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Abstract. This paper presents the use of Recursive 

Corrected Phase Wavelet Transform to track harmonic 

components (always present in Power Systems), in order to 

determine the fundamental frequency “as soon as possible”, to 

provide appropriate input values to a non-linear algorithm that 

can accurately approach in only one cycle the amplitude and 

phase of the fundamental frequency. This technique is useful in 

real-time synchrophasors applications, specially for load 
identification and characterization. Based on the deepest 

descend method, the algorithm has less computational effort in 

comparison with phased locked loop. 
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1. Introduction 

 
As the electric power grid continues to expand and as 

transmission lines are pushed to their operating limits, the 

dynamic operation of the power system has become more 

of a concern and has become more difficult to model 

accurately. In addition, in order to prevent wide scale 

cascading outages, the ability to control real-time systems 

is turning into a need [1].  

It is very desirable to be able to “measure” the system 

state, increase the refresh rate of the phasor estimators 

(amplitude, phase and frequency). The limit of doing this 

(without overlapping), is to make one estimation per 

fundamental cycle [2]. 

On the other hand, it is known that there are many 

different methods for tracking the spectral components, 

several papers discuss the use of Sliding Discrete Fourier 

Transform (SDFT) [3],[4]. Also, the SDFT has been used 

as a tool for visualization of time-varying harmonics and 

inter-harmonics, providing a better way to understand 

time dependent Power Quality (PQ) parameters [5]-[8]. 

Recent studies suggest that this kind of approach can help 

the detection and classification of events and be useful 

for load identification and characterization [9]-[10].  

The SDFT formally implements the Short-Time Discrete 

Fourier Transform (STDFT) and some classic papers 

present a complete comparison between the well-known 

windows in terms of their frequency domain properties 

[11]-[13]. In previous work [14], this comparison was 

reviewed, in order to choose a window that can assist to 

overcome the inherent limitation of rectangular window, 

for asynchronous sampling rate and/or presence of inter-

harmonics. Also propose the use of a polynomial (and 

frequency-dependent shape) sliding window, that 

formally implement the Recursive Corrected Phase 

Wavelet Transform (RCPWT), which can track the 

fundamental component in four cycles [10]. 

The input-output relationship of many devices should be 

described by a polynomial or Taylor series. This type of 

device are common in the electrical system and the non-

linear distortion generated by them, is always present, 

originating h order harmonic components of fundamental 

[15]. During a fundamental cycle, many cycles of 

harmonics has passed. With this characteristic, first 

estimating the harmonics frequencies is more effective 

than estimating the fundamental frequency, since the 

estimations converge more quickly when frequency 

dependent kernels are used. 

In this work we use the RCPWT as a tool to mainly 

determine: the frequency of a high order harmonic, the 

frequency of fundamental component and finally, using 

an adapted deepest descent method, find the phase and 

amplitude of the fundamental component. 

 

2.  The Recursive Phase Corrected Wavelet 

Transform  
 

Unlike the SDFT, when using Gaussian Window (GW) 

as a sliding window, its additional parameterσ (standard 

deviation parameter) allows shape modification 
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according to the inverse of the frequency [16]. Choosing 

the standard deviation parameter properly, the 

convergence time for trace spectral components can be 

reduced as the tracking frequency increases; it makes 

frequency-dependent windows, like GW, more attractive. 

Moreover, to achieve efficiency, the GW should allow a 

recursive implementation, a classic way to obtain this, is 

through the IIR-filter representation; but as a closed form 

for GW in the z-domain doesn’t exists, some authors 

propose the use of polynomial approach [17]-[19]. The 

GW can be approximate by many different techniques 

[20], but in general they need non-causal filters which the 

implementation can compromise the real time 

requirements. Moreover, it has been recently published a 

work that gets similar results to a GW, through the 

implementation of the RPCWT [10], using a polynomial 

window. The main advantages of polynomial windows 

are the low computational complexity and ability to 

easily change their frequency response modifying the 

values of their coefficients in the time domain [21]. 

The “instantaneous spectra” (1) can be estimate through a 

complex demodulation followed by a convolution (the 

equation are in continuous domain, for simplicity, 

because it is more compact in this way). The analytical 

deduction of the Polynomial Window and its discrete 

recursive implementation was introduced in [10]. 
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Where )(τx is the voltage signal at τ time, fn is the 

tracking frequency, 1−=j  and ( )nftg ,  is the window 

function defined as:    
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To be an "admissible" RPCWT Kernel, 3/2π=o [16]. 

  

From the obtained complex numbers in (1), it is possible 

to determine the estimation for the instantaneous 

amplitude and phase. Using the definition in [22] the 

instantaneous frequency can be found from the derivate 

of the instantaneous phase:  
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3. The adapted deepest descent method 

applied  

 
Be �[�] a sampled voltage signal of the power grid: 

 

�[�] =  ��	
�2
���� + �� + �[�] (4) 

 

Where �[�] includes the effect of all the harmonics, 

inter-harmonics, transients and noise. �, �, � are 

amplitude, frequency and phase of the fundamental 

component, respectively; m is the sample index, Ts is the 

sampling time. 

Let ��, ��, ��  the amplitude, frequency and phase 

estimations of the fundamental component and 

����, ��, �� � the residual error in one cycle of the 

fundamental component defined as follows: 

 

����, ��, �� � = � − ���	
�2
����� + �� �  (5) 

Where:  

� = ��[�] … �[� +  − 1]"#
,  

� = �$[�] … $[� +  − 1]"#
,  

 � = [� … � +  − 1]# 
 

The estimations are optimal %��, ��, ��&'when the residual 

error has its minimum mean square error (MSE) value: 

 

(%��, ��, ��&' ≈ *�, �, �+  , �-./012 3456%����, ��, ��  �&7  (6) 

 

The function 456*���, �, � �+ can have many local 

minima which turns the search for the optimal solution a 

heavy computational task.  

The Fig. 1, Fig. 2 and Fig. 3 show the surface of the MSE 

with at least one parameter remaining constant and 

varying the other two: (MSE*e�A, f, φ �+?@AB'CDE (MSE*e�A, f, φ �+?FAB'CDE  and (MSE*e�A, f, φ �+?GAB'CDE  
respectively, for a distorted synthetic signal x[m].  

 

�[�] =  1. c	
�2
60�� � + 40'� + �[�]          (7) 

 

where v[m] contains 3
th

 to 13
th

 harmonics with different 

(and random) amplitudes and phases. Ts = 1/7680 s. 

 

The frequency remaining constant (as in Fig .1) is the 

only case that the MSE does not have local minima. 

Considering that the frequency of the fundamental 

component is known, the search for the optimal 

estimations for � and � becomes a simple task, because 
(456*���, �, � �+?M≈M�  has a unique global minimum. To 

find the best estimations in a few iterations, with the 

steepest descent method, it is very desirable to start with 

initial values near to the optimal ones. 

 
Fig. 1.  Mean Square Error, for fixed Freq. (MSE*e+?@AB'CDE 

38

40

42

44

0.5

1

1.5
0.25

0.3

0.35

0.4

0.45

0.5

Phase[deg]

Varying: Phase and Amplitude, Constant: Freq= 59.7[Hz]

Amplitude[pu]

M
S

E
(e

rr
o
r)

https://doi.org/10.24084/repqj08.331 367 RE&PQJ, Vol.1, No.8, April 2010



Fig. 2.  Mean Square Error, for fixed Freq. { }
constA

eMSE
=

 

 

Fig. 3.  Mean Square Error, for fixed Freq. { }
const

eMSE
=ϕ

 

 

4. Description of the overall system 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 resumes the three mains algorithms (#1, #2, #3 

from the left to the right). 

When the algorithm #1 starts, the first step is to track the 

frequency of the 5th
 harmonic (h=5) using the discrete 

version of RCPWT (1). This operation can be done 

directly by complex demodulation following by linear 

convolution (1) and thereafter, the instantaneous 

frequency is estimated using (3). In [10] these procedures 

are described in discrete domain. 

This global procedure is repeated until the number of 

samples reached the number of points per cycle (Nppc) of 

the nominal fundamental frequency. Then, instantaneous 

frequency of the 5th
 harmonic are averaged over the cycle 

period and divided by 5, in order to get the fundamental 

estimation ( f
~

). 

The algorithm #2 (Fig. 3) describes the procedure to 

estimate amplitude and phase of the fundamental 

component. The first step of the algorithm is to determine 

the zero crossing point of the x[m] signal. If the zero 

crossing occurs from negative to positive we define a 

first approximation phase as zero ( 0=iϕ ) otherwise we 

define as 
 ( πϕ 2=i ).  

After that, the algorithm waits for one complete cycle of 

the signal to run the estimator (algorithm #3). 

Meanwhile, the phase approximation is incremented by δ 

for each point until the signal reaches a complete cycle. 

The δ is calculated according to (Nppc = points per cycle): 

    
ppcN/2πδ =   (8) 

The estimator algorithm (algorithm #3) receives as 

parameters the frequency approximation ii ff
~

= , as 

calculated in algorithm #1, the phase approximation iϕ
and the amplitude approximation Ai defined as the rms 

(root mean square) value of x[m] signal.  
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Fig. 4.  General view of the three main algorithms, exemplifying the proposed scheme 
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Then it returns the estimated values for amplitude (Ã) and 

phase (��) of the fundamental. 

The algorithm #3 describes the amplitude and phase 

estimator. At the beginning of the algorithm, five 

parameters must be set: amplitude, phase and frequency 

values calculated in algorithms #1 and #2 and tolerance 

values for amplitude (N	OP) and phase (N	OQ).  The last 

two parameters are needed to reduce the search range. 

The estimation of phase is run first. The values of 

amplitude (Ai) and frequency (��) are kept constant and 

the phase (�R) varies. The phase starts at �R = �S − N	OP 

and ends at �R = �S + N	OP, where p represents the 

iteration index. 

  The MSE (mean square error) is calculated for each �R 

until a minimum value is found. The first approximation 

of the phase parameter is a good approximation so the 

search is done only near the optimal point, reducing the 

time spent on search. The algorithm stops search when 

the difference between the MSE value for the present and 

the last phase is positive, indicating the optimal value 

was found. The phase estimation is set as �� = �RTU.  

The estimation of amplitude runs the same way the 

estimation of phase. The initial values of phase (��) and 

frequency (��) are set constant and the amplitude (Ap) 

varies. The phase varies from �R = �S + N	OQ to �R =
�S − N	OQ, where p represents the index of amplitude. The 

algorithm stops search when the difference between the 

MSE value for the present and the last amplitude is 

positive, indicating the optimal value was found. The 

amplitude estimation is set as �� = �RTU. 

 

5. Experiments and Results 
 

Many synthetic signals were used for performance 

evaluation, all of them with f=60Hz and low SNR as 

15dB, under different distorted condition.  To graphically 

illustrate the Fig. 5 represents many of them. 

Also, some real data from IEEE database [23] was used 

too. To graphically illustrate, the Fig. 6 represents many 

of them. The sampling frequency was Fs=7680Hz, 128 

point per cycle, Ts=1/ Fs. 
The synthetic signal, in Fig. 5, is defined as: 

 

�[�] =  1c	
�2
60�� � + 40'� + 

0.2c	
�2
300�� � + 8'�          (9) 

 

With an overall fall (sag) from x[m] to x[m]/2 at m=600 

and overall up (swell) two cycles after. 

The real signal in Fig. 6, is full of time-varying 

harmonics. The Phasor Estimation (algorithm #2,#3) for 

every cycle of the fundamental component are shown in 

Table I. It is clear that for the x signal the error remaining 

is less than 0.2%. The performance was significantly 

reduced during transients, and the estimation shows out 

of range deviations and must be flagged. This procedure 

is out of the scope of this work and will be omitted. 

During tests the authors uses an EPLL (enhanced phase 

locked loop) based on filter bank proposed in [24] for 

computational effort comparative purposes. The EPLL 

must be fine tuned previously with tree convergence 

parameters according to the sampling rate. On the 

proposed technique the only design parameter is the 

desired tolerance, and it is independent of the sampling 

rate.        

Also, in the EPLL the number of math operations and 

table searching are greater than the proposed non-linear 

technique for the same number of points per fundamental 

cycle, as showed in Table II for tracking (9).   

 

 
Fig. 5.  Synthetic voltage signal x[m] and the frequency 

estimation of its 5th harmonic (algorithm #1). 

 

 
Fig. 6.  Real voltage signal y[m] and the frequency estimation 

of its 5th harmonic (algorithm #1). 

 
Table I. – Phasor Estimation for a synthetic signal x, and for a 

real signal y.  

CYCLE  

NUM 

FREQUENCY AMPLIT. PHASE 

x  y x y x Y 

1 58.48 60.20 .97 1.116 40.1 18.39 

2 60.01 62.10 1.0 0.896 39.8 18.18 

3 60.02 59.22 .982 1.106 39.9 17.75 

4 59.99 59.99 .991 1.116 40.3 17.48 

5 59.96 59.67 .988 1.116 39.7 17.04 

6 59.99 59.83 .987 1.116 39.7 16.77 

7 60.01 61.18 .487 1.056 37.5 18.33 

8 59.81 60.09 .498 1.076 39.3 18.18 

9 60.17 59.25 .508 1.026 39.5 17.75 

10 59.99 59.99 1.02 1.106 40.8 17.48 

11 60.00 59.67 1.01 1.096 40.2 17.04 

12 60.03 59.80 .987 1.106 40.4 16.78 
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Table II. – Comparative computational effort for the proposed 

technique and EPLL based [24], for Fs=7680Hz.  

OPPERATION METHOD 

EPLL  Algorithms #2,#3  
Addition   640  384  

Multiplication 896  512 

cos, sin  function 256  128 

 

The computational effort of algorithm #1 has not been 

showed on Table II, because it is highly dependent of the 

implementation method of the IIR filtering. 
 

 

6. Conclusion 
 

This work has shown a technique based on the Recursive 

Corrected Phase Wavelet Transform to track harmonic 

components, in order to determine the fundamental 

frequency, to provide appropriate input values to a non-

linear algorithm that can approach the fundamental 

phasor. This research showed that the choice of the initial 

values of the estimations reduce drastically the number of 

iterations to reach convergence, and has proposed 

methods to determine near-optimal guessed values. The 

algorithm presents some limitation during transients, in 

this cases flagging is recommended, future work will deal 

with this issue. The method presents good results and can 

be useful in synchrophasors applications, and/or load 

characterization.  
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