
 1  

INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY (ICREPQ'10), Granada 23-25 March, 2010 

 
 

 

Power Generation Limits in Thermal, Chemical and Electrochemical Systems  
 

S. Sieniutycz 
 

Faculty of Chemical and Process Engineering, Warsaw University of Technology,  
1 Waryńskiego Street, 00-645 Warsaw (Poland) 

Phone 00-48-22-256340; fax: 00-48-22-251440, e-mail sieniutycz@ichip.pw.edu.pl 
 
 
Abstract. Power generation limits are evaluated via optimization for 
various energy converters, such like thermal, solar, chemical, and 
electrochemical engines, in particular fuel cells. Thermodynamic 
analyses lead to converters’ efficiencies, which help to solve problems 
of optimal upgrading and downgrading of resources. While methods of 
static optimization, i.e. differential calculus and Lagrange multipliers, 
are sufficient for steady processes, dynamic optimization applies the 
variational calculus and dynamic programming for unsteady processes. 
In reacting systems chemical affinities constitute prevailing 
components of an overall efficiency, thus flux balances are applied to 
derive power in terms of active parts of chemical affinities. 
Methodological similarity is observed when treating power limits in 
flow thermal machines and fuel cells. The examples show power 
maxima in fuel cells and prove suitability of a thermal machine theory 
to chemical and electrochemical systems. The main novelty of 
contribution in the fuel cell context consists in introducing an effective 
change of Gibbs free energy between products p and reactants s which 
takes into account lowering of voltage and power caused by the 
incomplete conversion of the overall electrochemical reaction. 
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1. Introduction 

 
In a previous work [1] we discussed models of power 
production and its limits in purely thermal systems with finite 
rates. In particular, radiation engines were analyzed as important 
nonlinear systems governed by laws of thermodynamics and 
transport phenomena. Temperatures T of participating media 
were only necessary variables to describe these systems. In the 
present work we treat generalized systems in which both 
temperatures T and chemical potentials µk

 are essential. This is 
associated with engines propelled by fluxes of both energy and 
substance. In a process of power production shown in Fig. 1 two 
media differing in values of T and µ interact through an energy 
generator (engine), and the process is propelled by diffusive 
and/or convective fluxes of heat and mass transferred through 
‘conductances’ or boundary layers. The energy flux (power) is 
created in the generator between the resource fluid (‘upper’ fluid 
1) and, say, an environment fluid (‘lower’ fluid, 2).  
 
Both transfer mechanisms and values of conductances of 
boundary layers influence the rate of power production [2]-[5]. 
Local fluxes of heat and power do not change along the process 
path only when both reservoirs (streams) in Fig.1 are infinite. 

When one, say, upper, reservoir is finite, its thermal potential 
decreases along the stream path, which is the consequence of the 
energy balance. Any finite reservoir is thus a resource reservoir. 
It is the resource property or the finiteness of amount or flow of 
a valuable substance or energy which changes the upper fluid 
properties along its path. Then, in the engine mode, one 
observes fluid’s relaxation to the equilibrium with an infinite 
lower reservoir, usually the environment. This is a cumulative 
effect obtained for a resource fluid at flow, a set of sequentially 
arranged engines, and an infinite bath [6]. An  inverse process, 
which needs the supply of an external power, may be referred to 
the upgrading of the resource in a heat pump [7]. From the 
optimization viewpoint, these cases refer to dynamical 
processes, or sequence of states, either in the chronological time 
or in holdup (spatial) time. Studies of resource downgrading or 
upgrading apply methods of dynamical optimization [8].  
 
Downgrading or upgrading of resources may occur also in 
electrochemical systems of fuel cell type. Fuel cells working in 
power production mode are electrochemical flow engines 
propelled by chemical reactions. Their performance is 
determined by magnitudes and directions of participating 
streams and by mechanism of electric current generation. 
Voltage lowering in fuel cells below the reversible value is a 
good measure of their imperfection which influences the 
downgrading and upgrading of reagents. Yet, in this paper we 
restrict to the steady-state fuel cell systems.  
 
Section 2 of the present paper derives suitable controls in power 
systems, the so called Carnot variables. These results are 
common for all processes considered here. Thermal systems are 
treated in Sects 3-8 of this paper, whereas chemical and 
electrochemical systems (fuel cells) are analyzed in Sects 9 and 
10. Section 11 presents basic conclusions.   
 
2. Carnot Controls in Power Yield Systems.  
 
Diverse controls can be applied in power systems to represent 
the propelling fluxes of heat and mass transfer and accomplish 
the task of a sustainable energy conversion. Here we shall recall 
and use definitions of Carnot control variables whose 
derivations and applications were originated in our previous 
work, [9, 10]. We begin with the simplest case of no mass 
transfer, i.e. we shall consider a steady, internally reversible 
(‘endoreversible’) heat engine with a perfect internal power 
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generator characterized by temperatures of circulating fluid T1’ 
and T2’, Fig.1. Stream temperatures, attributed to the bulk o each 
fluid are T1 and T2. The inequalities T1>T1’>T2’>T2 are valid for 
engine mode of the system. The internal entropy balance yields 
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Continuity of pure heat fluxes through each boundary layer 
(each conductor) is assumed (q1=q1’ and q2= q2’), the property 
which does not hold in the case when heat transfer is coupled 
with transfer of substances. As a flux can be normalized versus 
a constant mass flux we neglect dots over symbols of fluxes.  

 
 

Fig.1. A scheme of chemical and/or thermal engine. 
 

Total entropy balance of the system leads to total entropy source 
σs as the difference of outlet and inlet entropy fluxes 
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With an effective temperature called Carnot temperature 
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entropy production of the endoreversible process, Eq. (2), is  
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This form is identical with the familiar expression obtained for 
processes of purely dissipative heat exchange between two 
bodies with temperatures T1 and T’.  
 
From the entropy and energy balances of an internally reversible 
process the endoreversible thermal efficiency follows in terms 
of temperatures of the circulating fluid  
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In terms of temperature T’ of Eq. (3) this efficiency assumes the 
classical Carnot form containing the temperature in the bulk of 
the second reservoir and temperature T’.  

T

T
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This property substantiates the name “Carnot temperature” for 
control variable T’. When a control action takes place, the 
superiority of Eq. (6) over Eq. (5) consists in using in (6) single, 
free control T’, instead of two constrained controls of Eq. (5) 

(linked by an internal balance of the entropy). Moreover, the 
endoreversible power is also of classical form 
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Importantly, the derivation of Eqs. (1) - (7) does not require any 
specific assumptions on the nature of heat transfer. In terms of 
T’ description of thermal endoreversible cycles is broken down 
to formally “classical” equations which contain T’ in place of 
T1. In irreversible situations Carnot temperature T’ efficiently 
represents temperature of the upper reservoir, T1. Yet, at the 
reversible Carnot point, where T1’ = T1 and T2’ = T2, Eq. (3) 
yields T’ = T1, thus returning to the classical reversible theory. 
These properties of Carnot temperature render descriptions of 
endoreversible and reversible cycles similar. They also make the 
variable T’ a suitable control in static and dynamic cases [9, 10].   
 
For the purpose of this paper it is worth knowing that in terms of 
T’ the linear heat transfer is described by a simple equation 

)( TTgq ′−= 11 ,                                   (8) 
where g is overall heat transfer conductance i.e. the product of a 
total exchange area and an overall heat transfer coefficient [8]. 
For a linear resource relaxing to the thermodynamic equilibrium 
along the stationary Lagrangian path or for an unsteady 
relaxation, the kinetics related to Eq. (8) has the linear form 

1
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where the non-dimensional time τ satisfies Eq. (38)  below and 
is related to the overall conductance g of Eq. (8). Subscript 1 is  
neglected in equations describing dynamical paths. The resource 
(or an “upper stream”) is upgraded whenever Carnot 
temperature T’ is higher than resource’s temperature T1. It is 
downgraded (relaxes to the thermodynamic equilibrium with an 
infinite “lower” stream or the environment of T=T2) when 
Carnot temperature T’ is lower than resource’s temperature T1. 
In linear systems, power-maximizing T’ is proportional to the 
resource’s temperature T1 at each time instant [6]). For two finite 
streams with constant heat capacities, see [11].  
 
The notion of Carnot temperature can be extended to chemical 
systems where also the Carnot chemical potential emerges. The 
structure of Eq. (1) also holds to systems with mass transfer 
provided that instead of pure heat flux q the so called total heat 
flux (mass transfer involving heat flux) Q is introduced 

mmkk nTsnTsnTsqQ +++≡ 11 .....   (10) 
or, since the heat flux equals the difference between total energy 
flux ε and flux of enthalpies of transferred components,  q=ε-h, 

GnnnQ mmkk −≡−−≡ 11 εµµµε .......               (11) 
where G is the flux of Gibbs function. The equality  

GQ+=ε                                      (12) 
is fundamental in the theory of chemical engines; it indicates 
that power can be generated by two propelling fluxes: heat flux 
Q and Gibbs flux G, each generation having its own efficiency 
(thermal and chemical efficiencies). The related driving forces 
are the temperature difference and chemical affinity.  
 
When mass transfer is included the internal entropy balance of 
the perfect engine has in terms of total heat flux Q the same 
structure as Eq. (1)  
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'11'22 // TQTQ =                                   (13) 
The continuity of energy and mass fluxes through the resistive 
layers leads to ‘primed’ fluxes in terms of those for the bulk. 
Assuming a complete conversion we restrict to power yield by a 
simple reaction A1+A2=0 (isomerisation or phase change of A1 
into A2). The energy balance 

p+= 21 εε      (14) 
and the mass balance in terms of conserved fluxes through 
cross-sections 1’ and 1 as well as 2’ and 2 

21 = nn      (15) 
are combined with Eq. (13) describing the continuity of the 
entropy flux in the reversible part of the system. This yields 
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Eliminating ε2 and n2 from these equations yields 
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which leads to a power expression 
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In Eq. (19) power p is expressed in terms of fluxes continuous 
through the conductors. 
 
Entropy production in the system follows form the balance of 
fluxes in the bulks of the streams 
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Eliminating q2 from this result with the help of the energy 
balance (14) we obtain 
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An equivalent form of this equation is the formula 
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which may be compared with the same power evaluated for the 
endoreversible part of the system 
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The comparison of Eqs (22) and (23) yields an equality 
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from which the entropy production can be expressed in terms 
of bulk driving forces and active driving forces. We obtain 
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This expression generalizes Eq. (3) for the case when a single 
reaction A1+A2=0 undergoes in the system. Equation (25) leads 
again to the definition of Carnot temperature in agreement with 
Eq. (3) and to Carnot chemical potential of the first component  
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 In a special case of an isothermal process the above formula 
yields a chemical control variable 

'' 212 −+=′ µµµµ        (26’) 
which has been used earlier to study an isothermal engine [12]. 
After introducing the Carnot temperature in accordance with Eq. 
(3), total entropy production of the endoreversible power 
generation by the simple reaction A1+A2=0 (isomerisation or 
phase change of A1 into A2), takes the following simple form 
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Introducing the above formula total heat Q1 satisfying 
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where Q1=q1+T1s1n1 is the total heat flux propelling the power 
generation in the system. The resulting equation is formally 
equivalent with a formula obtained for the purely dissipative 
exchange of energy and matter between two bodies with 
temperatures T1 and T’ and chemical potentials µ1 and µ’.  
 
3. Steady State Energy Systems 
 
Carnot variables T’ and µ’  are two free, independent control 
variables applied in power maximization of steady and 
dynamical generators. Ideas referring to endoreversible systems 
may be generalized to those with internal dissipation.  

 

 
 
Fig. 2. Qualitative picture illustrating entropy production and power 
yield in fuel cells in terms of the density of electric current. For thermal 
engines the picture is qualitatively similar when the electric current is 
replaced by the entropy flux. 
 
Majority of research papers on power limits published to date 
deals with systems in which there are two infinite reservoirs. To 
this case refer steady analyses of Chambadal-Novikov-Curzon-
Ahlborn engine (CNCA engine; [2]) in which energy exchange 
is described by the Newton cooling law, or of the Stefan-
Boltzmann engine, a system with the radiation fluids and energy 
flow governed by the Stefan-Boltzmann law [3]. Entropy 
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production and power diagrams for these systems are shown in 
Fig. 3. In a CNCA engine the maximum power point may be 
related to the optimum value of a free control variable which 
may be efficiency η, heat flux q1, or Carnot temperature T’. 
When internal irreversibilities within the generator play a role, a 
pseudo-Carnot formula applies instead of Eq. (6), in which T2 is 
replaced by product  Φ T2, where Φ  is the internal irreversibility 
factor [5]. In terms of bulk temperatures T1, T2 and Φ one finds 
at the maximum power point 

21
21=′ /)( ΦTTTopt .        (29) 

For the Stefan-Boltzmann engine exact expression at the 
optimal point cannot be determined analytically, yet, the 
temperature can be found graphically from the chart p=f(T’). A 
pseudo-Newtonian model [5], [7], which treats state dependent 
energy exchange with coefficient α(T3), omits to a considerable 
extent analytical difficulties of the Stefan-Boltzmann equation. 

 
4. Dynamical Energy Generation 
 
Dynamical energy yield requires the knowledge of an extremal 
curve rather than an extremum point. This leads us to variational 
metods (to handle extrema of functionals) in place of static 
optimization methods (to handle extrema of functions). 
Observed non-exponential shape of the relaxation curve is the 
consequence of nonlinear properties of the radiation fluid. Non-
exponential are also other curves describing the radiation 
relaxation, e.g. those following from exact models involving the 
Stefan-Boltzmann equation [4], [5], [7]. Optimal, power-
maximizing T(t) is accompanied by optimal control T’(t); they 
both are components of the dynamic optimization solution. 
 
Energy limits of dynamical processes are inherently connected 
with exergies, the classical exergy and its rate-dependent 
extensions. To obtain the classical exergy from work functionals 
it suffices to assume that the thermal efficiency of the system is 
identical with the Carnot efficiency. On the other hand, non-
Carnot efficiencies, influenced by rates, lead to ‘generalized 
exergies’. The benefit from generalized exergies is that they 
define stronger energy limits than classical ones [8]. 
 
5. Finite Resources and Finite Rate Exergies  
 
Two different kinds of work, first associated with the resource 
downgrading during its relaxation to the equilibrium and the 
second – with the reverse process of resource upgrading, are 
essential. This idea is illustrated in Fig. 2 of ref [1]. In engine 
mode work is released, in heat-pump mode work is supplied. 
Optimal work follows as a general potential depending on end 
states and duration. For appropriate boundary conditions the 
function of extremum work coincides with the exergy at flow as 
the function that characterizes quality of resources.  
 
Total power obtained from an infinite number of infinitesimal 
stages representing the resource relaxation is determined as the 
Lagrange functional of the following structure 
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where f0 is power generation intensity, G& - resource flux, c(T)-
specific heat, η(T, T’) - efficiency in terms of state T and control 
T’, further T – enlarged state vector comprising state and time,  t 
– time variable (residence time or holdup time) for a resource 
contacting with energy transfer surface. For a constant mass flux 
of a resource stream, one can extremize power per unit mass 
flux, i.e. the quantity of specific work dimension called ‘work at 
flow’. A non-dimensional time τ is often used in the description 
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This definition assures that τ  is identical with the number of the 
energy transfer units, and related to system’s constants, χ and 
HTU (relaxation constant and height of the transfer unit). 
Equation (31), which links both times, τ and t, contains 

resource’s flow G& , stream velocity v through cross-section ⊥A , 
and heat transfer exchange surface per unit volume av [5]. 
Function f0 in Eq. (30) contains thermal efficiency, η, described 
by a practical counterpart of the Carnot formula. When T > Te, 
efficiency η decreases in the engine mode below ηC and 
increases in the heat-pump mode above ηC. At the limit of 
vanishing rates dT/dt = 0 and TT →′ . Work of each mode 
simplifies then to the classical exergy.  
 
Solutions to work extremum problems can be obtained by 
variational methods, i.e. via Euler-Lagrange equation of 
variational calculus. However, such solutions do not contain 
direct information about the optimal work function V = 

max(W& / G& ). Yet, this function can be obtained by solving the 
related Hamilton-Jacobi-Bellman equation (HJB equation: [8] 
and [13]). For the Newtonian energy transfer (linear kinetics) 
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Extremum work function V = max(W& / G&  in equations of this 
type is a function of the final state and total duration. 

 
After evaluation of optimal control and its substitution to Eq. 
(32) one obtains a nonlinear equation 
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which is the Hamilton-Jacobi equation of the problem. Its 
solution can be found by the integration of work intensity along 
an optimal path, between limits Ti and Tf. A reversible (path 
independent) part of V is the classical exergy A(T, Te, 0).  
 
When analytical difficulties are serious method of dynamic 
programming is applied to solve a discrete HJB equation which 
is in, fact, Bellman’s equation of dynamic programming for 
cascades [13]. Modeling of multistage power yield in sequences 
of engines is discussed in the previous publications [5] and [11]. 
 
6. Selected HJB Equations for Energy Systems  
 
We shall display some Hamilton-Jacobi-Bellman equations, in 
particular for radiation power systems. A suitable example is a 
radiation engine whose power integral is approximated by a 
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pseudo-Newtonian model of radiative energy exchange. The 
model is associated with an optimal function 
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whereυ =α(T3)(T’-T). Alternative forms use expressions of 
Carnot temperature T’ in terms of other control variables [5]. 
Optimal power (34) can be referred to a pseudolinear kinetics 
dT/dt = f(T, T’) consistent with rate υ=α(T3)(T’-T). A general 
form of HJB equation for work function V is 
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where f0 is defined as the integrand in Eq. (34). 
 
A more exact model or radiation conversion relaxes the 
assumption of the pseudo-Newtonian transfer and applies the 
Stefan-Boltzmann law. For the symmetric model of radiation 
conversion (both reservoirs composed of radiation we obtain 
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Here Φ’ ≡  Φg1/g2 and coefficient 1−01−= )( mhv pcaσβ  is related 

to molar constant of photons density0
mp  and Stefan-Boltzmann 

constant σ. Power exponent a=4 for radiation and a=1 for a 
linear resource. With a dynamical state equation  [5] 

1−1− 1+′′
′−−=

aae

aa

TTTΦ

TT

dt

dT

))/((
β                           (37) 

applied in general Eq. (35) we obtain a HJB equation 
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Dynamics (37) is the characteristic equation to Eq. (38). 
 
For a hybrid model of the radiation conversion (upper reservoir 
composed of the radiation and lower reservoir of a Newtonian 
fluid, power is 
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whereas the related Hamilton-Jacobi-Bellman equation is 
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where by definition: 
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is Carnot temperature of this particular problem [5].  
 
7. Some Solutions of HJB Equations 
 
Expressions extremized in HJB equations are some 
Hamiltonians. Pontryagin’s variable for the energy problem is z 
= - ∂V/∂T. Applying feedback control optimal temperature T’ or 
some other control is implemented as the quantity maximizing 
the hamiltonian with respect to Carnot temperature at each point 
of the path. Maximization  of  H leads to two formulas. The first 

expresses optimal control T' in terms of T and z = - ∂V/∂T. For 
the linear kinetics of Eq. (32) we obtain 
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Whereas the second formula is the original equation (32) 
without maximizing operation 
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To obtain optimal control function T'(z, T) one should solve the 
second equality in equation (41) in terms of T’. The result is 
optimal Carnot control T' in terms of T and z = - ∂V/∂T, 
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This  expression is next substituted into (42); the result is the 
nonlinear Hamilton-Jacobi equation 
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which contains the energylike (extremum) Hamiltonian of the 
extremum process 
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Expressing extremum Hamiltonian (45) in terms of state 
variable T and Carnot control T ' yields an energylike function 
satisfying the following relation 
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E is the Legendre transform of the work lagrangian l0 = - f0 with 
respect to the rate u = dT/dτ. Assuming the Hamiltonian value, 
say h, one can exploit the constancy of H to eliminate ∂V/∂T. 
Next combining equation H=h with optimal control (43), or 
with an equivalent result for heat flow control u=T ‘-T  
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yields optimal rate u= T& in terms of temperature T and the 
Hamiltonian constant h 
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A more general form of this result which applies to systems with 
internal dissipation (factor Φ) and applies to the pseudo-
Newtonian model of radiation is 

TTΦT
TΦcTΦc

T
vv

),,(
)(

1
)(

1

σ
σσ ξ hhh ≡




























±−±=

−

&            (49) 

where ξ , defined in the above equation, is an intensity index 
and hσ=h/T. This result is valid the temperature dependent heat 
capacity cv(T)=4a0T

3. Positive ξ refer to heating of the resource 
fluid in the heat-pump mode, and the negative - to cooling of 
this fluid in the engine mode. Therefore pseudo-Newtonian 
systems produce power relaxing with the optimal rate 

TΦTT ),,( σξ h=& .        (50) 
Equations (49) and (50) describe the optimal trajectory in terms 
of state T and a parameter hσ. The optimal Carnot control is 
 

( )TTΦT ),,( σξ h+1=′           (51) 
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Comparing with linear systems, pseudo-Newtonian relaxation 
curve is not exponential. Optimal temperature of radiation 
downgraded in engine mode (upgraded in heat-pump mode) is 
illustrated in [4], [5] and [7]. HJB theory of energy systems can 
also be based on minimum properties of entropy production.  
 
8. Standardized Functions of Optimal Work 
 
When standard the standard exergy boundary conditions are 
applied optimal work functions become generalized (rate 
dependent exergies. Let us illustrate these for linear systems. 
Substituting temperature control (51) with a constant ξ into 
work functional (30) and integrating along an optimal path 
subject the standard exergy boundary conditions yields an 
extremal work function 

f

i

e
e

f

i
efifi

T

T

cT

h
cT

T

T
cTTTchTTV lnln)(),,( −−−=            (52) 

This expression is valid for every process mode. Integration of 
Eq (49) subject to end conditions T(τi)=Ti and T(τf)=Tf leads to V 
in terms of the process duration.  
 
For radiation cv(T)=4a0T

3, where a0 is the radiation constant. An  
optimal path consistent with Eqs. (50) - (52) is of the form 

( ) iii
τTTTTΦa τσ −=−−± )/ln()3/4(

2/32/32/-12/12/1
0 h .             (53) 

The integration limits refer to the initial state (i) and a current 
state of the radiation fluid, i.e. temperatures Ti and T 

corresponding with τi and τ. Optimal curve (53) refers to the 
radiation relaxation subject to constraint resulting from Eq. (50).  
  
The corresponding extremal work function per unit volume of 
flowing radiation is 
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The generalized exergy of radiation at flow [14] follows from 
Eq. (54) after applying exergy boundary conditions. Yet the 
classical exergy of radiation at flow resides in the exergy 
equation in Jeter’s form [15] rather than in Petela’s form [14].  
 
9. Chemical Power Systems 
 
The developed approach can be extended to chemical and 
electrochemical engines. Here we shall make only a few basic 
remarks. In chemical engines mass transports participate in 
transformation of chemical affinities into mechanical power 
[12], [16]. Yet, as opposed to thermal machines, in chemical 
ones generalized streams or reservoirs are present, capable of 
providing both heat and substance. Large streams or infinite 
reservoirs assure constancy of chemical potentials. Problems of 
extremum power (maximum of power produced and minimum 
of power consumed) are static optimization problems. For a 
finite “upper stream”, however, amount and chemical potential 
of an active reactant decrease in time, and considered problems 
are those of dynamic optimization and variational calculus. 
Because of the diversity and complexity of chemical systems the 
area of power producing chemistries is extremely broad. The 
simplest model of power producing chemical engine is that with 
an isothermal isomerization reaction, A1+A2=0 [3],[12]. Power 

expression and efficiency formula of a chemical system follow 
from the entropy conservation and energy balance of a power-
producing zone (‘active part’). In an ‘endoreversible chemical 
engine’ total entropy flux is continuous through the active zone. 
When a formula describing this continuity is combined with 
energy balance we find in an isothermal case 

121 −= np )( '' µµ ,        (55) 
where the feed flux n1 equals to n, an invariant molar flux of 
reagents. Process efficiency ζ is defined as power yield per flux    
n. This efficiency is identical with the chemical affinity of our 
reaction in the chemically active part of the system. While ζ is 
not dimensionless, it describes correctly the system. In terms of 
Carnot variable, µ’ , which satisfies Eq. (27) 

2−′= µµζ .      (56) 
For a steady engine the following function describes chemical 
Carnot control µ’  in terms of fuel flux n1 and its mole fraction x 
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As Eq. (56) is valid, Eq. (57) also characterizes the efficiency 
control in terms of n and fuel fraction x.  
 
Equation (57) shows that an effective concentration of the 
reactant in upper reservoir x1eff = x1 – 1−

1g n is decreased, 
whereas an effective concentration of the product in lower 
reservoir x2eff = x2 + 1−

2g n is increased due to the finite mass 

flux. Therefore efficiency ζ decreases nonlinearly with n. When 
effect of resistances (gk)

-1 is ignorable or flux n is very small, 
reversible Carnot-like chemical efficiency, ζC, is attained. The 
power function, described by the product ζ(n)n, exhibits a 
maximum for a finite value of the fuel flux, n.  
 
Application of Eq. (57) to an unsteady case yields a functional 
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whose maximum describes the dynamical limit of the system. 
Here X=x/(1-x) and j equals the ratio of upper to lower mass 
conductance, g1/g2. The path optimality condition may be 
expressed in terms of the constancy of the Hamiltonian 
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XRTXXH && ),( .                        (59) 

For low rates and large concentrations X  (mole fractions x1 
close to the unity) optimal relaxation rate of the fuel resource is 
approximately constant. Yet, in an arbitrary situation optimal 
rates are state dependent so as to preserve the constancy of H in 
Eq. (59). Extensions of Eq. (57) are known for multireaction 
systems and those with internal imperfections [17]. 
 
10. Fuel Cells at Steady States 
 
Now we consider performance bounds in fuel cells. These 
systems are electrochemical flow engines propelled by chemical 
reactions, which satisfy requirements imposed by chemical 
stoichiometry. Units which produce power are engines whereas 
those which consume power are electrolyzers. Their main 
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advantage in comparison to heat engines is that their efficiency 
is not a major function of device size. Figure 3 illustrates a solid 
oxide fuel cell (SOFC) which works in the power yield mode.  

 
Fig. 3. Principle of a solid oxide fuel cell 

 
The basic structure of fuel cells includes electrolyte layer in 
contact with a porous anode and cathode on either side. Gaseous 
fuels are fed continuously to the anode (negative electrode) 
compartment and an oxidant (i.e., oxygen from air) is fed to the 
cathode (positive electrode) compartment. Electrochemical 
reactions at the electrodes produce an electric current. The effect 
is the oxidation of fuel, e.g. hydrogen, and reduction of oxidant, 
e.g. oxygen. This makes fuel cells similar to an engine in Fig. 1.  
 
Voltage lowering in fuel cells below the reversible value is a 
good measure of their imperfection, Fig.4. With the concept of 
effective nonlinear resistances operating voltage of a fuel cell 
can be represented as the departure from the ideal voltage E0 

 

 V = E0 - Vint= E -Vact -Vconc - Vohm       (60) 
 

The losses, which are called polarization, include three main 
sources: activation polarization (Vact), ohmic polarization (Vohm), 
and concentration polarization (Vconc). Large number of 
approaches for calculating polarization losses has been reviewed 
[18]. Activation and concentration polarization occurs at both 
anode and cathode locations, while the resistive polarization 
represents ohmic losses throughout the fuel cell. As the voltage 
losses increase with current, the initially increasing power 
finally decreases for sufficiently large currents, so that maxima 
of power are observed (Fig. 4). 
 
The voltage equation used in Wierzbicki’s thesis [18] for the 
purpose of the calculation of fuel cell power is: 
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where a limiting current is introduced defined by an equation 

2
)exp(1

1 H
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L p
RT

E
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−= −    (62) 

in which C1 is a experimentally determined parameter. Power 
density is simply the product of voltage V and current density i. 
In an ideal situation (no losses) the cell voltage is defined by the 
Nernst equation. Yet, while the first term of Eq. (61) defines the 
voltage without load, it nonetheless takes into account losses of 

the so-called idle run, which are the effect of flaws in electrode 
constructions and other imperfections which cause that the open 
circuit voltage will in reality be lower than the theoretical value. 
Activation polarization Vact is neglected in this model. The 
losses include ohmic and concentration polarization. The second 
term of Eq. (61) quantifies ohmic losses associated with electric 
resistance of electrodes and flow resistance of ions through the 
electrolyte. The third term refers to mass transport losses. 
Quantity iL is the particular current arising when the fuel is 
consumed in the reaction with the maximum possible feed rate.  
 

  
 
Fig.4. Voltage-current density and power-current density characteristics 
of the SOFC for various temperatures. Continuous lines represent the 
Aspen PlusTM calculations testing the model consistency with the 
experiments. These lines were obtained in Wierzbicki’s MsD thesis 
supervised by S. Sieniutycz and J. Jewulski [19]. Points refer to 
experiments of Wierzbicki and Jewulski in Warsaw Institute of 
Energetics (Wierzbicki, [19], and his ref 18). 
 
In the literature there are many experimental and theoretical 
examples showing power maxima in fuel cells and proving the 
suitability of the theory to chemical and electrochemical 
systems. For example, data obtained in L. Chen’s research 
group [18] are consistent with those of Wierzbicki [19]. 
 
11. Concluding Remarks 
 
This research provides data for power production bounds 
(limits) which are enhanced in comparison with those predicted 
by the classical thermodynamics. In fact, thermostatic bounds 
are often too far from reality to be really useful. Generalized 
bounds, obtained here by solving HJB equations, are stronger 
than those predicted by thermostatics. As opposed to classical 
thermodynamics, they depend not only on state changes but also 
on process irreversibilities, ratios of stream flows, stream 
directions, and mechanism of heat and mass transfer. The 
methodology familiar for thermal machines has been extended 
here to chemical and electrochemical engines. Extensions are 
also available for multicomponent, multireaction units [17]).   
 
A real work supply can only be larger than the finite-rate bound 
obtained by the optimization. Similarly, the real work delivered 
from a nonequilibrium work-producing system (with the same 
boundary states and duration but with a suboptimal control) can 
only be lower than the corresponding finite-rate bound. Indeed, 
the two bounds, for a process and its inverse, which coincide in 
thermostatics, diverge in thermodynamics at a rate that grows 
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with any index quantifying process deviation from the static 
behavior, e.g. Hamiltonian H. With thermokinetic models, we 
can confront and surmount the limitations of applying classical 
thermodynamic bounds to real processes. This is a direction 
with many opportunities, especially for separation and chemical 
systems. Electrochemical systems are especially important in 
view of their clean, efficient, and reliable performance.  
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Nomenclature 
 
av total area of energy exchange per unit volume [m-1] 
E0, E0 Nernst ideal voltage and idle run voltage, respectively [V] 

G& resource flux [gs-1, mols-1]  
g1, g  partial and overall conductance [Js-1K-a] 
H Hamiltonian function 
HTU height of transfer unit [m] 
h numerical value of Hamiltonian [Jm-3K-1] 
h, hv specific and volumetric enthalpies [Jg-1, Jm-3] 
i-electric current density [Am-2] 
n flux of fuel reagents [gs-1, mols-1] 

p = W& power output [Js-1] 
0
mp molar constant of photons density [molm-2K-3s-1] 

q heat flux between a stream and power generator [Js-1] 
Q total heat flux involving transferred entropies [Js-1] 
S, Sσ  entropy and entropy produced [JK-1] 
T variable temperature of resource [K] 
T1, T2 bulk temperatures of reservoirs 1 and 2 [K] 
T′Carnot temperature control [K],  
t physical time [s] 
u and υ  rate controls, dΤ/dτ and dT/dt, [K, Ks-1] 
V voltage, maximum work function, resp.[V, Jmol-1]  
W work produced, positive in engine mode [J] 
x mass fraction [-], length coordinate [m] 
 
Greek symbols 
α1, α‘ partial and overall heat coefficients [Jm-2s-1K-1] 

β effective coefficient of radiation transfer related to constant 0
mp  and 

Stefan-Boltzmann constant ( 1−01−= )( mhv pcaσβ ) [s-1] 

ε total energy flux, conservative along a conductor [Js-1] 
η = p/q1 first-law thermal efficiency [-] 
χ = ρcv(α’av)

-1 time constant [s] 
µ chemical potential [Jmol-1] 
µ ′ Carnot chemical potential [Jmol-1] 

Φ  factor of internal irreversibility [-] 
σ Stefan-Boltzmann constant for radiation  [Jm-2 s-1K-4] 
σs entropy production rate in the system [JK-1s-1] 
ξ intensity index [-] 
ζ chemical efficiency [-]  
τ dimensionless time or number of transfer units [-] 
 
Subscripts 

C -Carnot point; m- molar; -v per unit volume; 0 idle run voltage 
 
Superscripts 
e environment; i  initial state; f initial state; 0 ideal voltage 
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