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Abstract. Research was carried out into existing methods 
of maximum power point tracking (MPPT) for photovoltaic 
systems. This paper compares existing approaches to 
maximum power point tracking and presents a new 
learning-based technique which exceeds the performance of 
existing methods. 

Simulation and experimental results are presented which 
indicate that the new algorithm offers benefits over other 
methods described. 
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1. Introduction 

Solar cells have a non-linear current-voltage characteristic 
and therefore the output power of a cell does not remain 
constant as the voltage across the cell varies. A variety of 
MPPT algorithms have been proposed which aim to adjust 
the voltage across a photovoltaic array so that it is 
operating at its maximum power point at all times. Two 
commonly used approaches to MPPT are the perturbation 
and observation and the incremental conductance methods.  

This paper explains the current-voltage characteristics of 
photovoltaic systems and the operation of the perturbation 
and observation and incremental conductance algorithms. 
A new learning-based algorithm is then presented, along 
with the results of simulations and experiments which 
compare its performance with that of these other 
algorithms. 

2. Photovoltaic Characteristics 

A. Simplified Solar Cell Model 

Solar cells have a nonlinear I/V characteristic which is 
dependent on the level of solar irradiation and the cell 
temperature. A solar cell can be accurately modelled by a 
current source in parallel with a diode, as illustrated in Fig. 
1. [1] RP and RS are the shunt and series resistances 
representing the losses in the photovoltaic conversion 
process and connections to the cell respectively. 

 

Fig. 1. Simple Solar Cell Model 

Using the model of Fig. 1, the output current of a solar cell 
can be described in terms of the solar irradiation, cell 
temperature and voltage, as in (1). 
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Where S is the level of solar irradiation in W/m2, T is the 
solar cell temperature in Kelvin, V is the voltage across the 
cell in Volts and m is the dimensionless P/N junction 
ideality factor of the diode in the model. VT(T) is the 
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thermal voltage for a given temperature in Kelvin, given by 
VT(T)=kT/q where k is the Boltzmann constant (1.39x10-

23J/K) and q is the electron charge (1.6x10-19C). RS and RP 
are the series and shunt resistances in Ohms.  

The photocurrent IPH, generated by the photovoltaic 
conversion process, can be expressed in terms of the solar 
irradiation S, a reference level of solar irradiation SR and 
the photocurrent in Amps at the reference irradiation level 
IPHR, as shown in (2). 
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The reverse saturation current IRS is a loss in the conversion 
process due to a reverse current which flows through the 
diode, dependent on temperature. It can be expressed in 
terms of the cell temperature T (K), a reference temperature 
TR (K), the reverse saturation current at the reference 
temperature IRSR (A), the band gap energy of the 
semiconductor used to manufacture the cell ε (1.12eV for 
silicon), the diode ideality factor, m, and VT and VTR which 
are the thermal voltages at T and TR respectively in volts. 
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To simplify the equation (1), it can be assumed that RS is 
sufficiently low and that RP is sufficiently high so that these 
resistances will have a negligible effect, giving (4). 
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B. Maximum Power Points 

The model from (4) was implemented in Matlab using the 
known reference parameters for an 80W solar panel. The 
levels of solar irradiation and cell temperature were varied 
and the corresponding I/V curves were plotted, as shown in 
Fig. 2 and Fig. 3. 

Fig. 2 and Fig. 3 show that the maximum power point is 
different for each combination of solar irradiation and 
temperature. A maximum power point tracking algorithm is 
therefore required to continuously adjust the solar cell’s 
voltage so that it is operating at or close to its maximum 
power point at all times and under varying atmospheric 
conditions. 

3. Maximum Power Point Tracking Methods 

Two broad classes of MPPT algorithm are available. 
Model-based approaches use the model of the solar cell 
from (1) to accurately calculate and set the maximum 
power point. A model-based approach is presented in [1] 
which uses manufacturer-supplied data in addition to 
measurements of the solar irradiation and cell temperature.  
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Fig. 2. Current-Voltage relationship of an 80W solar cell under 
different solar irradiation levels. Temperature=25°C. The 

maximum power point is indicated on each curve. 
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Fig. 3. Current-Voltage relationship of an 80W solar cell under 
different cell temperatures. Solar Irradiation=1000W/m2. The 

maximum power point is indicated on each curve. 

Model-based approaches offer the benefit of being able to 
very accurately track the maximum power point regardless 
of how quickly atmospheric conditions change, but are 
closely coupled to the particular solar cell in use and 
require extra hardware to measure irradiation and 
temperature levels. Perturbation and observation based 
methods, described in the remainder of this section, provide 
a more generic approach to maximum power point 
tracking. 

A. Simple Perturbation and Observation 

The most basic form of perturbation and observation 
algorithm operates by making an adjustment to the 
operating voltage of a photovoltaic system and observing 
whether this yields and increase or decrease in the output 
power of the system. If an increase is observed, the 
algorithm continues to adjust the output voltage in the same 
direction. If a decrease is observed, the algorithm adjusts 
the voltage in the opposite direction. The overall effect of 
this algorithm, which is simple to implement, is that the 
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output power of the system converges to close to the 
maximum power points, with some oscillation around the 
true maximum. 

The hardware required to implement this type of algorithm 
consists of voltage and current transducers, a switched 
mode power supply and a device such as an FPGA or 
microcontroller to implement the control technique on. 
Several different types of optimisation of the algorithm 
such as varying the perturbation size [2] or varying the 
perturbation and sampling speed [3] are trivial to 
implement as they only require software changes in the 
control system. 

B. Incremental Conductance 

The Incremental Conductance algorithm [4] is an 
improvement on the basic perturbation and observation 
method that reduces the problems of oscillation around the 
maximum power point and tracking in the wrong direction 
during a change in atmospheric conditions. These 
improvements stem from the use of a technique which 
controls the perturbation direction based on the 
photovoltaic system’s power-voltage curve. 

The maximum power point represents a peak in the power-
voltage curve of a solar cell, hence at this point dP/dV=0. 
At any point to the left of the maximum dP/dV>0 and to the 
right of the maximum dP/dV<0. Determining dP/dV allows 
a decision on how to adjust the voltage to be made. The 
voltage should be increased if dP/dV>0 or decreased if 
dP/dV<0 to move closer to the maximum power point. If 
dP/dV=0 then no change should be made as the 
photovoltaic system is already operating at its maximum 
power point. 

dP/dV can be computed using (5) which requires only 
voltage and current measurements. [4] Voltage and current 
measurements can be taken directly from transducers while 
approximations for dV and dI can be made using (6) and 
(7) respectively. VN and IN are voltage and current readings 
taken during an iteration of the algorithm and VB and IB are 
the readings taken on the previous iteration of the 
algorithm. 
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The addition of the curve-tracking technique ensures that 
the maximum power point is tracked correctly, even under 
rapidly changing atmospheric conditions. Additionally, by 
performing no voltage adjustments when the maximum 
power point is reached, losses caused by oscillating around 
the maximum are reduced. The hardware requirements of 
this algorithm are the same as those of the basic 

perturbation and observation algorithm which makes it an 
attractive replacement. Results from literature ([4], [5]) 
have shown that this algorithm provides significant 
improvements over simple perturbation and observation. 

4. Learning-Based Algorithm 

While Incremental Conductance addresses some of the 
shortcomings of basic Perturbation and Observation 
algorithms, a particular situation in which it continues to 
offer reduced efficiency is in its tracking stage when the 
operating point is moving between two significantly 
different maximum power points. For example, during 
cloud cover the maximum power point can change rapidly 
by a large value. Perturbation and Observation based 
techniques, including the Incremental Conductance 
algorithm, are limited in their tracking speed because they 
make fixed-size adjustments to the operating voltage on 
each iteration. The aim of the new algorithm is to improve 
the tracking speed of Perturbation and Observation based 
algorithms by storing current-voltage curves and their 
maximum power points and using a classifier based system. 

A. Finding the MPP 

To introduce this new algorithm, consider the I/V plot 
shown in Fig. 4. This plot provides a hypothetical example 
of different situations in which a perturbation and 
observation based technique was used to determine the 
maximum power point of the system. Fig. 4 illustrates sets 
of I/V points which were recorded on each occasion that 
the algorithm tracked from one MPP to another and the 
MPP on each occasion. The benefit that the new algorithm 
aims to introduce is to quickly find the maximum power 
point for an unknown curve for which a single data value, 
D, has been recorded. 

 

Fig. 4. Sample illustration showing points collected during 
different runs of a perturbation and observation algorithm and the 

maximum power point on each occasion (indicated in bold). 
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To find the new maximum power point for the system, a K 
nearest neighbours classifier [6] can be used to find the 
nearest points to the recorded data point, U. In this case, 
taking K=3, the nearest neighbours to U are two points 
belonging to curve 3 and a single point belonging to curve 
2. At this stage it is assumed that U lies on curve 3 and the 
operating voltage is set to the MPP for curve 3. A 
perturbation and observation technique is then used to 
refine the maximum power point until it begins to oscillate 
around the maximum. At this point the cell voltage is fixed 
and all of the I/V points recorded during the perturbation 
and observation stage are stored. 

B. Storage of Curves 

Once the perturbation and observation stage is complete, 
the maximum power point is compared to the maximum 
power points of previously stored curves. If the maximum 
power point does not lie within a tolerance value ±∆P of 
any other maximum power point, a new curve is defined 
and all of the recorded data points, the maximum power 
point (PMPP) and the maximum power point voltage (VMPP) 
are associated with that curve. If the maximum power point 
does lie within ±∆P of an existing curve’s maximum power 
point then the recorded data points are associated with the 
existing curve. 

C. Waiting State 

Once the new maximum power point has been found and 
the associated information recorded, the algorithm enters a 
waiting state where the power output of the solar cell is 
observed until it changes by more than a certain value 
PDRIFT. At this point, the classification and tracking process 
begins again. 

D. Formal Description 

A formal description of the algorithm is provided in Fig. 5. 

E. Expected Performance of Algorithm 

It is expected that the algorithm should initially perform 
similarly to the Perturbation and Observation algorithm but 
its performance should improve over time as it stores more 
data. Initial parameter choice will be an important factor in 
the performance of this algorithm. ∆P affects the number of 
stored curves – larger values will result in less memory 
consumption but less accurate classification. However, too 
small a value of ∆P will result in too much data being 
stored for classification to be effective. The value of PDRIFT 
determines how sensitive the algorithm is to changes in the 
MPP after it has been found. K determines how many data 
points should be used by the classifier. This value should 
be kept small to provide a locally sensitive classifier but 
large enough to disregard erroneous points. 

5. Comparison of Algorithms 

To compare the performance of the Perturbation and 
Observation, Incremental Conductance and Learning 
algorithms, a purpose-built simulation application was used 
which allows for comparison of the algorithms using a 
simulated solar cell model, as well as a comparison using a 
solar cell and electronic load. 

A. Simulations 

The simulator was set up to model the 80W BP solar cell 
that would be used for the experimental part of the 
comparison. The instrumentation options in the simulator 
were set up to provide a current sensor with a minimum 
resolution of 78mA, a voltage sensor with a minimum 
resolution of 49mV and a minimum voltage adjustment of 
100mV. Additionally, the time taken to perform a voltage 
or current reading or adjust the voltage was set to 50ms. 
These parameters were selected to match the performance 
of the hardware used in the second part of the experiment. 

Two standard test stimuli were devised to test the 
capabilities of each algorithm – the first providing slowly 
changing atmospheric conditions and the second providing 
rapidly changing conditions.  

To compare the performance of the algorithms, the average 
power output of the simulated solar cell was recorded when 
performing each test. The results are summarised in Table 
I. 

Table I. Results of tests using simulated solar cells. 

 Average Output Power (W) 
Perturbation 

& 
Observation 

Incremental 
Conductance 

Learning 
Algorithm 

Slowly 
Changing 
Conditions 

50.0878W 50.0890W 50.4403W 

Rapidly 
Changing 
Conditions 

53.3551W 53.3736W 53.9427W 

 
B. In-Circuit Experiments 

To compare the simulated results with an experimental 
situation, the simulator application was connected to a 
circuit containing two 80W BP solar panels and an Agilent 
electronic load – this circuit replaces the simulated solar 
cell used in the previous comparison. The electronic load 
provides the voltage and current readings from the solar 
panels and is used in constant voltage mode to adjust the 
panels’ operating voltage as required by the MPPT 
algorithms. 
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Fig. 5. Activity diagram illustrating learning-based maximum power point tracking algorithm. 

As the experiment was carried out in a lab, control over 
atmospheric conditions was provided by using a 1kW 
floodlight to illuminate the panels. The 1kW floodlight was 
supplied through a VARIAC to allow its voltage and 
therefore the illumination level of the panels to be 
controlled. Again, two standard sets of test data were 
created to allow the three algorithms to be compared under 
both slowly changing atmospheric conditions and rapidly 
changing conditions. The results of the experimental 
comparison of the algorithms are given in Table II. 

C. Discussion of Results 

It can be observed from the simulation results that the new 
algorithm provides a higher average power output than the 
other two algorithms under both slowly and rapidly 
changing atmospheric conditions. However, the 
experimental comparison indicates that the Incremental 

Conductance algorithm provides the better performance 
under slowly changing conditions, with the Learning 
Algorithm offering an improvement of 7% under rapidly 
changing conditions. The poorer performance of the new 
algorithm under experimental conditions can be attributed 
to the presence of noise in the experimental situation which 
was not modelled in the simulation. The noise causes the 
algorithm to oscillate at certain points during the tracking 
process which is the condition that the algorithm uses to 
detect that it has reached a maximum power point and stop 
tracking. The effect of this problem with the algorithm is 
less pronounced under rapidly changing conditions as the 
higher efficiency offered by the algorithm under these 
conditions mitigates the power lost due to the oscillation 
problem. 

Fig. 6 illustrates the improvement in tracking that the 
Learning Algorithm offers over the existing perturbation-
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based methods studied. From Fig. 6(a) it can be observed 
that when the illumination level changes from 0 to 100%, 
the Incremental Conductance algorithm takes some time to 
adjust the voltage from the previous maximum power point 
to the new maximum. However, in Fig. 6(b) it can be 
observed that the new algorithm provides improved 
performance by only having to carry out this tracking 
process once. On subsequent adjustments in the 
illumination level, it uses previously stored data to adjust 
the voltage to very close to the maximum power point 
before refining this estimate using perturbation and 
observation. 

Table II. Results of experimental comparison of algorithms 

 Average Power Output 
Perturbation 

& 
Observation 

Incremental 
Conductance 

Learning 
Algorithm 

Slowly 
Changing 
Conditions 

1.8206W 1.8214W 1.7875W 

Rapidly 
Changing 
Conditions 

2.4781W 2.5246W 2.7231W 
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Fig. 6. Graphs comparing the performance of the (a) Incremental Conductance and (b) Learning Based maximum power point tracking 
algorithms. The estimated maximum power points were obtained from I/V curves of the solar panel under 0% and 100% illumination. 

6. Conclusion 

A new learning-based maximum power point tracking 
algorithm for photovoltaic systems has been presented 
which is based on a K-Nearest-Neighbours classifier. 
Simulation and experimental results have shown that this 
algorithm provides improved maximum power point 
tracking under rapidly changing atmospheric conditions, 
when compared to the Perturbation and Observation and 
Incremental Conductance Algorithms. 

Further work is required to address some shortcomings of 
the algorithm. The original basis for the algorithm was the 
Perturbation and Observation technique which means that it 
may suffer from tracking in the wrong direction under 
rapidly changing conditions. Additionally, the algorithm 
detects that it has reached its maximum power point by 
detecting a set number of oscillations. A better approach 
would be to use the Incremental Conductance algorithm’s 
slope detection technique to detect when the peak power 
point has been reached. Further work is also required into 
the methods used to select the best combination of 
parameters for the algorithm. 
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