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Abstract. This paper analyses and compares different 

digital signal processing techniques to capture with fidelity the 
power lines disturbances. The benefits and shortcomings of 
both Discrete Wavelet Transform (DWT) and Principal 
Component Analysis (PCA) techniques are assessed. Their 
implementation, application and test-cases with recorded power 
signals are described in the paper. We define the data 
compression ratio (or efficiency) and the signal reconstruction 
accuracy after compression as the main criteria for comparing 

these techniques. In this paper the trade-offs of accuracy in the 
disturbances representation and compression efficiency were 
exploited. After systematic comparisons, our experimental 
results have shown shortcomings of the DWT and PCA 
techniques not yet addressed in previous works. 
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1.  Introduction 

 
In Power Quality (PQ) scope, disturbances to AC power 

lines can play a harmful role to electrical equipment. 

Data acquisition and digital monitoring systems are 

applied to detect these undesired electrical disturbances. 

Since the acquired data may be stored in a digital 

memory, then compression techniques are mandatory. 

Researchers in fact have made an effort to achieve a good 
balance between signal reconstruction accuracy and data 

compression efficiency. Therefore, many proposals have 

been developed to deal with this scenario. 

DWT has been applied in Power Quality disturbances for 

a long time [1]-[14]. Many authors have developed 

disturbance detectors and data compressors based on it. 

In compression terms, the most usual process is to 

discard detail coefficients according to a threshold value 

(e.g. [4], [7], [8], [11] and [14]). This type of approach 

inserts irreversible loss of information. On the other 

hand, that is counterbalanced by data compression 

efficiency. In [4] a DWT technique was presented to 

compress power quality disturbance data. The author 

assumed that Daubechies 4 filter can produce good 

results for both compression efficiency and 

reconstruction accuracy. Based on that, examples of PQ 

disturbances were tested and analysed to provide 
quantitative results. Further, in [7] a more complex 

solution was proposed focusing in Wavelet Packet 

Transform (WPT) and Minimum Description Length 

(MDL). The main goal was to analyse the minimum 

quantity of nonzero coefficients needed to produce 

satisfactory quality in the reconstructed signal. The 

developed technique was tested for a set of different 

filters. According to the author, Symlets 7 provides the 

best result. Both works, in fact, showed best case results 

of specific examples and did not mention a DWT 

drawback for Power Quality: the large variation in results 
given by a certain filter. In this paper we show the impact 

of this disadvantage. 

PCA has also been proposed for recognition of Power 

Quality disturbances. Reference [20] showed a solution 

based on PCA and BP Neural Network for AC power line 

disturbances classification. The author presented results 

of recognition accuracy, but does not address the 

compression efficiency neither the reconstruction 

accuracy. We show the PCA implementation for PQ 

signals regarding both data compression ratio and 

reconstruction accuracy.  

This paper is organized as follows: Section II presents an 
overview of DWT and PCA techniques. Section III 

explains the experimental setup for each technique under 

test. Then, in section IV we analyse the results and 

compare them with previous works. Finally, conclusions 

are drawn in section V. 
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2.  DWT and PCA techniques 

 
In this section overviews about DWT and PCA are 

presented. 

 

A. DWT 

Wavelet Transform (WT) has been studied and applied in 

various scientific fields for a long time. The basic 

concept is the correlation between a given analysed 

function and an orthogonal basis [1]-[14]. The orthogonal 

basis are scaled and shifted in time. Then, after this 
process, the correlation is taken with the function under 

analysis. The WT’s continuous form is shown in (1) [1]. 
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Where b and a are the shifting and scaling coefficients 

respectively. The term a -1/2 is a normalization parameter 

and g(.) is the Wavelet basis. In fact, there is an 

additional term h(.) that represents a scale basis which is 

orthogonal to g(.) and works as an initial scale for the 
further decompositions. 

The discrete form or Discrete Wavelet Transform (DWT) 

can be designed, in practice, by filter banks. Therefore, 

the Wavelet and Scale basis work as high and low pass 

filters respectively. The scaling coefficient a is 

implemented by dyadic decimation in time. Figure 1 

presents the block diagram of the filters. 

Notice that the DWT can be decomposed in various 

levels. This is called the multiresolution decomposition 

[17].  

Reference [1] has motivated the use of Wavelets in 
Power Quality because its main advantage is the low and 

high resolutions in time for high and low resolutions of 

frequency spectrum respectively.  

The data compression may be achieved by discarding 

least significant detail coefficients according to threshold 

heuristics and preset. Here, we present two ways to 

discard coefficients that were used in previous works 

(e.g. [4], [7], [8], [11] and [14]). 

 

   ( )        (   [ ] ) (2) 

   ( )    ∑   ( ) 
  

 

   

 (3) 

 

 
Fig. 1. DWT designed by filter banks. 

Where, in (2) and (3), 0 ≤ p ≤ 1 represents the factor of 

discarding coefficients and, for the latter equation, T is 

the length of detail coefficients in the nth decomposition 

level. Notice that in (3) the coefficients are discarded by 

detail energy evaluation, as the squared norm is used. 

The decision is, then, performed according to (4). 
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B. PCA 

Principal Component Analysis takes the correlation 

between multivariate data in order to reduce the data set 

redundancy. Hence, second-order statistics are used to 

transform multivariate data in PCA domain. First, the 

mean is subtracted from the data [21], as in (5): 

 

         (5) 

 

Where E{x} is the expectation of x and, in practice, the 

sample mean is performed. 

After that, the covariance matrix, Cx, is taken, as in (6): 

 

           (6) 

 

Then, the PCA solution is given by the computation of 

matrix Cx’s eigenvalues and unit-length eigenvectors. 

The eigenvectors’ matrix has its columns rearranged in 

respective eigenvalues descending order. This brings to 

the principal components yn (7): 
 

     
    (7) 

 

Where, yn and en is the nth principal component and unit-

length eigenvector respectively. 

In theory, the benefit of this technique is that only a small 

number of principal components are needed to best 

represent the original data. Hence, this technique 

provides data compression based on the multivariate 

correlation. 

 

3.  Experimental Setup 

 
In this section, we show the proposed experimental setup 

we developed to test the accuracy and compression for 
each technique under evaluation. 

 

A. DWT 

In order to verify the DWT technique, we analysed sixty 

measured test-cases from IEEE Working Group P1159.3 

database [15]. The dataset has 60 test-cases sampled at 

15.36 kHz with time duration of 100 ms. This brings 

1536 samples for each test-case. Then, twenty-five 

different Wavelet filters were selected to decompose the 

test-cases from one to four levels. The Wavelab 850 was 

used to decompose and reconstruct the signals. This 

toolbox is available for MatLab in [16]. The data 
compression is taken by discarding the detail coefficients 

based on the theory explained in the last section. The 

factor p in (2) and (3) are set in four distinct values (0.05, 

0.1, 0.15 and 0.2). This brings four hundred (25 × 4 × 4) 
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different combinations. The Table I summarizes the 

general settings. 
Table I. – DWT Experimental Setup 

Database source IEEE working group P1159.3 

# of waveforms 60 

Sampling Frequency 15.36 kHz 

# of filters 25 

Range of decomposition 
levels 

1-4 

Threshold factors (p) 0.05, 0.1, 0.15, 0.2 

# of resultant combinations 400 

Toolbox Wavelab 850 

 

B. PCA 

In order to evaluate the PCA technique performance (i.e. 

CR efficiency vs. signal reconstruction accuracy terms), 
we use the same IEEE working group P1159.3 test-cases 

previously mentioned. 

The signal decomposition was performed by using the 

statistics MatLab toolbox. The test-case is analysed by 

using 4, 6, and 8 principal components. Table II 

summarizes the PCA Experimental Setup. 

 
Table II. – PCA Experimental Setup 

Database source IEEE working group P1159.3 

# of waveforms 60 

Sampling Frequency 15.36 kHz 

Principal Components 4, 6, 8 

Toolbox MatLab – Statistics Toolbox 

 

Each test-case is decomposed in a 64 rows by 24 columns 

matrix. The statistics MatLab toolbox treats each matrix 

column and row as a different variable and its realization 

respectively. The matrix’s variables (i.e. columns) are 

created by decimating in time a given test-case with a 

factor of 24 times. In decimation process, the first sample 

is picked up as a function of the respective column index. 
The remainder of the decimation procedure is to count 24 

samples to pick the next sample up. These actions are 

performed for all 24 different variables. 

 

4.  Results 

 
In this section we present the metrics and the results for 

both techniques that were evaluated. 

 

A. DWT Results 

 

First, we introduce three metrics that are evaluated to 

quantify the DWT technique performance for both data 
compression efficiency and signal reconstruction 

accuracy. 

 

1) Compression Ratio (CR): We consider that data 

samples are acquired with 2 bytes resolution and 

the arithmetic is calculated in floating point 

single precision. Hence, the stored data must 

spend 4 bytes per retained detail coefficient. 

Since all discarded detail coefficients are set to 

zero and not stored, then the position of retained 

coefficients must be recorded for further 

reconstruction of the zeros. We assume a data 

window containing a maximum value of 216 

samples. This brings 2 bytes per position. The 

coarser approximation coefficients are entirely 

stored. Putting all these information together, we 

show in (8) the CR’s equation. 
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Where, rdc and appc means retained detail and 

coarser approximation coefficients’ length 

respectively.  

 

2) Entropy (H): The entropy defines the average bit 

length to code a data set without loss of 
information. Hence, we decided to evaluate this 

metric to know how good can be lossless coding 

based on entropy. Equation (9) shows the 

metric. 
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In (9), Pi defines the probability of occurrence 

for a given symbol. N is the total quantity of 

different symbols in the data set. 
 

3) Normalized Mean Squared Error (NMSE): This 

metric relates the squared error in signal 

reconstruction and the squared original data [4], 

[7] (see (10) for more details). 
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Notice from (10) that the output is given in 

percentage. Further, xn is the original data and 

 ̂  is the reconstructed one. 
After the metrics explanation, the results extraction was 

performed as follows: First, the sixty test-cases were 

mapped in DWT domain and then the detail coefficients 

were handled regarding the two discarding heuristics (Th1 

and Th2) presented in Section II. The discarding 

procedure is taken as a function of the four threshold 

factor values established in Table I. After that, the 

proposed metrics were performed for each test-case. 

Finally, we calculated and stored the sample mean, 

standard deviation, best and worst cases for each criterion 

as a function of the combinations previously mentioned. 

For instance, we have the CR, Entropy (H) and NMSE 
information for the following combination: Daubechies 4 

filter decomposed in two levels and with a threshold 

factor p of 0.1. Notice that this process is done for all 

four hundred combinations. The heuristics Th1 and Th2 

are analysed separately. 

To extract a feasible combination, we need to balance the 

trade-off between average CR or Entropy and average 

NMSE. Figure 2 illustrates NMSE (in %) and CR analysis 

as a function of the combinations for Th1 case. The 

combinations (x axis) are sorted in NMSE ascending 

order. 
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Fig. 2. CR and NMSE analysis for Th1 case 

This brings the resultant values of CR for each 
combination as a function of NMSE criterion. Therefore, 

we first search for an acceptable average NMSE and then 

look for the best average values of CR or H. In practice, 

the priority is attributed to accuracy, because, according 

to IEC standards (i.e. [18] and [19]), we always need to 

guarantee good quality in signal reconstruction. 

Otherwise, the loss of information can degrade 

disturbances compromising further analysis in Power 

Quality. The results can be seen in Table III. For each 

metric we show the average, standard deviation and 

coefficient of variation (11). In addition, the last two 

rows present the maximum and minimum metrics’ values 
for a given combination between the sixty test-cases. For 

example, in a certain combination it is possible to detect 

which test-case has the lowest NMSE and so forth. To 

extract a feasible combination, we first imposed the 

constraint of an average NMSE less than 1%. Then, we 

searched, in the resultant combinations, for the best 

average CR and Entropy (H) respectively. 

Since we are looking for the most regular (or low 

variability) combination, then we calculate the 

coefficients of variation (CV) for each metric (11): 

 

    
 

 
      (11) 

 

Where σ is the standard deviation and µ is the sample 
mean. The most regular combination for NMSE is the 

Coiflets 3 with four levels of decomposition and p of 

0.05. In fact, Table III reveals that there is no selected 

combination providing NMSE’s CV less than 75.84%.  

For this particular solution, the best and worst NMSE 

test-cases are ranging from 0.23% to 5.12%. That loss in 

NMSE is unaccepted for a general-purpose PQ 

disturbance compressor. Further, notice that for Th2 and a 

specific test-case, the minimum CR produces more stored 

data than original one.  

The previous works published similar results. In [4] three 
disturbance examples are tested and the best case is 5.74 

times for CR and 0.003% for NMSE (with Daubechies 4). 

In [7] the WPT technique is applied to six test-cases and 

the proposed solution showed 36.36 times for CR and 

10.01% for NMSE (with Symlets 7). Notice that if we 

consider just the best case for each criterion, then our 

work reaches 6.02 times for CR (with Coiflets 3) and 

0.04% for NMSE (with Coiflets 2). Our results provide a 

more systematic evaluation of four hundred filter 

combinations, since we applied the DWT and 

thresholding technique to a much larger set, i.e. up to 

sixty power line disturbance test-cases. Our experiment, 
covering this large data set, showed that the variability 

turns out to be an important drawback for the DWT. 

In the sense of entropy, results revealed a minimum 

average length of 1.54 bits (with Symlets 7). It seems that 

a lossless codification can be a good additional approach 

in the WT data sets. Although this benefit, the same filter 

produces a CV of 91.91 % for NMSE. 

 

B. PCA Results 

 

The PCA technique performance evaluation for both 
compression ratio and signal reconstruction accuracy is 

taken by Compression Ratio and NMSE (see (10)) 

metrics. Since the PCA information are stored in a 

different manner, then the CR must be redefined. 

1) Compression Ratio (CR): We also consider that 

data samples are acquired with 2 bytes 

resolution and that the arithmetic is calculated in 

floating point single precision. Hence, the stored 

data must spend 4 bytes per observation. 

 

   
                         

   (            )
 (12) 

 

In equation (12) pc denotes the number of 

principal components used to represent the 

signal. 
Table III. – DWT Results 

Threshold heuristic Th1 Th2 

Analysed trade-off CR × NMSE H × NMSE CR × NMSE H × NMSE 

Filter Coiflets 3 Symlets 7 Coiflets 2 Coiflets 2 

Number of levels 4 4 3 3 

Threshold factor p 0.05 0.05 0.05 0.05 

Metric CR NMSE (%) H NMSE (%) CR NMSE (%) H NMSE (%) 

µ 2.72 0.96 1.54 0.99 1.78 0.95 2.22 0.95 

Σ 0.91 0.79 0.41 0.91 0.65 1.52 0.49 1.52 

CV (%) 33.45% 75.84% 26.62% 91.91% 36.51% 160% 22.07% 160% 

Minimum 1.08 0.23 0.8 0.21 0.61 0.04 1.37 0.04 

Maximum 6.02 5.12 2.66 5.79 3.27 7.68 3.28 7.68 
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Fig. 3. NMSE analysis for PCA technique 

 

Notice that in order to save the compressed data 

related to one test-case, it is needed to store a pc 

rows by 24 columns matrix, a pc rows by 64 

columns matrix (i.e. the data represented in the 

PCA domain), and also the average of each 

principal component. 

Since the CR depends only on the number of principal 

components used for signal’s representation, then the CR 

is previously known before the data compression process 

is performed. On the other hand, the NMSE analysis is 
nondeterministic and varies in accordance with the number 

of principal components chosen. As previously depicted by 

Table II, the PCA experimental analysis takes into account 

4, 6, and 8 principal components. Figure 3 shows the 

NMSE analysis vs. signals (or test-cases) for 4, 6, and 8 

principal components. As can be seen, the NMSE analysis 

relies approximately at the same level for most of the test-

cases. However, in a few cases (e.g. from signal index 15 

to 25) the reconstruction error is significantly attenuated 

when 8 principal components are used to represent those 

signals. This is because these signals has more details and 

need more components to be reconstructed without 
significant loss of information. The Table IV shows the 

PCA results.  
 

Table IV. – PCA Results 
# Components 4 6 8 

CR 2.04 1.39 1.05 
µ (NMSE) 2.5648 1.4200 0.9261 

σ (NMSE) 3.36 1.87 1.13 
Maximum(NMSE) 18.9 10.46 6.26 
Minimum (NMSE) 0.168 0.1363 0.1177 

 

As described previously, it is possible to determine the CR 

as a function of principal components used. The NMSE 

variation is a function of the signal’s characteristics. 

Therefore, the larger the number of principal components 

used, the better the signal reconstruction is. However, the 

CR decreases significantly.  

5.  Conclusion 

 
DWT and thresholding technique is applied to Power 

Quality disturbance test-cases in order to assess data 

compression efficiency and accuracy of reconstructed 

signals. After a systematic evaluation process, we show 

that DWT produces variability in accuracy. That is a 

significant drawback for general-purpose Power Quality 

disturbance compressor, which has not been addressed in 

previous works that proposed the DWT with few specific 

filters. A given Power Quality disturbance can be highly 

correlated with a certain DWT basis, but that usually is 
not true for other types of electrical events. Further, least 

significant detail coefficients are not only related to 

Gaussian noise but, in fact, can be a relevant amount of 

information that is lost after the thresholding process. 

Therefore, the use of DWT and discarding process can be 

designed for a specific type of Power Quality disturbance 

and cannot provide good results for a general-purpose 

system that stores disturbance signals.  

In comparison with the DWT technique, PCA results 

show a better average behaviour when considered a 

larger set of signals. On the other hand, for a specific 

group of signals (i.e. from signal 15 to 25 in Figure 3) the 
reconstruction error raised significantly even using more 

principal components to represent the signal. In this case, 

the number of principal components should be greater 

than the presented in the experimental analysis. However, 

the stored data increases significantly and the resultant 

size gets larger than the original one.  

Based on that, the analysed techniques do not present a 

good performance for CR vs. NMSE considering all types 

of power line disturbances. For each disturbance type 

there is a technique that best compresses the data and 

reconstructs the signal with fidelity. 
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