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Abstract. This paper presents a new circuit topology of a
phase-locked loop that can be used for synchronising a single-
phase wind turbine generator (WTG) with the low voltage utility 
grid. The circuit is based on the time-delay digital tanlock loop 
(TDTL) architecture and was modelled and simulated using 
Simulink/MATLAB. The results presented demonstrate the 
ability of the circuit not only to synchronise a WTG with the grid, 
but also to re-gain synchronization following a sudden 
disturbance in the grid voltage. The simulated disturbances 
included a ramp and a multi-step change in the phase of the grid 
voltage waveform.  
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1. Introduction
Recent years have seen interest in renewable energy 
utilization increasing at a record rate [1-2]. Due to the 
intermittent nature of renewable energy sources (RES), its 
utilization has, mainly, taken one of two forms: using a 
standalone system in which the ac load is connected to a 
“standalone” inverter energised from a battery bank, or by 
integrating the renewable energy into the low voltage grid 
using a “grid-tie” inverter [3,4]. However, connecting a 
renewable energy (RE) generator such as a wind turbine 
generator (WTG) to the grid may induce unwanted effects 
on the grid voltage such as harmonic distortion. In order to 
regulate the connection and integration of an RE generator 
with the grid, certain regulations have been put forward by 
regulatory bodies such as the IEC (International 
Electrotechnical Commission) and the IEEE [5,6]. Prior to 
connecting an RE generator, or any generator for that 
matter, the generator voltage must be synchronised with 
the grid voltage. To achieve such synchronization, circuits 
based on the implementation of some form of the 
ubiquitous phase-locked loop technique have been 

reported in the literature [7-9]. Generally, these are 
analogue circuits and therefore, their working life and 
functionality are fairly dependent upon component 
tolerances and aging. In this paper, a new digital circuit 
topology for synchronising a single-phase wind turbine 
generator with the grid is presented. The circuit which is 
based on the time delay digital tanlock loop (TDTL) 
[10,11] not only synchronises a WTG to the grid, but also 
re-establishes synchronization whenever it is lost such as 
after a sudden perturbation in the phase of the grid 
voltage. Essentially, the circuit consists of two TDTL 
loops as depicted in Fig. 1. The upper loop is a second 
order loop through which synchronization is achieved 
and is used to drive the lower first order TDTL loop. 
Therefore, the system will be referred to as TDTL with 
dual input (TDTL-DI). The lower arctan phase detector 
produces an error signal that is proportional to the phase 
difference between the DCO (digital controlled 
oscillator) output and the grid voltage. This error is 
corrected by the upper loop.  
Mathematical analysis and modelling of the proposed 
circuit along with results of its testing are presented.  

2. System Analysis

A continuous sinusoidal signal ( )y t  with a frequency 

offset 

( )oω ω ω∆ = −
is received by the proposed design. This is also translated 
as a phase shift, from the free running frequency 

( / )o rad sω  of the DCO as follows

( ) ( )sin oy t A t tω θ= +    (1) 

where A  is the input signal amplitude and 
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( ) oθ  t tθ ω= ∆ +  

is the phase process of the incoming signal, where

( )o radθ  is constant. The incoming signal is passed 

through a time delay unit τ  that introduces a variable 

phase shift of , (ψ )radωτ=  depending on incoming 

signal frequency value. Consequently, a phase shifted 

signal ( )x t  of the input “incoming” signal which is 

generated due to the delay may be expressed as 

( ) ( )sin ox t A t tω θ ψ= + −                             (2) 

As both signals; the incoming signal and the phase shifted 
version pass through sample and hold blocks, as illustrated 
in Fig. 1, sampled versions of both continuous signals (1) 
and (2) may be expressed as in (3) and (4) respectively 

( ) ( )sin ( )  oy k A t k kω θ= +                          (3) 

and 

( ) ( )sin ( )  ox k A t k kω θ ψ= + −                  (4) 

where 

( ) ( )θ k θ t k=     

where t(k)  is the elapsed time up to the kth sampling 
instant.   
The sampling interval between the sampling instants 
( )t k and ( 1)t k −  is given by 

( ) ( )- -1    oT k T c k=                                        (5) 

where 2 /o oT π ω=  is the nominal period of the DCO 

and ( )c i  the output of the digital loop filter at the ith 

sampling instant. By assuming (0) 0t = , the elapsed 

time to reach the kth sampling instant is  

( )
1

1 0

( ) ( )   
k k

o
i i

t k T i kT c i
−

= =
= = −∑ ∑                         (6) 

As a result both ( )y k  and  ( )x k can be written as  

( )
-1

0
osin ( ) ω ( )  

k

i

y k A k c iθ
=

 = − 
 

∑                      (7) 

 and 

( )
1

0

sin ( ) ( )   
k

i
ox k A k c iθ ω ψ

−

=

 = − − 
 

∑             (8) 

 
 

Fig. 1 Block diagram of the proposed system TDTL-DI.  
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Therefore, the phase error between the incoming signal 
and the DCO output signal can be defined as 

1

0

( ) ( ) ( )
k

o
i

k k c iφ θ ω ψ
−

=
= − −∑                                  (9) 

Both (7) and (8) can be expressed in terms of the above 
phase error as 
 

( ) ( )sin  y k A kφ ψ= +                                       (10) 

and 

( ) [ ]sin ( )x k A kφ=                                                  (11) 

Hence, the loop error signal ( )e k produced by the phase 

detector can be expressed as 

( ) [ ]
( )

-1 sin ( )
tan   

sin

k
e k f

k

φ
φ ψ

  
=   

 +     

                    (12) 

where ( ) [( ) mod 2 ]f γ π γ π π= − + + . This error 

signal ( )e k  represents the non-linear phase error version 

whose effect on the nonlinearity of the system worsens as 
the phase shift ψ  moves away from / 2π . The digital 

loop filter with a transfer function ( )D k  receives the 

error signal ( )e k  and produces the signal ( )c k  that 

drives the DCO to the required frequency. Consequently, 
the system difference equation can be derived from (6) and 
(9) as 

( ) ( ) ( )1 -        ok k c kφ φ ω+ = + Λ                       (13) 

where  
 

2 ( / )o oπ ω ωΛ = ∆  

 
Due to the nonlinearity produced by the variation in the 
phase shift ψ which depends on the incoming signal 

frequency, the system difference equation cannot be solved 
by using the Z-transform to find the locking range as was 
the case for the digital tanlock loop (DTL) [12]. Therefore, 
the difference equation was solved numerically using the 
fixed point theorem [12-14] as in the case applied to the 
zero-crossing digital phase lock loop [12,15,16].  
The second order loop utilizes a proportional plus 
accumulation digital filter transfer function ( )D z  which 

is given by 

( ) 1
1 2 / (1 )  D z G G z−= + −                            (14) 

where 1 2G and G  are positive constants. From (13) and 

(14), the system difference equation of the second order 
TDTL can be derived as  

( ) ( ) ( )
( )
( )

'
1

'
1

2 2 1 -

- 1

     

k k k

rK h k

K h k

φ φ φ

φ

φ

+ = +

+  

+   

                         (15) 

Where 
 

2 11 /r G G= +  and '
1 1K G ω= .  

 
Following the procedure presented in [12,15,16] with a 
fixed point analysis as in the second order TDTL, the 
locking range is given by 

1

4
0    sin           

1
oK W

r W

ψ < <  +  
             (16) 

where oψ  is the nominal phase lag induced in the 

incoming signal by the time delay unit. The lower phase 
detector uses the DCO of the upper loop for sampling the 
incoming grid signal 1( )y t , therefore, the phase error 

detector of  the lower loop produces an error if there is a 
phase difference between DCO and the grid. The digital 
loop filter with a transfer function 1( )D k  receives the 

error signal 1( )e k  which produces the signal 1( )c k . 

The digital filter of the lower loop is simply a gain block 

2G .Therefore, the produced loop gain is '2 2K G ω= . 

This modifies the second order TDTL system difference 
equation (15) as  

( ) ( ) ( )
( )

( )

2 2 1 -

' '- ( ) 1
1 2
' '( )  
1 2

k k k

r K K h k

K K h k

φ φ φ

φ

φ

+ = +

+ +  

+ +   

             (17) 

If there is no phase shift initially, the phase difference 

will be zero and consequently the loop gain is '2 0K = . 

On the other hand, when a phase step is applied to the 
input a phase error 1( )e k   is generated. Consequently 

the loop gain '
2K will be included in (17) and corrected 

by the first second order TDTL loop, as a result the signal 
( )y t will synchronised with the grid i.e. with 1( )y t .  

 
3. Results 
 
The proposed synchronization system depicted in Fig. 1 
was tested by applying a consecutive ramp phase and 
multiple phase steps as shown in Fig. 2 and Fig. 3 
respectively. Fig. 2 shows the phase error response and 
the phase plane showing that the phase error goes to zero. 
For the consecutive phase steps test of Fig. 3(a), the 
phase error and phase plane are shown in Fig. (3b) and 
(3c) respectively.  Again it is evident that the system was 
successful in achieving synchronization between the grid 
and the WTG generator.  
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Fig. 2(a). Input ramp phase steps.  

 
 

Fig. 2(b) Phase error for the ramp phase step input.  

 
 

Fig. 2(c) Phase plane for the ramp phase step. 

 
 
 

Fig. 3(a) Input multiple phase steps. 

 
 

Fig. 3(b). Phase error for multiple phase steps input. 

 
Fig. 3(c) Phase plane for multiple phase steps. 
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5.  Conclusions 
 
A digital phase-locked loop circuit topology based on the 
time delay digital tanlock loop (TDTL) has been 
presented. The circuit was simulated and tested using 
Simulink/Matalb. The circuit was able to synchronise a 
generator with the grid and re-establish synchronization 
when the grid voltage was subjected to different 
perturbations. The results of testing the circuit when the 
grid voltage was disturbed by applying a sequence of 
consecutive ramp phase and multiple phase steps were 
presented. In each case the system took less than 10 ms to 
achieve synchronization. 
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