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Abstract. In households, solar collectors are finding ever 
increasing use for hot water preparation. Although the design of 
solar collectors is relatively simple, the authors over many years 
concentrate attention on modelling the cross-sectional 
temperature field of the solar collector’s absorber [1-7]. 
 
In solving the cross-sectional temperature field for an annular 
pipe [1], the periodical cross-sectional domain is divided into 
three sub-domains where the first sub-domain is the plate 
between pipes, the second – a pipe’s wall, and the third – the 
liquid; as a result, the temperature field expressions have been 
obtained for all the three sub-domains. In works [2, 3] the 
temperature fields obtained were simplified. To define its 
variations in time, the temperature field was found by solving 
the Laplace equation under non-stationary time-dependent 
conditions [4]. The obtained results  evidence that the non-
stationary conditions might not be taken into account in long- 
lasting sunny weather, while such non-stationarity changes 
considerably the temperature field when it is short-term (e.g. in 
cloudy weather). The temperature has also been found for a 
square-pipe absorber [7] as more technological in design.         
 
In the present work, the final temperature field model is 
proposed for the absorber of a round-pipe collector. As 
distinguished from [1], in this work the temperature of liquid is 
assumed to be constant over the entire pipe cross-section. Such 
an assumption significantly simplifies the calculation while not 
changing the physical essence. 
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1. Problem formulation and temperature 

field solution 
 
The shape of absorber for which the temperature field is 
sought is shown in Fig.1. 
 
 
 

 

 
 

Fig 1. Absorber shape for which the temperature field is 
sought. 

 
Assuming that the process is stationary, the temperature 
field is described by the Laplace equation:  
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To solve this equation, the boundary conditions are set for 
the collector absorber’s cross-section. The cross-section 
possesses periodicity, and the periodical domain is 
divided into two parts,  D1 and D2. In D2 part the Laplace 
equation is written in polar coordinates. 
 
On the Sun-oriented surface the incidence of solar 
radiation is perpendicular to all its points  except the pipe 
surface, for which the perpendicular radiation component 
is calculated. The area of periodical cross-section and the 
boundary conditions are shown in Fig. 2. The bottom part 
is insulated, therefore, the heat flow  perpendicular to the 
insulated surface is absent. The same situation is for the 
symmetry axes AO1, GF and DE. On the Sun-facing 
surface the heat flow is proportional to the solar radiation 
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density. In turn, on the surface where the cooling liquid 
meets internal wall of a pipe the heat flow is described by 
a typical heat flow equation where Ts is the liquid 
temperature and T is the temperature of a pipe’s inside 
wall.  
 

 
 

Fig 2. Absorber cross-sections with the set boundary 
conditions 

 
To simplify the analytical solution of Laplace’s equation 
we will pass to the dimensionless parameters: 
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The parameters are defined by the formulas: 
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The dimensionless temperatures are written as: 
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where 
 

sTTT  22 , (7) 

 
 
The designations in the above formulas are as follows: 

2b is the interval between the pipe axes, m; 
2h0 is the thickness of the collector’s plate, m; 
r1 is the internal radius of the pipe, m; 
r2 is the external radius of the pipe, m; 
q is the solar heat density, w/m2; 

 is the thermal conductivity of the collector’s, w/m 
K;          
  is the coefficient of convective heat transfer from 
the surface, w/m2K;  
Ts is the temperature of liquid, [K]; 
T0 is the initial temperature, [K]. 

 
Having written the boundary conditions in dimensionless 
parameters and solving the Laplace equation we obtain 
the following expression for the temperature field in 
domain D1: 
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where 
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The temperature field in domain D2 is sought-for in polar 
coordinates, with its dimensionless form written as 
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where   2

3
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2. Results and Discussion  
 
Fig. 3 shows the temperature field on the collector surface 
with the parameters given in Table 1 and at different b 
(i.e. distance from the plate centre to the pipe centre) 
values. The temperature in the direction from the plate 
centre to the pipe is decreasing – as might be expected 
since the liquid flowing through the pipe has a lower 
temperature than in the plate, and this difference creates a 
temperature gradient in the direction of which the heat is 
flowing. 
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Table 1. Output data for the model 
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Fig. 3. Temperature field at different b values (the 
parameters are given in Table 1). 

 
Fig. 4 shows the temperature field in the pipe coating at 
variable b value. As compared with temperature variation 
in the plate (Fig. 3), in the coating it is much less, but in 
any case at increasing b the temperature difference 
between the top of pipe and the point of its contact with 
the plate increases. 
 

 
 

Fig. 4. Coating surface temperature variations at different 
b values. 

 
 

In Fig.5 the temperature of liquid is shown in dependence 
on b value for different outside diameters of the pipe and 
a constant thickness of its wall (1mm). At the same pipe 
diameter, as the b value is increasing the temperature of 
liquid decreases. In physical terms this is explainable with 
the fact that the temperature gradient should be in the 
whole cross-section periodical system as implied by the 
temperature field mathematical expressions obtained. If 
the distance to the lowest temperature point is increasing, 
the difference between the initial temperature and the 
lowest one (the temperature of liquid in the proposed 
model) also increases.  
 
It is seen that at increasing the pipe radius the mentioned 
difference as compared with that for the previous radius 
becomes smaller, which indicates that there is such a 
critical value for the diameter after which it is of no use to 
increase it further. 
 
Dependence of the liquid temperature on the pipe 
diameter at a constant b value (0.07m) is illustrated in Fig. 
6, where the curve has a saturated character. It could be 
seen that at the diameter value of 12 mm the liquid 
temperature is changing but slightly with increasing 
diameter. In principle, this curve shows how the pipe 
diameter should be optimized. 

 
Fig. 5.  The temperature of liquid vs. b value at different 
diameters of the pipe with a constant thickness of its wall 

(1mm). 
 

 
 
Fig. 6. Illustration of the pipe diameter variation influence 

on the liquid temperature.  
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The liquid temperature dependence on b value at different 
plate thicknesses is shown in Fig. 7 (the initial parameters 
are as given in Table 1, the pipe diameter is 12mm, the 
pipe wall is 1mm thick). At increasing plate thickness the 
dependence of the liquid temperature on the initial 
temperature weakens in the same manner as it is for the 
case with increasing radius (see Fig. 5).  
 

 
 
Fig. 7. Dependence of the liquid temperature on b  value 

at different plate thicknesses (h). 
 

 
Fig. 8. Liquid temperature vs. plate thickness (h). 

 
The curve shown in Fig. 8 (the dependence of liquid 
temperature on the plate thickness) also possesses a 
saturated character, which evidences that a threshold 
value of the plate thickness exists after which it is of no 
special sense to increase it further. 
 
The basic question to be discussed is: which is better – 
when the liquid temperature difference from the initial 
temperature is large or when it is small? If this difference 
is large (i.e. b value is large, the pipe diameter and plate 
thickness are small), the heat flow from the plate centre to 
the pipe will be large, since this flow is directly 
proportional to the temperature gradient. In turn, if this 
difference is small (i.e. b value is small while the pipe 
diameter and the plate thickness are large), the heat flow 
will be weaker. In any case of importance is that the heat 
flow be large; at the same time,   if b value is large and the 
pipe diameter is small, the amount of liquid per area unit 

will also be small, which would mean less per area unit 
power for the solar collector. Clear enough that the power 
decrease will be compensated at some  time moment by a 
heat flow increase.  
 
The proposed mathematical model shows that in all the 
cases discussed that the plate thickness and the pipe 
diameter possess threshold values, so it is useless to 
increase them further.  
 
3.  Conclusion  
 
In the work, the cross-sectional temperature field has been 
obtained for the solar collector’s absorber under the 
assumption that the heat flow is stationary. The results 
clearly show the temperature variations in the absorber’s 
cross-section while inducate minor fluctuations the cause 
of which is of mathematical origin rather than of physical. 
The dependence of liquid temperature on different 
geometrical parameters points to existence of optimal 
values that are not to be increased since this would not 
affect this temperature.  
 
Under the conditions when solar radiation is strong and 
constant for a long time, it is expedient to make the 
collector’s absorber with a small b value (the distance 
from the plate centre to the pipe centre), a large pipe 
diameter (up to 14mm) and a large plate thickness (up to 
1.2mm); at the same time, when cloudiness dominates, it 
would be better to design the solar collector with a greater 
b, a smaller pipe diameter (from 6 to 8 mm) and a small 
plate thickness (0.5mm). 
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