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Abstract. The presence of photovoltaic power systems is 
currently increasing as green power sources, and quasi-Z-source 
inverters are commonly used to connect them to AC grids. 
However, stability concerns can appear due to inverters. Several 
studies address these concerns but they are not completely solved 
yet. This paper contributes with a simulation study about stability 
of AC grid-connected quasi-Z-source inverter-based photovoltaic 
power systems. The study is based on the PSCAD/EMTDC 
model of these systems and analyzes the influence of system 
parameters on subsynchronous and harmonic instabilities. 
Several solutions to improve these instabilities are discussed.  
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1. Introduction 
 
Photovoltaic (PV) power systems are currently used as 
sustainable power sources [1] – [3]. These systems are 
formed by single- or two-step converters. The latter 
topology is more common, [4], [5], but the former is 
becoming increasingly used. Among this type, we find 
quasi-Z-source inverters (qZSIs) [6] – [9]. These inverters 
have a semiconductor, capacitor and inductor DC circuit 
with buck-boost options [6], [10] – [15] 
AC grid-connected qZSI-based PV power systems can 
have stability problems due to the interaction between 
converters and the AC grid. Several authors analyze this 
concern in the two-step converter configuration, 
concluding that changes in control, temperature and 
irradiance can worsen system stability [3], [10], [11], 
[16] – [19]. The qZSI dynamics [6] – [8], [10] – [12], [15] 
and qZSI-based PV power system stability [18] – [24] are 
also investigated, but AC grid-connected qZSI-based PV 

power system stability has not been completely analyzed 
yet. Various AC-side admittance-based matrix 
approaches are proposed to assess multi-terminal AC 
grid-connected converter stability in the s-domain (e.g., 
eigenvalue analysis [25] – [27]), and in the frequency 
domain (e.g., Generalized Nyquist Criterion [28] – [33]).  
This paper studies AC grid-connected qZSI-based PV 
power system stability using the PSCAD/EMTDC model, 
and several simulations are made with it. The causes of 
instability and possible solutions are discussed. 
 
2. PSCAD/EMTDC model of AC grid-

connected qZSI-based PV power systems 
 
Stability of the AC grid-connected qZSI-based PV power 
system in Fig. 1 is studied from its PSCAD/EMTDC 
implementation.  
The qZSI-based PV power system is connected to a filter 
capacitor Cf and an AC grid. It has a PV plant (formed by 
Np parallel strings of Ns PV cells in series, the capacitor 
Cp and the DC cable resistance Rc [2], [4]) feeding the 
qZSI [6] – [9], which boosts the output DC voltage at the 
VSI input. The PV plant is modeled with its equivalent 
circuit derived from the linearization of the I-V curve of 
the PV panel around the MPP [4], [23], [24]. The AC 
grid is characterized by the short-circuit inductance Ls 
and the supply AC voltage es to be able to represent the 
connection of the qZSI-based PV power system to the 
weak parts of the grid. 
The controls of the qZSI-based PV power system, i.e., 
MPPT, PV voltage, current and duty cycle controls, are 
also shown in Fig. 1. Maximum power of the PV plant is 
obtained by the MPPT algorithm [4], [23] and voltage 
control of the PV plant. The current control of the VSI 
imposes the power delivered from the PV plant to the AC 
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grid [6]. The qZSI duty cycle control adjusts the DC peak 
voltage at the VSI terminals [6], [12]. 
The PSCAD/EMTDC implementation of the AC grid-
connected qZSI-based PV power system is shown in 

Fig. 2. The PSCAD/EMTDC model is formed by the 
power modules of the qZSI-based PV power system and 
AC grid (see Fig. 2(a)), and the four controls in the qZSI-
based PV power system (see Fig. 2(b)). The components 
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Fig. 1. AC grid-connected qZSI-based PV power system. 
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Fig. 2. PSCAD/EMTDC model of the AC grid-connected qZSI-based PV power system: (a) power circuit; (b) control circuit. 
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of the PSCAD/EMTDC model in Fig. 2 can be identified 
with the elements of the qZSI-based PV power system in 
Fig. 1 by the colour code and the labels. All the 
components used to build the PSCAD/EMTDC model are 
from the PSCAD library. 
PSCAD/EMTDC time domain simulations with the circuit 
in Fig. 2 make it possible to check the influence of circuit 
parameters on the dynamic behaviour of AC grid-
connected qZSI-based PV power systems, assess system 
stability and test solutions for improving stability issues. 
These simulations were carried out using 2 µs time step. In 
order to increase simulation efficiency, a snapshot file was 
created when the circuit reached its steady-state operation 
point, and this file was used in subsequent simulations in 
order not to have to simulate the initial transient every time 
and speed up the analysis. 
 
3. Frequency domain response of the qZSI-

based PV power system 
 

The frequency response of the pn-sequence domain 
admittance transfer matrix terms of the qZSI-based PV 
power system allows the influence of this system on AC 
grid-connected qZSI-based PV power system stability to 
be analyzed. This frequency response can be obtained 
from PSCAD/EMTDC simulations made with the model 
proposed in the previous Section. Based on these 
simulations, a qZSI-based PV power system with a PV 
panel supplying a 0.1 MW 1 kV DC PV power system 
connected to a strong 400 V AC grid is studied (see data in 
Table I). It must be note that a strong grid is only made for 
the validation of the model while a weak grid is considered 
in one of the examples of the next Section. 
The pn-sequence domain admittance transfer matrix terms 
are characterized by two independent PSCAD/EMTDC 
simulation tests, where frequency domain analysis is 
performed with the FFT of the involved voltages and 
currents [35]. In the tests, a series small-signal harmonic 
perturbation of p- and n-sequence voltages, Up and Un, of 
frequencies fp and fn is applied to the qZSI-based PV 
power system in Fig. 2. Because of these voltages, the 

qZSI-based PV power system consumes p- and n-
sequence currents, Ip and In, of frequencies fp and fn = fp –
 2f1 (mirror frequency) in the p-sequence test with Up, 
and frequencies fp = fn + 2f1 (mirror frequency) and fn in 
the n-sequence test with Un. Finally, the pn-sequence 
domain admittance transfer matrix terms of dq-complex 
domain frequency f = fp – f1 (in the p-sequence domain 
test with Up) and f = fn + f1 (in the n-sequence domain test 
with Un) are calculated as follows: 
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The frequency response of the pn-sequence domain 
admittances is shown in Fig. 3. This response reveals two 
important issues of qZSI-based PV power systems (see 
Section 4): 
• They have a resonance frequency (e.g., at 153 Hz in 
Fig. 3) which could cause harmonic oscillatory 
instabilities of the qZSI-based PV power system at this 
frequency if this resonance is undamped [24].  
• They have a negative-damping region (see Fig. 3) 
which could lead to subsynchronous resonance 
instabilities of AC grid-connected qZSI-based PV power 
systems if there are system resonances in this region. 
 
4. Examples  
 
 Stability of AC grid-connected qZSI-based PV power 
systems is analyzed by PSCAD/EMTDC time domain 
simulations with the model in Section 2 and the data in 
Table I. The network with a 0.1 MW 1 kV DC qZSI-
based PV power system in Fig. 1 is connected to a VSC 
filter capacitor Cf = 100 µF and a 400 V 50 Hz AC grid 
with a short-circuit ratio SCR equal to 20. The examples 
show stability problems in AC grid-connected qZSI-
based PV power systems. Three cases are studied 
• Case #1: this is the stable reference case, which 
corresponds to the PV power system steady-state 

  Table I.- qZSI-based PV Power System Data 
(UN = 1 kV DC, PN = 0.1 MW)  

 Parameters Data 
PV cell [2] G, T 0.5 Sun, 25ºC 

PV 
installation 

Np, Ns 55, 42 
Rc, Cp 0.0667Ω, 10 mF 

qZSI source 
network 

L1 = L2, r1 = r2 0.3 mH, 0.011 Ω 
C1 = C2, R1 = R2  3 mF, 0.006 Ω 

VSC Lf 0.4 mH  
MPPT 
control km

p, km
i  0.01 Ω, 0.5 Ω/s 

PV control kpv
p, kpv

i  1.8 Ω–1, 75 Ω–1/s 

CC control kcc
p, kcc

i  0.424 Ω–1, 150 Ω–1/s 
αf = 0.1· kcc

p /Lf 106.1 rad/s 

D control 
(D = 0.06) 

V *
dc, p 800 V 

kdc
p, kdc

i  0.016 V–1, 75 V–1/s 
kL

p  10–4 A–1 
NOTE:   All variables are defined in Figs. 1 and 2 
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Fig. 3. PSCAD frequency response of the pn-sequence domain 
admittance transfer matrix of qZSI-based PV power systems. 
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operating point with G = 0.4 Sun, T = 25º C and SCR equal 
to 20. 
• Case #2: the irradiance level G is stepped up from 0.4 
to 0.8 Sun to study its influence on stability. 
• Case #3: the SCR is stepped down from 20 to 3 to 
study instabilities due to weak AC grids. Note that this is 
an interesting example because the location of the PV 
plants often forces the VSI to be interconnected in the 
weak parts of the grid. 
System stability in the above cases is studied with the 
PSCAD/EMTDC simulations in Fig. 4. The AC grid-
connected qZSI-based PV power system is stable in 
Case #1 but becomes unstable when the parameter G 
reaches a value of 0.8 at 1.8 s and the parameter SCR  
decreases to 3 at 1 s. The frequency of the unstable 
oscillations captured by the PSCAD/EMTDC simulations 
is fosc ≈ 155 Hz when G is stepped up (Case #2) and 
fosc ≈ 35 Hz when SCR is stepped down (Case #3). In 
Case #2, the AC grid-connected qZSI-based PV power 
system has a harmonic instability because the parallel 
resonance of the qZSI-based PV power system in Fig. 3 is 
undamped [24]. In Case #3, the AC grid-connected qZSI-
based PV power system has a subsynchronous instability 
due to the interaction between the weak AC grid and the 
negative-damping region of the qZSI-based PV power 
system at subsynchronous frequencies (see Fig. 3).  
The harmonic instability in Case #2 can be improved by 
increasing the DC-link peak voltage Vdc, p because it damps 
the qZSI-based PV power system resonance in Fig. 3 [23], 
[24], restoring AC grid-connected qZSI-based PV power 
system stability. This is verified in Fig. 4, where the step 
up of the DC-link peak voltage Vdc, p from 800 V to 1000 V 
at 2.75 s enables system stability recovery. The 
subsynchronous instability in Case #3 can be improved by 
decreasing the bandwidth αf of the current control 
feedforward filter (see Figs. 1 and 2) because this reduces 
the negative-damping region of the qZSI-based PV power 
system admittances in Fig. 3 [23], [24], and the harmonic 
resonance due to the weak grid is damped. This is verified 
in Fig. 4, where the step down of the bandwidth αf from 
106.1 rad/s to 95.5 rad/s at 1.2 s enables system stability 
recovery.  
 
4.  Conclusion 
 
This paper studies subsynchronous and harmonic 
instabilities of AC grid-connected quasi-Z-based PV 
power systems by PSCAD/EMTP simulation. The 
PSCAD/EMTP model of the AC grid-connected quasi-Z-
based PV power system is proposed and several examples 
are developed to study the origin of and possible solutions 
to instabilities. It is concluded that (i) the increase of 
irradiance level in the PV panels can lead to harmonic 
instabilities due to qZSI-based PV power system 
instability; (ii) the decrease of the SCR can lead to 
subsynchronous instabilities due to the interaction between 
the weak grid and the qZSI-based PV power system. The 
former is mitigated by increasing the DC-link peak voltage 
and the latter is improved by decreasing the bandwidth of 
the current control feedforward filter. 
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