INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY (ICREPQ'10), Granada 23-25 March, 2010

Power Generation Limitsin Thermal, Chemical and Electrochemical Systems

S. Sieniutycz

Faculty of Chemical and Process Engineering, Warsaw University of Technology,
1 Waryaskiego Street, 00-645 Warsaw (Poland)
Phone 00-48-22-256340; fax: 00-48-22-251440, e-mail sieniutycz@ichip.pw.edu.pl

Abstract. Power generation limits are evaluated via optimization for When one, say, upper, reservoir is finite, its thermal potential
various energy converters, such like thermal, solar, chemical, and decreases along the stream path, which is the consequence of th
electrochemical engines, in particular fuel cells. Thermodynamic energy balance. Any finite reservoir is thus a resource reservoir.
analyses lead to converters’ efficiencies, which help to solve problems |; is the resource property or the finiteness of amount or flow of

of optimal upgrading and downgrading of resources. While methods of A :
static optimization, i.e. differential calculus and Lagrange multipliers, a valugble substar_me or energy Wh.|Ch change_s the upper fluid
properties along its path. Then, in the engine mode, one

are sufficient for steady processes, dynamic optimization applies the - c it . S
variational calculus and dynamic programming for unsteady processes.observes fluid's relaxation to the equilibrium with an infinite
In reacting systems chemical affiniies constitute prevailing lower reservoir, usually the environment. This is a cumulative

components of an overall efficiency, thus flux balances are applied to effect obtained for a resource fluid at flow, a set of sequentially
derive power in terms of active parts of chemical affinities. arranged engines, and an infinite bath [6]. An inverse process,
Methodological similarity is observed when treating power limits in  which needs the supply of an external power, may be referred to
flow thermal machines and fuel cells. The examples show power the ypgrading of the resource in a heat pump [7]. From the
maxima i_n fuel cells and prove _suitability of a thermal m_achine theory optimization viewpoint, these cases refer to dynamical
to chemical and electrochemical systems. The main novelty of processes, or sequence of states, either in the chronological time

contribution in the fuel cell context consists in introducing an effective . . . ; X
change of Gibbs free energy between prodpaad reactants which or in holdup (spatial) time. Studies of resource downgrading or

takes into account lowering of voltage and power caused by the UPgrading apply methods of dynamical optimization [8].
incomplete conversion of the overall electrochemical reaction. . ] ]
Downgrading or upgrading of resources may occur also in

Key words electrochemical systems of fuel cell type. Fuel cells working in
power production mode are electrochemical flow engines
Power limits, entropy, exergy, chemical engines, fuel cells. propelled by chemical reactions. Their performance is
determined by magnitudes and directions of participating
1. Introduction streams and by mechanism of electric current generation.

Voltage lowering in fuel cells below the reversible value is a

In a previous work [1] we discussed models of power good measure of their imperfection which influences the
production and its limits in purely thermal systems with finite downgrading and upgrading of reagents. Yet, in this paper we
rates. In particular, radiation engines were analyzed as important€Strict to the steady-state fuel cell systems.

nonlinear systems governed by laws of thermodynamics and ) ) . )
transport phenomena. Temperatufesf participating media Section 2 of the present paper denves suitable controls in power
were only necessary variables to describe these systems. In théystems, the so called Carnot variables. These results are
present work we treat generalized systems in which both cOmmon for all processes considered here. Thermal systems are
temperature§ and chemical potentialg® are essential. This is treated in _Sects 3-8 of this paper, whereas phemlcal and
associated with engines propelled by fluxes of both energy and electrochemmal systems (fu_el cells) are analyzed in Sects 9 and
substance. In a process of power production shown in Fig. 1 two 10. Section 11 presents basic conclusions.

media differing in values of andu interact through an energy . .

generator (engine), and the process is propelled by diffusive 2. Carnot Controlsin Power Yield Systems.

and/or convective fluxes of heat and mass transferred through_ o

‘conductances’ or boundary layers. The energy flux (power) is Diverse controls can be applied in power systems to represent

created in the generator between the resource fluid (upper fluid the propelling fluxes of heat and mass transfer and accomplish
1) and, say, an environment fluid (lower fluid, 2). the task of a sustainable energy conversion. Here we shall recall

and use definitions of Carnot control variables whose
Both transfer mechanisms and values of conductances ofderivations and applications were originated in our previous
boundary layers influence the rate of power production [2]-[5]. Work [9, 10]. We begin with the simplest case of no mass
Local fluxes of heat and power do not change along the process”a”Sfer- i.e. we shall cons_lder a steady, mter_nally reversible
path only when both reservoirs (streams) in Fig.1 are infinite. (€ndoreversible’) heat engine with a perfect internal power
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generator characterized by temperatures of circulating Tiuid (linked by an internal balance of the entropy). Moreover, the
and T», Fig.1.Stream temperatures, attributed to the bulk o each endoreversible power is also of classical form

fluid areT; andT,. The inequalitie§;>T;:>T,>T, are valid for T,

engine mode of the system. The internal entropy balance vyields p=nq = [1‘?}41 (7)
2 _% (1) Importantly, the derivation of Egs. (1) - (7) does not require any
T Ty specific assumptions on the nature of heat transfer. In terms of

Continuity of pure heat fluxes through each boundary layer T’ description of thermal endoreversible cycles is broken down
(each conductor) is assumagi<g;r and g,= ), the property to formally “classical” equations which contain in place of
which does not hold in the case when heat transfer is coupledT,. In irreversible situations Carnot temperatiireefficiently
with transfer of substances. As a flux can be normalized versusrepresents temperature of the upper reservgir,Yet, at the
a constant mass flux we neglect dots over symbols of fluxes. reversible Carnot point, whefB. = T, and T» = T,, Eq. (3)
yields T' = Ty, thus returning to the classical reversible theory.

, , These properties of Carnot temperature render descriptions of

finite reservoir . . ..

high chemical potential 1, endoreversible and reversible cycles similar. They also make the
variableT’ a suitable control in static and dynamic cases [9, 10].

% py g,
BT For the purpose of this paper it is worth knowing that in terms of
/)‘1’ T the linear heat transfer is described by a simple equation
T! H 1
2 ; @=9(Mm-T), ®)
% BoRErOui whereg is overall heat transfer conductance i.e. the product of a
T total exchange area and an overall heat transfer coefficient [8].
22 For a linear resource relaxing to the thermodynamic equilibrium
T2 T along the stationary Lagrangian path or for an unsteady
;i dufnite o relaxation, the kinetics related to Eq. (8) has the linear form
chemical potential dTl ,
=t EZT -Ty, )

where the non-dimensional tintesatisfies Eq. (38) below and
is related to the overall conductargef Eq. (8). Subscript 1 is

Total entropy balance of the system leads to total entropy sourceheglected in equations describing dynamical paths. The resource

0O as the difference of outlet and inlet entropy fluxes (or an "“PP‘?V stream”) is upgra(?led whenever Carnot
temperaturel” is higher than resource’s temperatdie It is

Fig.1. A scheme of chemical and/or thermal engine.

Og = G2 % _ DTy & = i(k _T_2) . () downgraded (relaxes to the thermodynamic equilibrium with an

T, Ti To,Tp Ty T, Ty Ty infinite “lower” stream or the environment of=T,) when

With an effective temperature called Carnot temperature Carnot temperatur@’ is lower than resource’s temperatdre
Ty In linear systems, power-maximizifig is proportional to the
T'=T, T (3)  resource’s temperatufg at each time instant [6]). For two finite
2 streams with constant heat capacities, see [11].
entropy production of the endoreversible process, Eq. (2), is
1 1 The notion of Carnot temperature can be extended to chemical

) (4)

Is = ql(-r' T systems where also the Carnot chemical potential emerges. The
structure of Eqg. (1) also holds to systems with mass transfer
0provided that instead of pure heat flgxthe so called total heat
flux (mass transfer involving heat flug) is introduced

@ & Tsp+..Tsne.+Tsyy (10)
From the entropy and energy balances of an internally reversibleor, since the heat flux equals the difference between total energy
process the endoreversible thermal efficiency follows in terms flux £ and flux of enthalpies of transferred componentss-h,

This form is identical with the familiar expression obtained for
processes of purely dissipative heat exchange between tw
bodies with temperaturds andT’.

of temperatures of the circulating fluid Q=e— 4N .. 4 = . =€ -G (11)
P =p zl_k (5) whereG is the flux of Gibbs function. The equality
ql Tl' E= Q+G (12)

In terms of temperatur€ of Eq. (3) this efficiency assumes the is fundamental in the theory of chemical engines; it indicates
classical Carnot form containing the temperature in the bulk of that power can be generated by two propelling fluxes: heat flux

the second reservoir and temperaflite Q and Gibbs fluxG, each generation having its own efficiency
T (thermal and chemical efficiencies). The related driving forces
7 :1—? (6)  are the temperature difference and chemical affinity.

This property substantiates the name “Carnot temperature” for
control variableT’. When a control action takes place, the
superiority of Eq. (6) over Eqg. (5) consists in using in (6) single,
free controlT’, instead of two constrained controls of Eq. (5)

When mass transfer is included the internal entropy balance of
the perfect engine has in terms of total heat fuxhe same
structure as Eq. (1)
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Q/T,=Q/T, (13)

This expression generalizes Eq. (3) for the case when a single

The continuity of energy and mass fluxes through the resistive '€action A+A,=0 undergoes in the system. Equation (25) leads
layers leads to ‘primed’ fluxes in terms of those for the bulk. 292N to the definition of Carnot temperature in agreement with

Assuming a complete conversion we restrict to power yield by a
simple reaction &+A,=0 (isomerisation or phase change qof A
into Ay). The energy balance

£ =& +p (14)
and the mass balance in terms of conserved fluxes through
cross-sections 1’ and 1 as well as 2" and 2

m=n, (15)

are combined with Eq. (13) describing the continuity of the
entropy flux in the reversible part of the system. This yields

&~y _ &~ Hop

16
T 5 (16)
Eliminating & andn, from these equations yields
St _&-P-HxMm 17)
Ty T2
whence
P _&a-th_&a-fhh (18)
T2 T2 Ty
which leads to a power expression
T2 My _ Hy
=6 - =51-F)+Tor(==-=5)n 19
p=&-& =& Tl') Z(Tl' Tz-)l 19)

In Eqg. (19) powep is expressed in terms of fluxes continuous
through the conductors.

Entropy production in the system follows form the balance of
fluxes in the bulks of the streams

-2 _ %
Os=—5-2+(s,—
e (2-s)m
Eliminating g, from this resultwith the help of the energy
balance (14) we obtain

(20)

_ 1 1., k4 _M p (21)
o.=(q+ -—)+ - -
s=(a hlnl)(T2 Tl) (Tl T2)nl T,
An equivalent form of this equation is the formula
— T H_H2
=5A-2)+To(=-==)n -Tyo, 22
P =& T1) z(T1 Tz)rh 205 (22)

which may be compared with the same power evaluated for the
endoreversible part of the system

Ty My Hy
=g (1-22) +Tp (2L - H2yp, 23
p =& Tl') 2(T1' Tz-) 1 (23)

The comparison of Egs (22) and (23) yields an equality

T
£ (1--2)+Tp(EE-£2)n ~Ty0,
T h T
T; M _H @)
=& ]_—l + T 72
1( Tl-) Z(Tl- T, N

from which the entropy production can be expressed in terms
of bulk driving forces and active driving forces. We obtain
—ﬁ(h_ﬁ).knl(ﬂ_&(ﬂ_&)_&) (25)

9% T 5T T, T T T. T
2 1 1 1 2 " 22 12
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Eqg. (3) and to Carnot chemical potential of the first component
! T \ , ,
ﬂ,:&+_2('u_l_'u_2)_ (26)
T T, T, Ty Ty
In a special case of an isothermal process the above formula
yields a chemical control variable
H = o+ iy =y (26")
which has been used earlier to study an isothermal engine [12].
After introducing the Carnot temperature in accordance with Eq.
(3), total entropy production of the endoreversible power
generation by the simple reaction+A,=0 (isomerisation or
phase change of,Anto A,), takes the following simple form
1 1. M
Os=&(=—-—>)+(=-=)m. 27
s 1(T Tl) (Tl T,)n1 (27)
Introducing the above formula total hedp; satisfying
Q =& — iymwe finally obtain
_p'
-I—r
where Q= +T151; is the total heat flux propelling the power
generation in the system. The resulting equation is formally
equivalent with a formula obtained for the purely dissipative
exchange of energy and matter between two bodies with
temperature3; andT’ and chemical potentialg andy/.

H

—ot-1
7, = Q% Tl) +n ; (28)

3. Steady State Energy Systems

Carnot variablesT’ and i/ are two free, independent control
variables applied in power maximization of steady and
dynamical generators. Ideas referring to endoreversible systems
may be generalized to those with internal dissipation.

entropy production
g

current density ¢

powerp

pomsr fmit

current density i

Fig. 2. Qualitative picture illustrating entropy production and power
yield in fuel cells in terms of the density of electric current. For thermal
engines the picture is qualitatively similar when the electric current is
replaced by the entropy flux.

Majority of research papers on power limits published to date
deals with systems in which there are two infinite reservoirs. To
this case refer steady analyses of Chambadal-Novikov-Curzon-
Ahlborn engine (CNCA engine; [2]) in which energy exchange
is described by the Newton cooling law, or of the Stefan-
Boltzmann engine, a system with the radiation fluids and energy
flow governed by the Stefan-Boltzmann law [3]. Entropy
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production and power diagrams for these systems are shown inyheref, is power generation intensity - resource fluxc(T)-

Fig. 3. In a CNCA engine the maximum power point may be gpecific heaty(T, T') - efficiency in terms of staf€ and control
related to the optimum value of a free control variable which 1 fyrtherT — enlarged state vector comprising state and time,

may be efficiencyr, heat fluxg,, or Carnot temperature’. — time variable (residence time or holdup time) for a resource
When internal irreversibilities within the generator play a role, a contacting with energy transfer surface. For a constant mass flux
pseudo-Carnot formulapplies instead of Eq. (6), in whidh is of a resource stream, one can extremize power per unit mass
replaced by produc® T,, where® is the internal irreversibility flux, i.e. the quantity of specific work dimension called ‘work at
factor [5]. In terms of bulk temperaturgs T, and @ one finds flow'. A non-dimensional timer is often used in the description
at the maximum powelzr p_omt » S gavp ‘= aa)/FVt _t (31)

Topt - (T1@T2) . (29) HTU Ge Ge X

For the Stefan-Boltzmann engine exact expression at the This definition assures that is identical with the number of the
optimal point cannot be determined analytically, yet, the energy transfer units, and related to system’'s constarasd
temperature can be found graphically from the cpaffT’). A Hyy (relaxation constant and height of the transfer unit).
pseudo-Newtonian model [5], [7], which treats state dependent gquation (31), which links both timesy and t, contains
energy EXChange .W.ith qoefficien(Ts), omits to a consideraple resource’s flowG , stream velocity through cross-section”,
extent analytical difficulties of the Stefan-Boltzmann equation. and heat transfer exchange surface per unit volams].

4 D ical E G fi Functionf, in Eq. (30) contains thermal efficiencay, described
- Dynamical Energy eneration by a practical counterpart of the Carnot formula. Wiien T°,

Dynamical energy yield requires the knowledge of an extremal gfﬂuency /] decreases in the engine mode belgw and

curve rather than an extremum point. This leads us to variational'"¢'¢35€s 1N the heat-pump m'ode abgee At the limit of

metods (to handle extrema of functionals) in place of static Vanishing ratesdT/dt = 0 and T' ~ T. Work of each mode

optimization methods (to handle extrema of functions). Simplifies then to the classical exergy.

Observed non-exponential shape of the relaxation curve is the . .

consequence of nonlinear properties of the radiation fluid. Non- Solutions to work extremum problems can be obtained by

exponential are also other curves describing the radiation Variational methods, ie. via Euler-Lagrange equation of

relaxation, e.g. those following from exact models involving the Variational calculus. However, such solutions do not contain

Stefan-Boltzmann equation [4], [5], [7]. Optimal, power- direct information about the optimal work functiod =

maximizing T(t) is accompanied by optimal contrdl(t); they max(W /G). Yet, this function can be obtained by solving the

both are components of the dynamic optimization solution. related Hamilton-Jacobi-Bellman equation (HJB equation: [8]
and [13]). For the Newtonian energy transfer (linear kinetics)

Energy limits of dynamical processes are inherently connected oV oV Te

with exergies, the classical exergy and its rate-dependent —max{(——c(l— ,))(T’—T)}:O (32)

extensions. To obtain the classical exergy from work functionals or T a1 T

it suffices to assume that the thermal efficiency of the system is extremum work functionV = maxW /G in equations of this

identical with the Carnot efficiency. On the other hand, non- tyse js a function of the final state and total duration.

Carnot efficiencies, influenced by rates, lead to ‘generalized

exergies’. The benefit from generalized exergies is that they after evaluation of optimal control and its substitution to Eq.
define stronger energy limits than classical ones [8]. (32) one obtains a nonlinear equation

.. - . oV _ 2
5. Finite Resources and Finite Rate Exergies Fr c{\/Te -JT(+c 16V/6T)} =0 (33)
T

Two different kinds of work, first associated with the resource which is the Hamilton-Jacobi equation of the problem. Its
downgrading during its relaxation to the equilibrium and the solution can be found by the integration of work intensity along
second — with the reverse process of resource upgrading, ar@n optimal path, between limifE and T'. A reversible (path
essential. This idea is illustrated in Fig. 2 of ref [1]. In engine independent) part of is the classical exergy(T, T°, 0).
mode work is released, in heat-pump mode work is supplied.
Optimal work follows as a general potential depending on end When analytical difficulties are serious method of dynamic
states and duration. For appropriate boundary conditions theprogramming is applied to solve a discrete HIB equation which
function of extremum work coincides with the exergy at flow as is in, fact, Bellman's equation of dynamic programming for
the function that characterizes quality of resources. cascades [13]. Modeling of multistage power yield in sequences
of engines is discussed in the previous publications [5] and [11].
Total power obtained from an infinite number of infinitesimal
stages representing the resource relaxation is determined as thg, Selected HJB Equationsfor Energy Systems
Lagrange functional of the following structure
o t! th ) (30) We shall display some Hamilton-Jacobi-Bellman equations, in
wW[T' .Tf]=.[ H(T, T)dt= —.[GC(T)H(T. T)Tdt particular for radiation power systems. A suitable example is a
¢ ¢ radiation engine whose power integral is approximated by a
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pseudo-Newtonian model of radiative energy exchange. The expresses optimal contrd! in terms ofT andz = - dV/dT. For

model is associated with an optimal function

tf e
ft7) = max %)u (T',T)dtJ (34)

()

Ve T —IGmcm(1—¢'
i

wherev =a(T3)(T'-T). Alternative forms use expressions of

Carnot temperatur@’ in terms of other control variables [5].

Optimal power (34) can be referred to a pseudolinear kinetics

dT/dt = f(T, T') consistent with rate=a(T%)(T-T). A general

form of HIB equation for work functiovi is

ov ov

—-——+max fo(T,T)—— f(T,T") |=0
ot T'(?f( oT.T) =57 1 ))
wheref, is defined as the integrand in Eq. (34).

(39)

A more exact model or radiation conversion relaxes the

the linear kinetics of Eq. (32) we obtain
v _ofg(T,T )
aT oT’

Whereas the second formula is the onglnal equation (32)
without maximizing operation
g—v a—V(T T)+c(1——)(T -T)=0.
r

To obtain optlmal control functlom‘(z, T) one should solve the
second equality in equation (41) in terms Bf The result is
optimal Carnot control" in terms ofT andz = - 0V/dT,

1/2
T':{ ) ] .

1+c lav/aT

T + c(1- —) 0. (41)

(42)

(43)

assumption of the pseudo-Newtonian transfer and applies theThis expression is next substituted into (42); the result is the

Stefan-Boltzmann law. For theymmetricmodel of radiation
conversion (both reservoirs composed of radiation we obtain

t( e a ra
W:J.GC(T) 1_£ B -7 dt- (36)
¢ T ) (@ TTeteyrat
Here @ = @g,/g, and coefficients = ga,cit(pd) ! is related

to molar constant of photons densify and Stefan-Boltzmann

constanto. Power exponend=4 for radiation anda=1 for a
linear resource. With a dynamical state equation [5]

dr _ Ta-T'2

- (37)
dt (@'(T'/T e)a—l+1)-|—a—l
applied in general Eq. (35) we obtain a HRiation
v _ Ta-T2 (38)
i mza)x{G - @*) + aV/aT]ﬁ(tﬁ'(T'/B)a_l'Fl)Ta_l}

Dynamics (37) is the characteristic equation to Eq. (38).
For a hybrid modebf the radiation conversion (upper reservoir

composed of the radiation and lower reservoir of a Newtonian
fluid, power is
}udt

whereas the related Hamilton-Jacobi-Bellman equation is
e
A max: —| G, (T)(L- il )+67Vf =0 (40)
oT
where by definition:

ot T T
-I—r = (Ta + ﬂ_lT a—lu)lla + (pﬂ_lTa_1Ugl / gz
is Carnot temperature of this particular problem [5].

oTE

W= ch(r)(l— (39)

7. Some Solutions of HIB Equations

Expressions extremized in HJB equations are some
Hamiltonians. Pontryagin’s variable for the energy problem is

= - 0V/0T. Applying feedback control optimal temperatdreor
some other control is implemented as the quantity maximizing

nonlinear Hamilton Jacobi equation
07+ cIr caViaT —VToIT) =0

which contains the energylike (extremum) Hamiltonian of the
extremum process

H (F,g—\T/) = ci¥ coviaT —JTe/T)Z-

(44)

(45)

Expressing extremum Hamiltonian (45) in terms of state
variableT and Carnot control ' yields an energylike function
satisfying the following relation
_ of, e (T'-T)?
ET.u="f-u=—= U =cT =
E is the Legendre transform of the work lagrandiamn - f, with
respect to the rate = dT/dz. Assuming the Hamiltonian value,

sayh, one can exploit the constancy léfto eliminatedV/dT.
Next combining equatiotHi=h with optimal control (43), or
with an equivalent result for heat flow conttslT ‘- T

1/2
uz[ L } =T

1+clovioT
yields optimal rateu=T in terms of temperaturd and the
Hamiltonian constartt

T={+y W cTe(1-+V N cT® 4T (48)
A more general form of this result which applies to systems with

internal dissipation (factorg) and applies to the pseudo-
Newtonian model of radiation is

T:[i\/ h, [1_1\/ h,

@c, (T) oc, (T
where¢, defined in the above equation, is an intensity index
andhs=h/T. This result is valid the temperature dependent heat
capacityc,(T)=4a,T°. Positive¢ refer to heating of the resource
fluid in the heat-pump mode, and the negative - to cooling of
this fluid in the engine mode. Therefore pseudo-Newtonian
systems produce power relaxing with the optimal rate
T=&(h, T,®)T. (50)

Equations (49) and (50) describe the optimal trajectory in terms

(46)

(47)

(49)

)} ]T =&h,, @, T

the hamiltonian with respect to Carnot temperature at each pointof stateT and a parametér,. The optimal Carnot control is

of the path. Maximization ofl leads to two formulas. The first

https://doi.org/10.24084/repqj08.200
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Comparing with linear systems, pseudo-Newtonian relaxation expression and efficiency formula of a chemical system follow
curve is not exponential. Optimal temperature of radiation from the entropy conservation and energy balance of a power-
downgraded in engine mode (upgraded in heat-pump mode) isproducing zone (‘active part’). In an ‘endoreversible chemical
illustrated in [4], [5] and [7]. HIB theory of energy systems can engine’ total entropy flux is continuous through the active zone.

also be based on minimum properties of entropy production. When a formula describing this continuity is combined with
energy balance we find in an isothermal case
8. Standardized Functions of Optimal Work P =(ty — o)y, (55)

where the feed flux; equals ton, an invariant molar flux of
When standard the standard exergy boundary conditions arereagents. Process efficienéys defined as power yield per flux
applied optimal work functions become generalized (rate n. This efficiency is identical with the chemical affinity of our
dependent exergies. Let us illustrate these for linear systemsyreaction in the chemically active part of the system. Wéiile

Substituting temperature control (51) with a constannto not dimensionless, it describes correctly the system. In terms of
work functional (30) and integrating along an optimal path Carnot variabley/, which satisfies Eq. (27)
subject the standard exergy boundary conditions yields an J=U . (56)

extremal work function For a steady engine the following function describes chemical

VT, T,h=dT _Tf)_cTe|nL|f_0Te h InT—If (52) Carnot control/ in terms of fuel fluxn; and its mole fractiox
T cT®e T
-1
This expression is valid for every process mode. Integration of U = o + (o +RTIN >&‘_”191 (57)
Eq (49) subject to end conditiomé?)=T andT(7)=T' leads toV Ngos+ X,
in terms of the process duration. As Eq. (56) is valid, Eq. (57) also characterizes the efficiency

. 3 . L control in terms of and fuel fractiorx.
For radiationc,(T)=4a,T°, whereg is the radiation constant. An

optimal path consistent Withiqs. (50) 'A(52) iSAOf the form Equation (57) shows that an effective concentration of the
+ (4/3)a,"*0"h, (T2 =T )-In(TIT') = -7'. (53) reactant in upper reservoiier = Xi — g;in is decreased,

The integration limits refer to the initial sta® énda current ~ Whereas an effective concentration of the product in lower

state of the radiation fluid, i.e. temperatur@s and T reServoirxes = X + g51n is increased due to the finite mass

corresponding with7' and 7. Optimal curve (53) refers to the  flux. Therefore efficiency! decreases nonlinearly with When

radiation relaxation subject to constraint resulting from Eq. (50). effect of resistancegy)™ is ignorable or fluxn is very small,

reversible Carnot-like chemical efficiency, is attained. The
power function, described by the produdin)n, exhibits a
maximum for a finite value of the fuel flur,

The corresponding extremal work function per unit volume of
flowing radiation is

V= b_ bf _ -|-e($/ _Svf )- (4/3)a01/2h17/2®1/2-|—e(-|-i3/2_Tf3/2)

+ (413)aTe @) (T -T ) f
The generalized exergy of radiation at flow [14] follows from W——Tj' 7. +RTIn XI@+ X)+dX/dz, d—xdr (58)
Eq. (54) after applying exergy boundary conditions. Yet the AR % — jdX/dr, dr, 1
classical exergy of radiation at flow resides in the exergy i

equation in Jeter's form [15] rather than in Petela’s form [14]. Vd?(f%(ﬁ(?ﬁﬂ??ﬁfiﬁ&ﬁi H‘]Z %?oa';'CS;)F:'Q'E[OO‘;J:V;S%SQE?-

conductance,g,/g,. The path optimality condition may be
expressed in terms of the constancy of the Hamiltonian

(54) Application of Eq. (57) to an unsteady case yields a functional

9. Chemical Power Systems

The developed approach can be extended to chemical and o — pTe 2| 1HX i
electrochemical engines. Here we shall make only a few basic HX X = RTX X * Xy ) (59)

remarks. In chemical engines mass transports participate iNEor 1ow rates and large concentratioNs (mole fractions x

trle;nsfcirg]at;oq of chemlcacli ?mtr;]'t'es |Into n;]gchan!cal hpowerl close to the unity) optimal relaxation rate of the fuel resource is
[12], [16]. Yet, as opposed to thermal machines, in chemica pproximately constant. Yet, in an arbitrary situation optimal

ones generalized streams or reservoirs are present, capable 9 tes are state dependent so as to preserve the constahay of

prowdmg both heat art1d subsftaﬂce.. Lallrget st;ga;msp orblmflmteiEq_ (59). Extensions of Eq. (57) are known for multireaction
reservoirs assure constancy of chemical potentials. Problems Osystems and those with internal imperfections [17].

extremum power (maximum of power produced and minimum
of power consumed) are static optimization problems. For a
finite “upper stream”, however, amount and chemical potential 10. Fuel Cells at Steady States

of an active reactant decrease in time, and considered problems

are those of dynamic optimization and variational calculus. Now we consider performance bounds in fuel cells. These
Because of the diversity and complexity of chemical systems the Systems are electrochemical flow engines propelled by chemical
area of power producing chemistries is extremely broad. The reactions, which satisfy requirements imposed by chemical
simplest model of power producing chemical engine is that with stoichiometry. Units which produce power are engines whereas
an isothermal isomerization reaction;+A,=0 [3],[12]. Power those which consume power are electrolyzers. Their main
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advantage in comparison to heat engines is that their efficiencythe so-called idle run, which are the effect of flaws in electrode
is not a major function of device size. Figure 3 illustrates a solid constructions and other imperfections which cause that the open

oxide fuel cell (SOFC) which works in the power yield mode. circuit voltage will in reality be lower than the theoretical value.
_— Depleted facl Activation polarizationV, is neglected in this model. The
and water out losses include ohmic and concentration polarization. The second
l TT term of Eg. (61) quantifies ohmic losses associated with electric
H, HO4 resistance of electrodes and flow resistance of ions through the

electrolyte. The third term refers to mass transport losses.
Quantity i, is the particular current arising when the fuel is
consumed in the reaction with the maximum possible feed rate.

Anode

Characteristics of SOFC at various temperatures

Cathode

Voltage [V]
o
[ wo/m] Ansusp 1emog

Fig. 3. Principle of a solid oxide fuel cell

The basic structure of fuel cells includes electrolyte layer in L L
contact with a porous anode and cathode on either side. Gaseous o Comemtdensity (e
fuels are fed continuously to the anode (negative electrode)
compartment and an oxidant (i.e., oxygen from air) is fed to the
cathode (positive electrode) compartment. Electrochemical rig 4. voltage-current density and power-current density characteristics
reactions at the electrodes produce an electric current. The effechf the SOFC for various temperatures. Continuous lines represent the
is the oxidation of fuel, e.g. hydrogen, and reduction of oxidant, Aspen PIu§" calculations testing the model consistency with the
e.g. oxygen. This makes fuel cells similar to an engine in Fig. 1. experiments. These lines were obtained in Wierzbicki's MsD thesis
supervised by S. Sieniutycz and J. Jewulski [19]. Points refer to
Voltage lowering in fuel cells below the reversible value is a €xperiments of Wierzbicki and Jewulski in Warsaw Institute of
good measure of their imperfection, Fig.4. With the concept of Energetics (Wierzbicki, [19], and his ref 18).
effective nonlinear resistances operating voltage of a fuel cell
can be represented as the departure from the ideal véftage

Power density at 800 °C Power density at 750 °C Power density at 700 °C

In the literature there are many experimental and theoretical

examples showing power maxima in fuel cells and proving the

VZE -V E-V.. -V -V 60 suitability of the theory to chemical .and electrochemical
nt act™Feone ™ Tohm (60) systems. For example, data obtained in L. Chen's research

The losses, which are called polarization, include three main 9"0UP [18] are consistent with those of Wierzbicki [19].

sources: activation polarizatioNs), ohmic polarizatior{Vonm),

and concentration polarizationV,). Large number of  11. Concluding Remarks

approaches for calculating polarization losses has been reviewed

[18]. Activation and concentration polarization occurs at both This research provides data for power production bounds

anode and cathode locations, while the resistive polarization (limits) which are enhanced in comparison with those predicted

represents ohmic losses throughout the fuel cell. As the voltageby the classical thermodynamics. In fact, thermostatic bounds

losses increase with current, the initially increasing power are often too far from reality to be really useful. Generalized

finally decreases for sufficiently large currents, so that maxima bounds, obtained here by solving HIB equations, are stronger

of power are observed (Fig. 4). than those predicted by thermostatics. As opposed to classical
thermodynamics, they depend not only on state changes but also

The voltage equation used in Wierzbicki's thesis [18] for the on process irreversibilities, ratios of stream flows, stream

purpose of the calculation of fuel cell power is: directions, and mechanism of heat and mass transfer. The
' AE i methodology familiar for thermal machines has been extended
V=E(T, sz)—'AR(DHz)ap[—}BIn 1-— (61) here to chemical and electrochemical engines. Extensions are
RT i (T, py.) . . . . B
o o . 2 ) also available for multicomponent, multireaction units [17]).
where a limiting current is introduced defined by an equation
i = QT'lexp(_ Ea) o, (62) A real work supply can or_lly be _Iarger than the f|n|te-rate_bound
RT 2 obtained by the optimization. Similarly, the real work delivered

in which C, is a experimentally determined parameter. Power from a nonequilibrium work-producing system (with the same

density is simply the product of voltayeand current density boundary states and duration but with a suboptimal control) can
In an ideal situation (no losses) the cell voltage is defined by the only be lower than the corresponding finite-rate bound. Indeed,
Nernst equation. Yet, while the first term of Eq. (61) defines the the two bounds, for a process and its inverse, which coincide in
voltage without load, it nonetheless takes into account losses ofthermostatics, diverge in thermodynamics at a rate that grows
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with any index quantifying process deviation from the static C-Carnot pointm-molar; ¥ per unit volume; 0 idle run voltage
behavior, e.g. Hamiltoniakl. With thermokinetic models, we )

can confront and surmount the limitations of applying classical Superscripts o _

thermodynamic bounds to real processes. This is a direction®€nvironmenti initial stateff initial state; 0 ideal voltage

with many opportunities, especially for separation and chemical

systems. Electrochemical systems are especially important inReferences
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