactive power in case 
of nonsinusoidal voltages and currents is a matter of up-
to-date considerations. Several approaches has been 
proposed [13], [14]. 
 
The authors suggest the application of Budeanu approach 
to the multi criteria assessment of power quality [13]. 

A rectangular voltage and corresponding current in a RL 
branch has been chosen to present proposed method from 
analytical point of view. 
Firstly, the voltage (Fig. 3) may be defined by  
 

mU   for     0 t 0.5T
u(t)

0     for    0.5T < t T

≤ ≤
=  ≤

 (2) 

The voltage, deliberately with DC component and 
strongly distorted, is feeding a simplified RL branch 
(Fig.4) where R=50 Ohm, L=0.2 H. 
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Fig. 3.  Rectangular voltage with DC component 

 
Fig. 4 RL branch fed by a rectangular voltage u(t) 
 
Using the expression for the transfer function of the 
above branch (Fig. 4) 
 

I(s) 1
H(s)

U(s) R sL
= =

+
 (3) 

we can calculate the current  
 

I(s) H(s)U(s)=  (4) 
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Fig. 5.  Current in RL branch by rectangular voltage 
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In this particular case the expression for instantaneous 
current is a result of the computation of inverse Laplace 
Transform 
 

R
L

RT
2Lm

RT R
2L L

RT
2L

exp(- t)
1-             for   0 t 0.5T

1 exp(- )U
i(t)

exp( ) exp(- t)R
     for   0.5T < t T

1 exp(- )

 ≤ ≤ +=  ⋅ ≤
 +

 (5) 

Having the current (Fig. 5) and voltage (Fig. 3) as 
analytical functions we can calculate the Fourier 
components and apply 
 

n n nQ= U I sinϕ∑  (6) 

For the computation of reactive power and 
 

2N N N
2 2
n n n n n

n 0 n 0 n 0

2N

n n n
n 0

U I U I cos

D

U I sin

= = =

=

 − ϕ + 
 =

 − ϕ 
 

∑ ∑ ∑

∑

 (7) 

For the computation of distortion power. Fig. 6 and Fig. 7 
show the amplitudes of harmonic components used for 
the computation of Q and D values. 
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Fig.6 Harmonic content of the current in Fig. 5 
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Fig. 7  Harmonic content of the voltage in fig. 3 
 
4. Simulation Results 
 
Simulations were carried out to verify the ability of a 
neural networks to incorporate the knowledge of a 
artificial test device sensibility to overlaid disturbances.  
Randomly chosen values of disturbances has been chosen 
to assess the correctness of recognition in the sense of 

probability It should be stressed, that it was in the scope 
of research to find a flexible tool, capable of learning 
different sensibility patterns. This capability is important 
for further practical implementations in different 
environments. 
For the preliminary research the sensibility of devices 
was defined due to arbitral rules. In practice it should be 
determined in accordance to measurements of 
disturbances levels and devices malfunctioning rate. 
Neural network should distinguish between normal and 
abnormal condition of supply system (poor power 
quality). In uncertain cases there should be a proper 
indication of a “near missed” situation, which could lead 
to improper operation or damage (probabilistic sense). 
This property is an important advantage of fuzzy system. 
Verification of neuro-fuzzy flexibility and adaptability to 
equipment susceptibility pattern was tested using load 
pattern susceptible to transients and high order harmonics 
(e.g. capacitor banks, instrument transformers). The 
number of input values was intentionally reduced to four: 
19. and 21 harmonics (H19, H21), distorted power D, 
number of overvoltages. 
Table I shows names and arbitrary selected change 
ranges of input parameters, which were simulated for 
every 10 min. period and correspond (besides distortion 
power) to standard [1]. 
 

Table I –Power quality indices chosen for tests 
disturbance 

name 
disturbance level 

allowed  middle high 
19. harm. 

level 
0-1.0 % 1.0-1.5% 1.5-2.0% 

21. harm. 
level 

0-0.3% 0.3-0.5% 0.5-0.9% 

distortion 
power D 

0-10% - 10-20% 

overvoltages 0-9 10-17 18-30 

 
The equipment susceptibility was predefined and can be 
arbitrary described as follow: If 19. harmonic or 21 
harmonic are high (for details see Table I) abnormal 
operation will be expected. If two disturbances from 
three (H19, H21, overvoltages) are middle abnormal 
operation will be expected. If one disturbance from three 
(H19, H21, overvoltages) is middle and D is high also 
abnormal operation will be expected. On the contrary, if 
D is high and H19, H21, overvoltages are allowed normal 
operation will be expected. 
The error criterion was the difference between predefined 
value “0” or “1” and the network output value. This 
difference was seen as misclassification for all input 
values. 
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Fig. 8.  Erroneous classification histogram for 3000 probes 

https://doi.org/10.24084/repqj08.377 507 RE&PQJ, Vol.1, No.8, April 2010



The histogram of 3000 runs indicates that almost half of 
probes was classified without a smallest error. No probe 
was assigned totally false, with error equal to one. 
Selection of detailed results is presented in Table II. 
 

Table II –Results obtained with neuro-fuzzy system 
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1. 1.68 0.64 25 13.58 1 1.00 

2. 1.68 0.33 25 18.15 1 0.99 

3. 1.41 0.76 21 6.03 1 0.99 

4. 0.43 0.61 18 8.13 1 1.07 

5. 1.52 0.51 9 7.54 1 1.04 

6. 1.97 0.09 9 6.51 1 0.76 

7. 0.19 0.14 20 19.52 1 1.06 

8. 0.75 0.37 19 11.12 1 0.95 

9. 1.82 0.72 30 11.04 1 0.98 

10. 0.59 0.51 15 18.71 1 0.99 

11. 1.60 0.11 16 3.85 1 1.00 

12. 0.23 0.57 4 5.85 1 0.77 

13. 1.89 0.55 24 15.89 1 1.00 

14. 0.91 0.40 5 13.05 1 0.64 

15. 1.68 0.11 9 4.74 1 0.72 

16. 0.80 0.51 13 10.74 1 0.95 

17. 1.11 0.37 11 9.58 1 0.73 

18. 1.63 0.27 16 4.76 1 1.01 

19. 1.22 0.34 23 10.19 1 1.01 

20. 1.16 0.20 12 7.74 1 0.63 

21. 0.20 0.30 7 5.15 0 0.09 

22. 0.72 0.05 3 0.70 0 -0.14 

23 0.14 0.18 1 4.31 0 -0.16 

24 1.13 0.16 3 6.65 0 0.23 

25 0.50 0.37 3 8.77 0 0.30 

26 0.79 0.27 4 6.97 0 0.05 

27 0.85 0.31 8 6.99 0 0.25 

28 0.74 0.01 9 5.87 0 0.07 

29 0.12 0.26 1 8.65 0 -0.04 

30 0.26 0.28 8 0.52 0 0.07 

31 0 0.29 1 9.50 0 0.03 

32 1.02 0.20 8 1.71 0 0.18 

33 0.90 0.01 11 3.43 0 0.27 

34 0.44 0.35 3 1.86 0 0.17 

35 0.05 0.02 12 5.62 0 0.29 

36 0.51 0.07 9 3.69 0 0.03 

37 0.85 0.30 5 1.13 0 0.11 

38 0.58 0.19 4 4.43 0 -0.10 

39 0.40 0.36 9 7.88 0 0.37 

40 0.62 0.24 8 1.22 0 0.05 

Most cases, acorrdingly to the learning pattern, have been 
recognized correctly. In some situation there was 
ambiguity. For example in case 14 D is “high” and H21 is 
“medium”. Overvoltage and H19 are allowed. The system 
output - 0.64 – may be inerpreted as “danerous” to some 
degree, but rather not “disasterous”.  
 
5. Conclusion 
 
Important advantage of presented approach to power 
quality assessment is the reduction of data to be analyzed 
by a human system operator. The neuro-fuzzy analyzer 
matches logically different indices and gives as output 
one value describing the possible (probable) thread to 
electrical equipment. 
Disadvantageous in the descried procedure is the learning 
process, for which quite large amount of training vectors 
is required. 
Positive results encourage further research activities. 
Considered is comparison of the neuro-fuzzy system 
results with a different classifier (e.g. NN) and utilization 
of various sets of power quality indicia.  
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