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Abstract 
Power converters operated in unsymmetrical three-phase elec-
trical systems will generally work asymmetrically. This intro-
duces disadvantages for the operation of the electrical power 
system, like non-characteristic harmonics. In the case of con-
trollable power converters, such as thyristor converters, it is 
possible to operate the converter with asymmetrical firing an-
gles. This offers the opportunity to react on the system’s unbal-
ance optimizing the asymmetrical operation of the converter to 
lower the disadvantages. 
In this paper, a method is presented to calculate the behaviour 
of electrical equipment based on line-commutated current con-
verters. Thereby, the operation of the essentially non-linear 
system is described as sectional continuous linear problem. For 
its solution an approach with differential equations in the range 
of space-phasors is used. It is shown to be possible to optimize 
the unsymmetrical operation with respect to certain quality 
criteria by using unsymmetrical firing angles. 
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1.  Introduction 
 
Unsymmetrical loads, transmission lines and faults in 
three-phase electrical power systems can cause the mains 
voltage at the point of coupling to be unbalanced. 
Line-commutated power converters and similar electrical 
power equipment, like FACTS and HVDC converters 
operated with this unbalanced voltage, will work asym-
metrically. As this asymmetrical operation causes some 
drawbacks, such as the appearance of non-characteristic 
harmonics and higher distortion levels, it is worthwhile to 
calculate an optimized operation mode of the asymmetri-
cal current converter system. As the system’s parameters, 
the grade of unbalance and the desired DC-power are 
given and not changeable, the only possibility for an 
optimization is a modification of the firing angles. 
The aim is now to calculate optimal firing angles for a 
given system with a given grade of unbalance. Due to the 
unbalance, the optimal firing angels will be asymmetri-
cal. This optimization is calculated here with differential 
equations and space-phasors. Thereby, no requirements 
to the AC-line and DC impedances have to be complied 
with, except of linearity. In particular, this means that the 

AC-line impedance does not have to be negligible and 
may have a resistive part. The DC-network may have a 
non-infinite reactance, which corresponds to a rip-
ple-afflicted DC-current. Capacitive elements can be 
included both on the AC and DC side of the converter, 
which introduces the possibility to take filter into ac-
count. With this asymmetric control strategy, it is possi-
ble to optimize the converter’s operation with respect to 
various quality criteria, such as distortion of the 
DC-current, distortion of the AC-currents or the elimina-
tion of harmonics. 
 
2.  Formulation of the Problem 
 
Though the drafted approach is applicable for any arbi-
trary complex electrical power system and any n-pulse 
line-commutated current converter, it will be shown by 
means of a simple sample system consisting of a 
six-pulse thyristor bridge and unbranched AC- and 
DC-networks of ohmic-inductive type according to fig. 1. 
An unbalance is introduced through an unbalanced sinu-
soidal three-phase mains voltage up R,S,T  

( ) ( )ˆ cos ,pR pR pRu Uτ ωτ ϕ= +  (1) 

( ) ( )ˆ cos 2 / 3 ,pS pS pSu Uτ ωτ π ϕ= − +  (2) 

( ) ( )ˆ cos 4 / 3 ,pT pT pTu Uτ ωτ π ϕ= − +  (3) 

wherein in general is ˆ ˆ ˆ
pR pS pTU U U≠ ≠  and 

.pR pS pTϕ ϕ ϕ≠ ≠  

 
Fig. 1: Schematic diagram of the analyzed system 
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3.  Description with Space Phasors 
 
The problem is investigated with space phasors, which 
are defined for any time-dependent three-phase system 
vR,S,T (ω t) 

( ) ( ) ( ) ( )( )22

3 R S Tv t v t a v t a v tω ω ω ω= + +  (4) 

with a =e j2π / 3. To achieve a manageable description of 
the transient parts of the later stated differential equa-
tions, the calculation start angle ωt=0 refers to the be-
ginning of the conduction of thyristor 3. The phase of the 
mains voltage at that start angle is considered through a 
phase angle γ  according to 

( ) .tγ ω τ= −   (5) 

With this, the space-phasor of the unbalanced sinusoidal 
mains voltage in eq. (1) to (3) is of two pulse type  

( ) ( ), ,j jj( ) j( )
1 1e e e e ,a b a bt t

pu t Û Ûϕ ϕω γ ω γω + − +
+ −= +  (6) 

which causes the six-pulse current converter to work in 
an asymmetrical two-pulse operation mode. During one 
period of the two-pulse operation there are six conducting 
states of the current converter. Fig. 2 shows the active 
thyristors during these states. Herein, T(1,2,3) stands for 
the active thyristors 1, 2 and 3 and β1 is the angle thyris-
tor 1 stops conducting, which corresponds to the end of 
commutation. 
 
 
 
 
 
 
 

Fig. 2: Active thyristors during one two-pulse period 

The firing angels ϕ 1 and ϕ 2 and the phase angle γ are 
degrees of freedom, similar to the delay angle in a normal 
symmetrical six-pulse operation. These degrees of free-
dom will be used to control the quality of the asymmetric 
operation. In asymmetrical operation, the six states will 
generally differ in their duration. 
As the investigation is carried out in the range of 
space-phasors, the system has to be transformed into its 
space-phasor description for every conduction state. This 
is drafted here for the conducting state T(1,2,3), which is 
shown in fig. 3. 

upR

upS

upT

Zk

Ud

Zd

id

Zk

Zk

 
Fig. 3: System during conducting state T(1,2,3) 

With eq. (4) the current space-phasor of the network 
shown in fig. 3 is  

( ) ( ) ( ) ( )2

   T(1,2,3)

2
1 .

3 k di t a i t a i tω ω ω= − −  (7) 

Herein is 

( ) ( ){ } ( ) ( )( )3 1
Im  

2 2k R Si t a i t i t i tω ω ω ω= = −  (8) 

the commutation current, that only exists during the 
states with three conducting thyristors and is defined 
differently for each of these three states. The correspond-
ing space-phasor networks of the analyzed system for the 
conducting state T(1,2,3) are shown in fig. 4.  

Re{-a u p}
id

2
3+k dZ Z

2
3 dU Im{-a u p}

Zk

2
3 ki

 
Fig. 4: Space-phasor networks for state T(1,2,3) 

The space-phasor networks for the other five states are 
obtained similarly. Thereby, the conducing states with 
two active thyristors contain only one state variable. 
 
4.  Calculation with Differential Equations 
 
As the state variables of the investigated system are in-
ductor currents only, the current space-phasor includes all 
state variables and has to be continuous at every change 
of the conducting state. At the time β1 this is for example 

( ) ( )   T(2,3) 1    T(1,2,3) 10 0 .i t i tω β ω β= + = = −  (9) 

For ϕ 1, β 2, ϕ 2, β 3 and γ analogue equations can be stated. 
With the impedance operator  

d

d
Z R X

tω
= +   (10) 

the differential equations for every space-phasor network 
can be arranged. All in all, one gets six equations, one for 
every change of the conducting state. Herein, the current 
space-phasors are substituted according to eq. (7). That 
results in six complex equations, which can be separated 
into twelve real equations. In these, the currents are split 
into their steady-state (index s) and tran-
sient/homogeneous (index h) solutions, wherein the 
steady-state solution statements consist of an AC and a 
DC-current. This is shown here only for the equations 
derived from conducting state change T(1,2,3) to T(2,3) 
according to eq. (9) 

( ) ( ) ( )
( )

T(1,2,3) 1 T(2,3) 1 T(2,3) 1

T(1,2,3) 1 T(2,3) T(1,2,3)   ,
dh dh dsAC

dsAC dsDC dsDC

i i i
i I I

β β β
β

− =
− + −

 (11) 

( ) ( ) ( )
( )

T(1,2,3) 1 T(2,3) 1 T(2,3) 1

T(1,2,3) 1 T(2,3)

2
    2 .

kh dh dsAC

ksAC dsDC

i i i
i i

β β β
β

− − =
+ +

 (12) 

The steady-state and transient solution statements for all 
states with three conducting thyristors can be read out 
directly of fig. 4 with eq. (6) 
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( )
( )

( )

jˆ e
Re ,

2 / 3 j 2 / 3

at

dsAC

k d k d

U
i t

R R X X

ω γ ϕ

αω
+ +

=
+ + +

⎧ ⎫
⎨ ⎬
⎩ ⎭

 (13) 

,
3 / 2

d
dsDC

k d

U
I

R R
= −

+
  (14) 

( )
( )jˆ e3

Re ,
2 j

at

ksAC

k k

U
i t

R X

ω γ ϕ

βω
+ +

= −
+

⎧ ⎫
⎨ ⎬
⎩ ⎭

 (15) 

( ) ( )0

1

2 / 3
e   with   ,

2 / 3
dp t t k d

dh d

k d

R R
i t c p

X X
ωω − +

= = −
+

 (16) 

( ) ( )0

2 e   with   .kp t t k
kh k

k

R
i t c p

X
ωω −= = −  (17) 

For the states with two conducting thyristors analogue 
solution statements can be arranged. After separating the 
steady-state and transient solution statements as in 
eq. (11) and (12) the problem can be formed as matrix 

( )
( )

( )

1 1 1 2

1 2 3 1 2

9 12 1 2

, , ,

, , , , .

, , ,

c y

c y

β ϕ γ

β β β ϕ ϕ

β ϕ γ

⋅ =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

K

…

# #

…

 (18) 

Herein the left side contains the transient solutions, 
wherein the angles of conducting state changes β1 to ϕ 2  
appear in the coefficient matrix K as exponents of 
E-functions. The right side contains the steady state solu-
tions, that additionally depend on the phase angle γ. 
These steady state solutions can be separated into AC and 
DC-parts which leads to the following description of 
eq. (18) 

j

j

e
.

e
AC DC dU

γ

γ−
⋅ = ⋅ + ⋅

⎡ ⎤
⎢ ⎥
⎣ ⎦

K c Y Y  (19) 

This is solved by matrix multiplication 
j

1 1

j

e
,

e
T T T T

AC DC dU
γ

γ

− −

−
= +

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥

⎣ ⎦
c K K K Y K K K Y  (20) 

j
1 1

j

e
.

e
T T T T

AC AC AC AC AC AC DC dU
γ

γ

− −

= +
⎡ ⎤

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎣ ⎦

Y Y Y Kc Y Y Y Y (21) 

After inserting eq. (20) in eq. (21) and rearranging one 
gets 

j
 1  2

j
 2  1

e
.

e
d

a a b
U

a a b

γ

γ∗ ∗ ∗−
=

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (22) 

Because of the steady-state AC solution statements in 
eq. (13) and (15), this is a conjugate-complex system of 
equations, which results in a relation between the 
DC-voltage and the phase angle γ 

j 1  22 Re e .d

a a
U

b b
γ

∗

∗

+
=

+

⎧ ⎫
⎨ ⎬
⎩ ⎭

  (23) 

Herein the array elements a1, a2 and b depend on the 
angles of conducting state changes β1 to ϕ 2. After 
pre-electing the angles ϕ 1 and ϕ 2, the problem can be 
solved by presuming three commutation stop-angles β 1 to 

β 3 and calculating the phase angle γ with eq. (23). When 
the commutation stop-angles fit together, the twelve 
equations of eq. (18) are also satisfied. In the other case 
β 2 and β 3 have to be varied. This is done by computer 
favourably, whereas the commutation stop-angles of the 
idealized system can be used as an indication. For every 
matching triple β 1 to β 3, the time characteristics of the 
DC-current and the commutation current are calculable. 
From these, the time characteristics of the RST-values are 
obtained, which will now be illustrated by means of an 
example. 
 
5.  Calculation of an example 
 
Considered is a current converter for a 750V DC railroad 
system. The system is supplied by a 10kV/690V trans-
former with a rated power of 1600kVA. Its short-circuit 
voltage and short-circuit power losses are 

6%,ku =   (24) 

14, 96 kW .vkP =   (25) 

With this, the transformer is modelled with its 
short-circuit impedance. An unbalance is introduced by 
line R 

2ˆ 0, 95 690 V,   5 ,
3

pR pRU ϕ= ⋅ ⋅ = − °  (26) 

2ˆ 690 V,   0 ,
3

pS pSU ϕ= ⋅ = °  (27) 

2ˆ 690 V,   0 ,
3

pT pTU ϕ= ⋅ = °  (28) 

which leads to the following positive and negative se-
quences of the mains voltage space-phasor 

( ) ( )1 1
ˆ ˆ553,3 j15,5 V  and  10,1 j15,5 V.U U+ −= − = − + (29) 

The according voltage space-phasor is shown in fig. 5. 
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up(ωt)
up1(ωt)

 
Fig. 5: Voltage space-phasor and fundamental component 

On the DC-side a power of 900kW is desired, so the 
arithmetic average DC-current has to be 

, 1, 2 kA .DC ai =   (30) 

u p 
u p1 

Re{u p} [V] 

Im{u p} 
[V] 
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With these parameters, the drafted approach can be exe-
cuted. For every pair of ϕ 1 and ϕ 2, all currents and volt-
ages of the system are calculable, which is done here for 
a range of ϕ 1∈[50°; 60°] and ϕ 2∈[110°; 120°]. Knowing 
all currents and voltages all other parameters of interest 
can be calculated.  
 
A.   Optimization of the AC-line currents 
 
For an optimization of the asymmetrical operation with 
respect to the AC-line currents, fig. 6 shows the THD of 
the AC-line currents space-phasor within the range of ϕ 1 
and ϕ 2 mentioned above. The THD of the AC-line cur-
rents is minimal for ϕ 1=54,2° and ϕ 2=117,4°. With these 
firing angles eq. (23) leads to a phase angle γ =94,7°.  
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Fig. 6: THD of the AC-line currents space-phasor 

In table I, some optimization results together with the 
results derived from a classical firing method, voltage 
zero crossing (VZC), are assembled. Herein irms, iRST,rms 
and id,rms are the rms-values of the current space-phasor, 
the AC-line currents and the DC-current. 100HzÎ  is the 
amplitude of the DC-current’s 100Hz component. 

Table I: Parameters of operation for different firing strategies 

 VZC optimized 
THD AC 

minimized 
DC 100Hz 

ϕ 1  [° ]  61,7 54,2 52,6 

ϕ 2  [° ]  118,4 117,4 117,0 

γ  [° ]  92,0 94,7 95,4 

THD AC [%] 37,3 34,8 35,1 

i rms [A] 1424,4 1412,2 1412,7 

iR,rms [A] 934,4 1020,5 1040,2 

iS,rms [A] 989,3 977,0 975,4 

iT,rms [A] 1091,5 997,7 980,0 

THD DC [%] 24,5 20,7 20,8 

id,rms [A] 1236,2 1225,8 1226,0 

[ ]100Hz
ˆ  AI  236,4 39,5 1,89 

 

Fig. 7 shows the space-phasors of the AC-line currents 
for firing angles minimizing the THD of the AC-currents 
and for a VZC-depending firing method. The related 
AC-line currents are shown in fig. 8 and 9. Fig. 10 and 11 
show cut-outs of the frequency spectra. Besides a re-
duced distortion, optimizing the firing angles leads to 
more balanced AC-currents and reduced amplitudes of 
the non-characteristic harmonics.  
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Fig. 7: AC-current space-phasors for VZC and an AC-lines 

THD optimized firing strategy 
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Fig. 8: AC-line currents and fundamental component for an 

AC-lines THD optimized firing strategy 
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Fig. 9: AC-line currents and fundamental component for VZC 

firing method 
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Fig. 10: Frequency spectrum of the current space phasor (opt.)  
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Fig. 11: Frequency spectrum of the current space phasor (VZC)  
 
B.   Optimization of the DC-current 
 
Depending on the requirements of the application an 
optimization with respect to the DC-current is possible, 
too. This could be the minimization of its THD or the 
elimination of certain harmonics, for example. 
In this example an elimination of the DC-current’s 100Hz 
component is desired. Therefore, fig. 12 shows the ampli-
tude of the DC-current’s 100Hz component. For 
ϕ 1=52,6° and ϕ 2=117,0° it has is smallest amplitude of 
1,89A, which is equal to zero within the limits of the 
computational accuracy. 
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Fig. 12: Amplitude of the DC-current’s 100Hz component 

In table I some other characteristics for this firing strat-
egy are assembled. Fig. 13 shows the time-characteristics 
of the DC-current for an eliminated 100Hz component. 
Furthermore, it shows the arithmetic average DC-current 
iDC,a plus the DC 100Hz component, which is eliminated 
because of the optimization. 
The same time-characteristics are shown in fig. 14 for the 
voltage-zero-crossing firing strategy. 
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Fig. 13: DC-current for a DC-current’s 100Hz component 

minimizing firing strategies 
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Fig. 14: DC-current for VZC firing method  

At last fig. 15 and 16 show cut-outs of the spectra of the 
DC-current for an optimized firing strategy and the volt-
age-zero-crossing firing strategy. 
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Fig. 15: Frequency spectrum of the DC-current (opt.) 
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Fig. 16: Frequency spectrum of the DC-current (VZC) 

 
C.   Interpretation of the results 
 
In this example, it was shown to be possible to optimize 
the converter’s asymmetrical operation. Different opti-
mized firing angles can be calculated depending on the 
aim of the optimization. Though the voltage unbalance is 
rather small in this example it can be pointed out, that 
with the shown method of calculation by optimizing the 
firing angles, significant improvements on the con-
verter’s behaviour can be achieved. Though this is shown 
in this example only for the distortion of currents and the 
minimization of one DC-current harmonic, the unsym-
metrical operation can be optimized with respect to other 
criteria, too. This could be the minimization of certain 
harmonics of the AC and DC currents and voltages or 
methods for balancing the AC-lines voltage at the current 
converter’s busbar for example. 
 
6. Conclusion 
 
In this paper, a method to calculate the operation of 
line-commutated current converters with unbalanced 
voltage sources is presented. With differential equations 
in the range of space-phasors, it is possible to describe 
and calculate arbitrary complex three-phase electrical 
power systems with linear network impedances. 
Furthermore, with the presented method it is possible to 
optimize a converter’s unsymmetrical operation. This 
optimization is shown for a certain application of a DC 
railroad system. For this example it is proven that an 
optimization is worthwhile, even if the unbalance is 
small. 
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