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Abstract  
 
We report on a method to predict wind speeds up to 24 hours 
ahead using a technique originating in Dynamical Systems and 
Chaos theory using a signal processing technique known as 
Singular Systems Analysis. 
 
The method predicts wind speeds based on a set of previous 
measurements which were used to construct an attractor in an 
optimally defined phase space as a ‘training set’. Current wind 
measurements can then be projected to onto that phase space to 
find most similar previous measurements.  By tracing the 
evolution of these similar previous data, it is possible not only 
to forecast the wind speed but also to obtain a measure of the 
expected forecasting uncertainty. 
 
The method was applied to a set of hourly wind speed data from 
a UK Meteorological Office weather station near Edinburgh.  A 
comparison with a simple persistence prediction showed that 
the Singular Systems Analysis was both, consistently better at 
predicting wind speeds between 12 and 24 hours ahead than 
persistence, and also able to provide a meaningful forecasting 
uncertainty. 
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1. Introduction 

 
Wind energy is one of the most established renewable 
energy forms. It has also the characteristic of a strongly 
intermittent form of energy with a large variability hence 
good wind resource assessement is of vital importance. 
The methods of analysis and prediction of wind 
behaviour are indeed of extreme importance for a good 
resource assessment.  
Forecasting is an aspect of wind energy which has been 
under great investigation. It is associated with short-term 

prediction of wind speed. The forecasting horizons can 
be divided into the three following categories: 1) 
immediate-short-term (8hours-ahead),2) Short-term (day-
ahead) and 3) long-term (multiple-days-ahead) 
forecasting [1]. Several forecast models have been 
developed which can be categorized into physical, such 
as the Numerical Weather Prediction systems (NWPs), 
statistical, including linear methods such Auto 
Regressive Moving Average models (ARMA) or 
methods coming from artificial intelligence and machine 
learning fields such as Artificial Neural Networks 
(ANNs) [2] or even by hybrid approach methods which 
are a combination of statistical and physical methods 
with a use of weather forecasts and analysis of time 
series[1]. 
 
Factors such as the seasonality, time-of-day changes and 
weather systems are essential to be identified in terms of 
wind energy forecasting. The wind related data could be 
treated as dynamical systems so that cycles and random 
unusual behaviours that often characterise them can be 
identified, explained and understood. For example, for 
mean daily or hourly wind speed forecasts, i.e short-term 
horizon, the underlying atmospheric dynamics become of 
great importance. [3]. Thus the need of the creation of a 
tool that is capable of identifying trends, climate cycles 
and true outliers becomes vital.  
 
Principal Component Analysis (PCA) is a statistical 
technique to identify dominant patterns of behaviour or 
response [4].  It is also known as Empirical Orthogonal 
Function (EOF) Analysis in the Meteorological and 
Oceanographic community to identify the main 
circulation patterns in the atmosphere and oceans, e.g. 
[5,6].  The application of the technique to time series is 
also known as Singular Systems Analysis (SSA) [7] 
which applies PCA to a time series matrix generated 
from measurements using Takens’ method of delays [8].   
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This technique is now widely used for time series 
analysis of nonlinear dynamical systems in general and 
meteorology in particular, e.g. [6,9,10] as the analysis is 
very powerful to separate coherent dynamics from noise 
and it decomposes the measurements into an underlying 
invariant ‘attractor’ on which the dominant parts of the 
dynamics evolves, as well as a spectrum of the time-
averaged contribution to the dynamics from the different 
attractor components 
 
2. Forecasting algorithm 
 
A dynamical system is used to model physical 
phenomena whose state (or instantaneous description) 
changes over time [11]. It is an approach to describe the 
behaviour over time of a system based on position and 
momentum in each direction, called a phase space. With 
complex systems one has to re-construct an equivalent to 
the phase space [7]. Other important definitions which 
involve dynamical systems are: the phase space which 
describes the system’s variables, the attractor which 
defines the actual solution of the system and finally the 
orbit which is the path that the system follows during its 
evolution.  
 
Furthermore, a method is needed to define equivalent 
variables to the ones of the phase space which is the time-
delay method. It is a practical implementation of the 
dynamical systems since it aids in reconstructing the 
phase space of a dynamical system from an observed 
deterministic time series.  The reconstruction of a phase 
space is indeed significant since it can extract useful 
information about the time series that characterises the 
system. Since the time-delay method is sensitive in the 
choice of the parameters that it uses for the analysis, 
Principal Component Analysis (PCA) comes of use 
which can optimize phase space reconstruction. It is a 
non-parametric statistical method and by that is not 
limited to be of a certain distribution or linear 
relationship. PCA can separate noise from useful 
information applied to time-delay series [10]. It can also 
identify the number of needed time-delays and give a 
picture of their shape. Its goal is to explain important 
variability of the time series data and to extract useful 
information (i.e. hidden structures of the data) from its 
more relevant components in a reduced number of 
dimensions.  
 
The mathematical procedure to carry out a PCA is 
through the Singular Value Decomposition (SVD) of the 
delay matrix.  The three SVD/PCA outputs are the 
singular values, which measure total contribution of each 
dimension to total variance, the singular vectors which 
represent the dimensions and optimum phase space 
reconstruction and the principal components (PCs) which 
form an attractor and describe the system’s time series 
and separate important variables from noise.  In matrix 
notation, the singular value decomposition is written as 

SPY Λ=      (1) 

where Y n,m( )  is the time-delay matrix with n  the 

number of time points within time series and m the 
number of columns. If a delay matrix is constructed from 

the time series of a single variable, m  is the number of 
delays.  If a delay matrix is constructed from k  different 
variables using mw  delays, then m = kmw . P n,m( ) is 

the principal component matrix, Λ m,m( ) is the diagonal 

matrix of singular values and S m,m( )  contains the 

eigenvectors.   
 
The singular values represent a measure of the variance, 
more specifically the square root of the variance of the 
time series in corresponding dimensions and they can 
pick out the important variability of the data. The 
eigenvectors have the property of being orthonormal, i.e. 
orthogonal and of unit length and they span the 
dimensions of the phase space. They represent a measure 
of those dimensions that define a dynamical system, for 
instance they can replace position and momentum, two 
variables which can form a dynamical system.  
 
When PCA is applied to the time-delay matrix, PC’s are 
the time series of the coordinates of that trajectory in 
respect of these dimensions. PC’s can replace the values 
of the position and momentum at any time.  In more 
detail, this dynamical system’s position of the 
reconstructed phase space can be given at any time 
precisely by position and momentum however when PCA 
is applied the PC’s take over this role. Since there exists 
an eigenvalue matrix in PCA analysis it should be noted 
that both eigenvectors and PC’s are normalised i.e. scaled 
to the amplitude of the dimensions used by PCA.	  	  
 
The training period has resulted in zero-shifting of the 
observable by, using the velocity as the example, its 
arithmetic mean, Um = u , and a scaling by its standard 

deviation, uσ . The delay matrix is built up by choosing a 

sampling interval,τ , and a window length of Mw  for the 

multi-variate time series from No  observables or 
channels, each shifted to be centred around zero and 
scaled by their respective standard deviation. With a time 
series of length Nt , the delay matrix will have 

N =Nt − τMw  rows and M =NoMw  columns with  

( )( ),1)1(, τ−+=−+ ijyY
o

w
j

Mjoji  

with the row index i =1...N , the column index j =1...M , 

and the observable index jo =1...No . 
 
The key step in the analysis is to reconstruct an optimal 
attractor which separates signal from noise as much as 
possible. This is carried out by a singular value 
decomposition of the delay matrix, 

 

,,,,, MMMMMNMN SPY Λ=                                         (2) 
                             
where Y  is the delay matrix from the measurements, P  
the Principal Components, Λ  the diagonal matrix of 
Singular Values, and S  the Singular Vectors. This 
procedure is equivalent to an eigenvalue decomposition 
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of the covariance matrix. Hence, the ’optimum’ refers 
here to maximising the variance from the signals into a 
minimum number of orthonormal basis functions (EOFs). 
The average magnitude of contribution from each 
singular vector to the overall signal is measured by the 
singular value, and the principal components contain the 
time series (amplitudes) of the singular vectors.  
 
By creating a reduced set of Dr  principal components, 

singular values, and singularvectors, Pr
N,Mr ,Λr

Mr ,Mr  and 

Sr
Mr ,M , respectively, one can produce a filtered time 

series of the original data byYr
N,M = PrΛrSr . Conversely, 

it is also possible to project a new time series onto that 
set of singular vectors by creating a delay matrix 
following the same procedure as for the training set, 
including using the mean and standard deviation from the 
data set to rescale the new data. This projection will then 
give principal components,Pn , to place the new data in 
this phase space  

     .1−Λ= r
T
rnn SYP                                                     (3) 

    
To generate a single point in this phase space, the new 
time series must contain τMw  measurements. 

Conversely, if the new time series contains τMw +nx −1 
points, the projects results in a section of orbit containing 
nx  points.	  	  
 
The principle of the forecasting is to find similar records 
from the training periods, identified as the nearest 
neighbours to the current point or orbit section in phase 
space, and then follow how these neighbours evolved. 
The nearest neighbours are found by calculating the 
Euclidean distance between the new point, or the mean 
distance of each point of the section of orbit, to all other 
points or sections of the training attractor; for a single 
point: di = Pn −Pr

i  or for a section of orbit with nx  

points:di =
1
nx

Pn
j −Pr

i+ j−1

j∑ . From this complete set of 

distances to all points of the training attractor, a limited 
number of nearest neighbours is selected, subject to a 
constraint that they do not come from adjacent points on 
the training orbit bur from different passes of the orbit 
through the neighbourhood. This can either be done by 
sorting all distances and rejecting those which come from 
adjacent points of the training time series, or by stepping 
through all distances, and skipping a set number of time 
points after having identified a local minimum of the 
distances. The number of nearest neighbours, nn  to use 
for the forecasting depends on the dimension of the 
reduced system and how densely the phase space is 
covered by the training attractor. If too few neighbours 
are chosen, the ensemble prediction might not capture the 
divergence or convergence of the attractor and hence not 
give a good estimate of the forecasting error. If too many 
neighbours are chosen, the nearest neighbours may not be 

that near and no longer be a good representation of the 
local dynamics, hence introducing errors into the 
forecasting. 
 
Once the nearest neighbours have been identified, each 
can be moved forward in time by the forecasting horizon 
while sampling all intervening time steps. If entry !k of 
the training Principal components have been identified, 
then the entry k = !k +nx −1  is the neighbour to the latest 
measurement. A key assumption in the forecasting 
implicit here is that the current point will evolve 
alongside the past nearest neighbours, that is that the 
relative position of the state a time T  in the future 
relative to the past nearest neighbour the same time 
interval T  later will be identical to the relative position 
of the current measurement to the nearest neighbour. If 
the current distance vector to nearest neighbour j  is

Dj = Pr
k j −Pn

nx , then the prediction based on this	  nearest 

neighbour is Pf
j T( ) = Pr

k j+T +Dj . The ensemble of 

Pf
j T( ), j =1...nn  is then the ensemble prediction. One 

could then either calculate a mean prediction, and the 
change in distances to estimate the error growth, in the 
phase space, and then convert back to actual wind speeds, 
or one can convert the ensemble predictions into 
velocities, and then calculate the mean and error growth. 
Since it is more intuitive to collapse the ensemble in 
physical wind speed predictions than in phase space, this 
is the approach taken here.	  Each member of the ensemble 
is mapped back onto the delay matrix space by using
Yf

j = PfΛrSr . Each of the Yf
j then returns the predicted 

wind speeds for the next T  time steps as the entries 
up
j +1...T( ) =Yf j N −T +1...N,Mw( ) .  This ensemble of 

predicted wind speeds can then be used to calculate the 
expected velocity as their average, and an estimate of the 
uncertainty based on the standard deviation:
σ p t( ) = up

j t( )
j
.  

 
3. Wind speed data 
 
The data used for this analysis originated from the UK 
Met. Office – MIDAS Land Surface Stations [12] and 
more specifically, the station used was the Gogarbank 
surface station in Edinburgh, Scotland. The site used 10m 
high above ground anemometers and the data records 
used spanned from 1998-2010 with hourly mean wind 
readings stored to the nearest knot (1kn=0.5144m/s). For 
this analysis purposes wind speed and wind direction data 
were used with wind speed converted to m/s. 
Furthermore, the mean was removed from data and they 
were normalised by dividing with the standard deviation. 
 
Regarding the forecasting analysis, the forecasting 
horizon used was from 1h to 24h ahead for hourly wind 
data measurements ( τ =1) and the training periods used 
were 2008-2009 and 2000-2001 for different forecasting 
periods such as 2006, 2009 and 2010 depending on the 
training period used. Other variables such as the nearest 
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neighbours nn , reduced dimensionsDr , the overlap nx , 

window length Mw  and different forecasting years were 
examined through PCA for the aforementioned models. 
Finally, to validate the results the error was calculated as 
the magnitude of the observed minus the forecasted data 
readings and the uncertainty was calculated from the 
standard deviation of the forecasted data. 
 
4. Results 
 
A. Training  
 
In terms of real wind data forecasting the following steps 
were undertaken. Initially, a phase space and attractor 
from the training period of Gogarbank wind speed data 
for 2008 and 2009 was constructed and truncated to 
‘important dimension’ based on the singular values 
originating from the PCA results. As it can be seen from 
Figure 1, 20 singular values (Dr  =20) seemed to be the 
leading ones and Figure 2 depicts a short section the 
original training period (green) alongside with the 
reconstruction of the truncated set (red). 
 
After this, new data from Gogarbank for 2010 were 
acquired and as it can be seen in Figure 3 they were 
mapped onto the phase space from the training data 
(blue). Then the nearest neighbours ( nn ), that is past 
events which were similar to the current wind were found 
(red). These neighbours were thus used to make an 
ensemble forecast (red lines), i.e. to follow how they 
evolved over time. In more detail, the blue point in 
Figure 11 comes from a week worth of  hourly wind 
speed data (Mw =1 week) for Gogarbank 2010 and there 

can be seen that nn =5 with xn =1 where chosen for the 
prediction. In total, 60 different predictions were made 
from the training set of 2008 and 2009 for hourly data 
with weekly window with the forecasting horizons 
varying from 1 to 24 hours.    
 
B. Prediction  
 
Figure 4 illustrates a validation of the ensemble forecast 
representing all 24 hours for one of the 60 prediction 
points.  For this analysis purposes, the predictions made 
in the phase space were re-transformation to real wind 
speed and direction, and the mean prediction was 

calculated from the mean of the ensemble forecast (black 
circles).  The forecasting uncertainty was also found with 
the use of the standard deviation (blue) and hence the 
comparison to the actual wind events was made (red 
lines). 
 
  
 

 
Fig. 1. Singular values of PCA for training set 

 

 
Fig. 2. Original wind speed measurements  and 
re construction from truncated attractor 

 

 
Fig. 3. Attractor of training set with data mapped onto it 

Table 1. Forecasting models used in the PCA 
analysis, standard value and range 

 

Trai
ning 

nx nn Dr Mw Forec
ast 

Forecas
ting 

horizon 
2008

-
2009 

1 
 

1-3 

5 
 
2-10 

16 
 

5-35 

1 day 
1 day - 

2 
weeks 

2010 
 

1999-
2007 

 
1-24h 

2000
-

2001 

1 10 30 2 days 2002-
2009 

1-24h 
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It can be therefore seen that there is growth or reduction 
of uncertainty over time which is consistent with the 
actual error. The estimate of error used in the analysis 
was the mean absolute error (MAE) which is a common 
measure for error used for forecasting purposes. It is of 

the form:                            

MAE T( ) = 1
Np

up tp +T( )−uobs tp +T( )
i=1

Np

∑          (4) 

where Np is the number of forecasts made at times tp  for 

the wind speeds T  hours ahead with up the prediction 

and uobs  the actual observed wind speed. [13]. 
Moreover, the uncertainty was calculated as the standard 
deviation of the ensemble forecast (see function above).  
 

 
Fig. 4. Comparison of actual, forecasted and                     

uncertainty of wind speed 
 
B. Comparison with other methods 
 
The persistence method was then used in order to 
compare the PCA forecasting results. This method is 
simple and it just assumes that the wind speed from the 
starting point where it is calculated, it will remain 
unchanged for the rest of the forecasting horizon. 
 
PCA filters out noise in the data however persistence 
only accounts for what has just happened following a 
random event. Hence by combining the two, we achieve 
slower dynamics of the PCA. After performing this 
comparison and applying several inputs for the different 
parameters used by PCA, it was concluded that adding a 
filter to the dataset would improve the results. This filter 
is the prediction minus the initial error counted and 
applied from the 5th hour of the forecasting horizon up to 
the 12th. From the 5th hour when the filter was applied 
and up to the 12th horizon hour, the error subtracted was 
reduced in quantity. The filter is of the form: 

uf ,i = uPCA,0 − uPCA,0 −u0( )Nf − i
Nf

;i = 0,..,Nf         (5) 

or  
uf ,i = uPCA,i ;i >Nf                                           (6) 

 

where i = the ith step ahead in the forecast horizon ,
 
Nf

is the filter length, uPCA,Nf  is the ensemble forecast and 

u0  is the initial error. 
 
Figures 5 illustrates the averaged error and uncertainty 
growth of the actual readings, PCA and persistence 
results. The red line corresponds to the distance of the red 
line (actual readings) minus the circles (PCA results) of 
Figure 4. The red line thus should ideally be below the 
green line (persistence method) since this indicates that 
the error is smaller when using PCA in comparison with 
the persistence method. From Figure 5 it can be clearly 
seen that adding the filter aids in achieving this.  
 

 
Fig. 5. Error growth with filtered data 

 
C. Sensitivity to parameters 
 
In order to validate the aforementioned analysis different 
models have been attempted with different entries of 
variables used for the PCA analysis as shown in Table 1. 
Some representative results of the undertaken analysis 
are shown in this chapter. Since in the previous section it 
was concluded that the use of filter in the data was 
improving the PCA results, all the analyzed models 
included the filtered data instead. A performance index 
percentage was thus introduced to examine the 
improvement of PCA in comparison with the persistence 
method. This index is calculated as the average over the 
range of prediction times of the difference between the 
mean persistence and PCA forecasting errors, divided by 
the respective average of the mean persistence error 
multiplied by 100.  The error measure as it was explained 
in the previous section, was MAE. 
 
More specifically, Figures 6 and 7 show the performance 
index of the results for the different entries of Dr , and 

nn . Figure 6 indicates the reduced dimensions 
improvement. It can be seen that different choice of 
reduced dimensions results in a big variation of the 
percentage of improvement. The amount of dimensions 
which the improvement seems to be more consistently 
big for (5.6%) is around 16. It should be noted that 
adding more dimensions results in adding more 
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information but whether this information is useful or not 
is another issue which should be of further investigation 
and of course depends on the site and wind dynamics 
used for the analysis. 
 
Finally, Figure 7 indicates that choosing 5 nearest 
neighbours seems to result in the best improvement, 
again around 11.2%. Using too few or too many 
neighbours might not be appropriate since with too few 
(i.e. less than 5) the information we use for the analysis 
might me too little whereas on the contrary, using too 
many (i.e. more than 5) might initially show that we can 
obtain more information however these neighbours might 
actually lie very far apart from each other in the phase 
space.  

 
Fig. 6. Performance index for different embedding 

dimension 

 
Fig. 7. Performance index for different nearest 

neighbours 
 
 
5. Discussion and Conclusions 

 
The main conclusions of this research that can be made 
are firstly that PCA is capable of identifying weather 
cycles and a dynamical link between two sites, reference 
and target, that form an attractor. Furthermore, it was 
found that it can be used for wind forecasting several 
hours ahead and also it can obtain a measure of this 
forecasting uncertainty. Hence, it has clear potential to be 
used for MCP-type resource assessment as well as for 
operational wind power forecasting. It was also found 
that with the use of filtering, PCA outperformed the 
persistence method. Finally, testing the PCA performance 
with sensitivity analysis, it was found that the dimensions 
and nearest neighbours used play an important role in the 
PCA results. 
 

Thus the future work that will be carried out should be 
focused on first, to validate fully the forecasting attempt 
with the use of other training and prediction periods but 
also by using other PCA parameter choices such as wind 
direction or temperature etc. Other types of data such as 
wind farm and Met office data should be also used. 
Extending the forecasting methodology for MCP 
methods would be the following step but of course 
challenges such as mapping data from one site onto the 
appropriate place of the phase space based on both sites 
will arise. 
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