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Abstract. This paper proposes a new method for online 

estimation of the induction generator parameters by means of 

adaptive neuro-fuzzy inference systems (ANFIS). The suggested 

technique can be applied to induction generators that are used in 

wind energy conversion systems (WECS). The WECS structure 

comprises a wind turbine, a three-phase induction generator and 

two back-to-back power converters. The WECS provides electric 

energy to the utility grid through an LCL filter. The self-

adjustment of the induction generator parameters provides 

accuracy in the implementation of the field oriented control and 

therefore accomplishes optimal operation on the WECS. The 

proposed method is simple and, since it does not require time 

consuming off-line laboratory experiments, it can be easily 

applied to any wind energy system that is already in operation. 

Several simulation results will be presented in order to validate 

the theoretical considerations and demonstrate the operational 

improvements of the proposed system. 
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1. Introduction  

Wind energy has attracted increased attention during the 

past years, as they are considered as viable solution to the 

world’s ever growing power needs. Squirrel cage rotor 

induction generator is an attractive option for a wind 

generation system, since it is inexpensive with robust 

construction compared to permanent magnet synchronous 

generator and also requires low maintenance compared to 

wound rotor synchronous generator. Variable speed 

WECSs have been widely investigated in the technical 

literature and several developments in the generator 

control have been proposed. 

 

Field oriented control is widely applied in WECS with 

induction generator because it provides decoupled control 

of torque and flux-linkage. Thus, fast tracking of the 

desired speed and independent regulation of the flux-

linkage can be achieved. In order to achieve decoupled 

control, the torque and flux components of the stator 

current are aligned with the q and d axes, respectively. 

Critical parameters for the implementation of the field 

oriented control are the rotor resistance and inductance, 

which can be considered constant or can be estimated on-

line by various methods.  

 

For ideal decoupled control, the controller parameters 

should track the respective machine parameters. 

However, this is quite difficult to be achieved because 

rotor resistance varies with temperature and rotor 

inductance depends on the machine’s saturation level.  

Several research papers have been published in the 

technical literature for on-line identification of induction 

machine parameters [2]-[11]. However, none of them 

takes into account the variation of the magnetizing 

inductance that may cause slip miscalculation and 

consequently sluggish flux-loop response. This would 

also affect the torque sensitivity and consequently would 

lengthen the response time of the whole WECS control. 

In [15] and [16], a control strategy for varying parameter 

and saturated machines are presented, respectively; 

however, the machine parameters are calculated off line 

and then remain constant. In [1], an online identification 

method for the magnetization curve of an induction 

motor is presented; however, it relies on measurement of 

the stator voltage, which is not always possible due to 

hardware limitations. Furthermore, the calculation of the 

magnetization inductance may fail, because the method 

assumes alignment of the d-q transformation with the 

stator flux vector, which is dependent on the 

magnetization inductance and therefore is uncertain. 

In this paper, an on-line identification method for the 

magnetization curve of a squirrel cage induction 

generator is proposed. The suggested method is applied 

on a variable speed WECS, but it can also be applied on a 

general purpose variable speed squirrel cage induction 
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machine driven by a power converter and a variable speed 

control system. The proposed method is simple and can be 

applied on-line; therefore, it does not require time 

consuming and costly off line measurements. 

 

The identification of the machine magnetization curve is 

performed by considering the induction machine 

differential equations, expressed on the synchronous d-q 

reference frame. The magnetization curve is initially 

considered linear and a training algorithm on-line fine-

tunes it, by considering the electric loss of the induction 

generator and the power output of the system. Specifically, 

the measured power output of the generator is compared 

with the estimated power output and through this 

comparison, the instantaneous value of the magnetization 

inductance for a given set values of d- and q- axis current 

components is estimated.  

 

In order to approximate the magnetization inductance of 

the machine as a function of the machine currents, usually 

a piecewise linear or a polynomial function of the 

magnetizing current is used [1]. In this paper, a non-linear 

adaptive Neuro-Fuzzy inference system (ANFIS) is used 

for the approximation of the magnetization curve. The 

advantage of such choice is the ability of Neuro-Fuzzy 

systems to approximate any kind of non-linear curve with 

increased accuracy and a minimal number of adaptive 

neurons. This means that the computational effort needed 

is relatively small compared to the increased precision of 

the approximation, and a minimal number of parameters is 

needed for the tuning of the system. Furthermore, the 

modern microprocessors are powerful enough to perform 

such calculations in real time. The ANFIS approximation 

provides filtering of the input signals through the 

fuzzification process, reducing the noise of the system that 

is caused by the PWM technique of variable speed 

inverters. 

2. Induction machine model 

The equations of an induction machine on the 

synchronously rotating dq- reference frame are 
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. 
The electromagnetic torque of the 

machine is given by 
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The above expression of the machine equations is valid 

for any synchronously rotating reference frame; 

therefore, the following procedure is independent from 

the knowledge of the machine inductance.  

 

In the above equations, the machine parameters can be 

easily determined from the no-load and locked rotor test 

of the electrical machine. However, the magnetization 

inductance of the generator, Lm, may be miscalculated or 

even change during the operation of the generator due to 

the effects of core saturation. 

   

From (2), it is deduced that the calculation of the 

electromagnetic torque will produce false results when 

the magnetization inductance of the machine is unknown. 

The same is valid for the electromagnetic power at the 

shaft calculated as 
e e r

P T . However, when the 

machine operates with a back-to-back converter, the 

power output is measured either at the intermediate dc-

link or at the inverter output as a result of the system 

control demands. Thus, the real power output of the 

system is known. The error between the measured and 

the calculated machine power at the output is calculated 

as 

 , ( )p out m calc out e cu fee P P P P P P       (3) 

 

Due to power balance, the actual error cannot be other 

than zero and thus eq. (3) becomes: 
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From (4), the electromagnetic torque of the generator can 

be calculated.  

 

Considering a steady state of the machine, the left side of 

equation (1) is zero. For the field oriented control the 

stator currents are measured and the stator voltage 

command signals are calculated as a result of the control. 

 

The rotor currents can be calculated solving (1) as: 
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where 11 12 14 11, , ,A A A B are the corresponding elements of 

the matrices A and B, respectively. 

 

Substituting (5) into (2) we get: 
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with
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Solving for Lm and considering that ,r m lrL L L   

s m lsL L L  , a second order equation is produced and the 

solution can be calculated as: 
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In (7), only the positive root of the discriminant is 

calculated, as the negative yields negative solution for the 

magnetization inductance. 

 

The above equations can be used to determine the 

magnetization inductance of the induction generator on-

line, during the operation of the generator. However, the 

calculations are prone to numerical instability caused by 

the signal noise and the fluctuation of the generator 

currents and voltages during transients. Therefore, the 

results of the on-line estimation of the magnetization 

inductance cannot be trusted and they must be further 

processed in order to produce reliable results.  

 

In order to gain a reliable approximation of the 

magnetization inductance, the data are gathered and used 

to train an ANFIS that will serve as an approximator of the 

magnetization curve. The ANFIS training can provide the 

necessary filtering of the acquired data. 

 

 The magnetization inductance of the generator is a 

function of the direct and quadrature axis current of the 

generator. Thus, input-output pairs are stored and the 

ANFIS is trained, either on-line, or off-line, depending 

on the needs of the application. After the training is 

finished, the ANFIS can be used for the calculation of the 

magnetization inductance as a function of the machine 

currents. 

 

3. ANFIS structure 

The structure of the ANFIS that approximates the 

magnetization curve is given in Fig. 1. The ANFIS has 

the direct and quadrature axis current components of the 

stator current as inputs and the output is the 

magnetization inductance.  

At the input layer, the two currents are sampled and 

fuzzified according to pre-decided fuzzy rules. The 

membership function of each rule pair for the two 

currents is decided through bell shaped membership 

functions, linguistically expressed as: 
 

“if isq is Ai and isd is Bi, then the Lm is fi” 
 

The subscript i corresponds to the i-th fuzzy rule pair, 

and A and B are the fuzzy sets {small, medium, large}. 

The function that corresponds to each fuzzy rules pair is 

calculated as 
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The firing strength of each rule depends on the weight of 

each membership function. The output function 

corresponding to each rules pair is accordingly weighted 

with the firing strength of each rule pair, and the output 

of the ANFIS is calculated as  
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The training of the system is performed with linear 

recursive least squares identification of the ANFIS 

 

 
 

Fig. 1. Structure of the ANFIS for the approximation of the 

magnetization inductance 

 

Fig. 2. Training procedure of the ANFIS. The magnetization inductance 

value is calculated through the model equations and the least squares 

algorithm trains the ANFIS with the new value of Lm. 
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parameters, as illustrated in Fig. 2. Initially, a linear 

magnetization curve is considered and the ANFIS is 

trained accordingly. At each identification step, the 

magnetization inductance of the generator is calculated 

with respect to the values of isq and isd. The ANFIS is then 

trained in order to include the new data and the 

coefficients ai, bi, ci are adapted to the new value.  

 

The convergence of the algorithm can be adjusted by 

choosing appropriate values for the initial covariance 

matrix Pk that is required by the recursive least squares 

algorithm. A forgetting factor should also be chosen 

between 0.95-1 so that the new values will gain more 

weight during the training. 

 

For the application of the technique, initially an Lm value is 

calculated through the no-load test of the machine. Then, 

the ANFIS is trained with the constant value for all d-axis 

currents and the system operates as normally. During the 

operation of the generator, the approximation of the 

magnetization curve constantly converges to its real value. 

After the training has been completed on various operating 

points of the generator, the magnetization curve can be 

retrieved and applied to the generator control scheme. 

 

4. Simulation Results 

A number of simulations have been conducted in order to 

demonstrate the operational improvements of the proposed 

identification method and the results are presented. For the 

simulation, a 5.5 kW Wind Energy Conversion System has 

been considered, as illustrated in Fig. 3. The system 

comprises a wind turbine coupled to a squirrel cage 

induction generator through a gear box, which is needed 

to adapt the low rotational speed of the wind turbine to 

that of the generator, which is typically three or four 

times higher. A power converter is used, that controls the 

speed of the generator and acts as a rectifier, 

transforming the alternating current that is produced by 

the generator to dc and injecting it to the dc-link. A 

capacitor is used at the dc-link to stabilize the dc voltage 

and a breaking resistor is installed in order to dissipate 

the excess electrical power that cannot be absorbed by 

the grid. Thus, the system is protected from overvoltage 

at the dc-link, for example during an abrupt wind gust or 

during a grid side fault, where the system cannot provide 

the generated power to the grid.  

 

An inverter is placed at the output of the system, 

transforming the direct current to alternating with the 

appropriate frequency and phase and injecting it into the 

utility grid. An LCL filter is placed between the inverter 

and the utility grid that reduces the harmonic content of 

the injected current, according to the demands of the grid 

manager. 

 

For the simulation, a wind turbine with blade radius of 

2.25m is considered and the gearbox gear ratio is chosen 

1:4. The generator side converter (rectifier) utilizes 

vector control in order to control the speed and torque of 

the generator. Using rotor field oriented control (FOC), 

the d-axis current of the generator is aligned to the 

magnetic flux vector of the generator, so as the q-axis 

 
 

Fig. 3. System structure of a variable speed WECS with 3-phase squirrel-cage induction generator. 

 

Fig. 5 Power output of the WECS and estimated value of the 
magnetization inductance, as calculated by the proposed method. The 

estimated inductance converges to its real value as the system 

approaches steady state. 

 

Fig. 4. Reference and real rotational speed of the generator and power 
coefficient of the WECS. The operation of the maximum power point 

tracker is demonstrated, and the system converges at Cp  = 0.48 which is 

the optimal value. The speed values refer to the generator speed. 
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current is directly proportional to the generator torque and 

the d-axis current regulates the flux-linkage. 

For the line side converter, vector control is also utilized, 

with the direct axis of the dq-transformation aligned with 

one of the line voltages, so as the d-axis controls the active 

power injection at the grid, while the q-axis current 

controls the reactive power. The power factor at the system 

output can be leading, lagging or unity, depending on the 

grid manager demands and can be adjusted during 

operation of the system. The LCL filter is chosen 4.2mH at 

for each inductance and a capacitor of 5μF is chosen. For 

the dc-link, a capacitor of 3mF is used and the breaking 

resistor is 50Ω. 

 

For the demonstration of the operation of the algorithm, a 

simulation has been conducted showing the calculation of 

the value of Lm. The system is operating with a constant 

wind of 6.5m/s and an MPPT algorithm is utilized in order 

to track the rotational speed of the wind turbine that 

achieves maximum power production, according to the 

wind turbine characteristic curves. The chosen MPPT 

algorithm is that of perturbation and observation which 

introduces a perturbation at the generator operating speed 

and measures the power output of the system. Following, 

the operating speed command signal is decided towards 

the speed that produced more power, and the algorithm 

keeps adding perturbations to the speed until equilibrium is 

reached, where the power production will be maximum 

and therefore MPP is achieved. 

 

In Figs. 4 through 7, the simulation results for operation of 

the WECS with steady wind of 6.5 m/s are presented. The 

system starts from zero speed and operates with MPPT 

algorithm, reaching the optimal speed within 1 second and 

then maintains steady state. The speed values refer to the 

generator side of the gearbox. 

 

For the implementation of the FOC of the generator, a 

value for the magnetization inductance, different from the 

machine inductance has been chosen. The value of Lm is 

used for the calculation of the flux-linkage of the machine; 

therefore, having a false value the FOC fails to align the d-

axis of the dq- transformation with the flux-linkage and the 

magnetic flux and torque of the generator are distributed 

unevenly. The machine model Lm is 0.46H and the model 

is not saturated, which means that the Lm is constant, while 

the FOC operates having a different value, at 0.6H. Due to 

the closed loop operation of the generator, the speed of the 

generator will converge to the command speed, as 

calculated by the MPPT algorithm, however the response 

will be suboptimal, leading to possibly saturation of the 

machine or even instability and control failure. 

The operation of the MPPT algorithm is demonstrated, as 

the system starts at an initial speed and then searches for 

the maximum power point, which is achieved at 0.8s. 

This can be confirmed by the Cp coefficient, which 

reaches the optimum of 0.48, meaning that 48% of the 

available wind speed is captured by the wind turbine. 

After the optimum has been reached, the generator 

achieves steady state and operates with constant speed. 

 

As illustrated in Fig. 5, the algorithm output of the 

magnetization inductance estimation converges to the 

real value after the system has reached a steady state. 

This is because the estimation produces correct values 

only in steady state. Due to the noise that affects the 

signals fed to the algorithm, the output is also noisy and it 

needs to be filtered through the ANFIS. 

 

Next, the ability of the ANFIS to approximate the 

magnetization curve is demonstrated. In order to simulate 

the entire magnetization curve, a saturated machine has 

been used and a series of simulations have been 

conducted with the generator operating at different levels 

of magnetization. In simulation, the effect of the q- axis 

current component of the stator does not affect the 

magnetization level of the machine; therefore, it has not 

been regarded, and only the effect of id has been taken 

into consideration. The data needed for the training of the 

ANFIS are the d- axis current component of the generator 

and the corresponding estimated values of Lm. The 

 

Fig. 6. d- and q- axis reference voltages of the generator stator as 

generated at the output of the current control loop proportional-integral 

controllers.  

 

Fig. 7. d- and q- axis stator currents of the generator. The initial spikes  

of iq  is due to the effect of the proportional-integral controller of the 
speed control loop and are reduced as the system reaches steady state. 

The negative value of iq is due to the operation as generator. 

 

Fig. 8. Estimated and ANFIS-fitted value of the magnetization 

inductance Lm of the generator. 
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ANFIS is initially trained with a constant value of Lm = 

0.47H for any value of the d-axis current component. 

Then, the ANFIS is trained on-line with data gathered 

during the simulation. The magnetization inductance 

versus d-axis current is illustrated in Fig. 8, along with the 

final form of the ANFIS, after the training. It can be seen 

that the ANFIS approximates successfully the 

magnetization inductance of the generator.  

 

In the range 0-3.0 A the induced flux linkage at the rotor is 

too low; as a result the generator cannot operate in these 

conditions. Therefore, there have not been data for this 

area. However, the magnetization level at this region is 

low and the magnetization inductance is assumed constant, 

at the nominal value. The ANFIS training procedure does 

not alter the form of the curve at this region, since no 

training data have been provided. 

 

After the training, the ANFIS can be extracted and used as 

reference for the Lm value, with the input of the d-axis 

current component. The data is expected to also fit 

experimental results and the q- axis current component 

effect on the magnetization can be observed as well. 

 

5. Conclusions 

In this paper, an on-line estimation method for the 

magnetization curve of induction machines is presented. 

The proposed method can operate on any general purpose 

variable speed squirrel cage induction machine driven by a 

power converter and a variable speed control system. The 

magnetization inductance is calculated in real time by 

means of the machine equations and an adaptive Neuro-

Fuzzy inference system is trained to approximate the 

magnetization inductance as a function of the machine 

stator current. After the training of the ANFIS has been 

completed, the magnetization curve can be obtained and 

used for the improvement of the control of the machine. 

Several simulation results have been presented in the full 

paper in order to validate the operational improvements of 

the proposed algorithm. 
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