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Abstract. This paper presents a novel strategy on how to 
design a sophisticated HVDC controller by using a decoupling 
filter. At first a simple mathematical model of the HVDC system 
will be derived. The HVDC is a multivariable system; hence the 
rectifier and inverter voltages and currents are coupled and 
therefore it is not trivial to design a controller for one converter 
station without taking the influence of the opposite converter into 
account. Subsequently this paper will show how to eliminate this 
coupling in a mathematical way and as a consequence it will be 
presented how a controller and its appropriate parameters will be 
determined. The novel controller will be compared with a 
standard PI controller of a HVDC system and therefore the 
dynamic behaviour will be obtained. 
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1. Introduction 
 
Recently the desire to use HVDC systems – especially 
multiterminal HVDC systems – has gained interest in 
Germany due to the German grid development plan [1]. 
Hence the interest in novel control strategies for HVDC 
systems has increased since the controlling structure 
design differs from a classical two-point HVDC system, 
which is shown in Figure 1. 
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Figure 1: Schematic design of a six pulse HVDC system 

 
The control system plays an important role in the entire 
HVDC system in order to control the load flow in the AC 
grids, to minimize losses, to improve the operational 
behaviour and the system stability, etc. [2]. Usually the 
rectifier operates in current control mode and the inverter 

can operate in one of the following control modes: It 
contains a current controller, a voltage controller and an 
extinction angle controller [3]. During normal operation, 
the inverter is in voltage control mode as shown in Figure 
2, where ud*(t) and id*(t) are the setpoints for the inverter 
voltage and the rectifier current respectively. ud(t) and 
id(t) are the actual inverter voltage and rectifier current, αi 
and αr are the firing angles of the inverter and the rectifier 
respectively.  
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Figure 2: Principle control scheme of an HVDC system during 
normal operation 

 
Due to AC-Faults at the rectifier side the voltage will 
drop very fast and the inverter will switch to current 
control mode in order to prevent that the DC current 
drops to zero. If the firing angle of the inverter reaches its 
limitation the inverter switches to extinction angle 
control mode in order to prevent a tripping of the inverter 
and the consequently involved risk of a HVDC fall out. 
In practice, PI controllers are usually employed to control 
the rectifier and inverter variables of HVDC systems and 
approaches already exist to select parameters of these 
controllers [4], [5]. Also a method for controlling 
multiterminal HVDC Systems was proposed by F. 
Karlecik-Maier in 1996 [6]. 
But typically the controller parameters are obtained by 
trial and error and therefore this paper will present a 
method on how to choose a controller and its appropriate 
parameters in a sophisticated way. It is important to 
mention that this method will also be applicable to 
multiterminal HVDC systems due to the decoupling 
method. At first it will be shown how a simple 
mathematical model of the HVDC system can be derived. 
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Afterwards the control design process based on this 
mathematical model will be shown and the performance of 
the developed controller will be presented. 
 
 
2.  Modelling of the HVDC system 
 
As already mentioned in the previous section, the first step 
is to analyse the HVDC system in order to obtain a simple 
mathematical model. At first the transmission equation can 
be directly obtained from Figure 1. 
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The voltage drop along the DC line, between the rectifier 
and inverter, can be replaced by equation (2) and (3), 
which show the correlation between the DC voltages Ud1 
and Ud2, the DC current Id, the firing angle αr, the 
extinction angle γi and the corresponding phase to phase 
voltages of the AC grids Unr and Uni [3]. 
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Where XCr and XCi are the short-circuit reactances of the 
AC grids. As the extinction angle γi is not an actuating 
variable of the system it can be replaced with its 
appropriate firing angle αi. For a six-pulse converter the 
constant B is fixed to one (B = 1). Inserting equations (2) 
and (3) in equation (1) yields equation (4). 
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This equation describes a nonlinear system and needs to be 
linearized. This can be done through use of the Taylor 
series decomposition method, where the differential terms 
with orders greater than one are neglected. After the 
linearization the equation can be transferred to the Laplace 
domain. 
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α0r and α0i are the operating points of the firing angle of the 
rectifier and the inverter respectively. Hence the transfer 
function of the DC current can be obtained: 
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The next step is to deduce the relation between the firing 
angles and the inverter side DC voltage Ud2. Therefore 
equation (3) will be linearized and transformed to the 
Laplace domain.   
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Replacing the DC current Id in equation (7) with (6) 
yields equation (8). 
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Summarizing equation (6) and (8) yields in the transfer 
matrix G. 
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As the transfer matrix shows, the model is a two-variable 
system where all the variables are influenced by each 
other. The structure of the system is shown in Figure 3. 
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Figure 3: Structure of the simplified HVDC Model 
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It is not possible to design an appropriate controller for 
such a system due to the fact that both, actuating and 
control variables, are coupled. Applying a so called 
decoupling filter to the system makes it possible to 
consider the coupled system mathematically decoupled 
[7]. The filter compensates the influence of the secondary 
diagonal elements G12 and G21. Its matrix is shown in 
equation (10). 
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F F
F F

F   (10) 
 
The structure of the system with the applied filter and the 
controllers C11 and C22 is shown in Figure 4. 
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Figure 4: Structure of the HVDC system with inculded filter and 
controllers 

 
The controllers C11 and C22 and its parameters are a degree 
of freedom and can be selected in order to guarantee a 
certain dynamic behaviour of the HVDC system. Selecting 
the filter parameters in the right way, the system can be 
considered completely decoupled and has a structure as 
shown in Figure 5. 
 

C11

-
Idref αr G11

Id∆Id

C22
Ud2ref α i G22

Ud2∆Ud2

-

 
Figure 5: Structure of the HVDC system with the applied 

decoupling filter 
 
The first step in the creation of the filter matrix is to reveal 
the undesired influence of the DC current Id on the inverter 
end DC voltage Ud2 and to zero it in. 
 
 ( )d 11 21 22 11 21 0∆ + =I C F G F G   (11) 
 ( )d 2 22 12 11 22 12 0∆ + =U C F G F G   (12) 
 
Solving these equations yields in the following expressions 
for the secondary diagonal elements of the decoupling 
filter: 
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The direct influences from the input to the output, shown 
in Figure 4, shall remain and therefore the equations can 
be presented. 
 
 ( )d d 11 21 12 11 11I I C F G F G∆= +   (15) 
 ( )d 2 d 2 22 12 21 22 22∆= +U U C F G F G   (16) 
 
Comparing those to the decoupled structure scheme, 
shown in Figure 5, yields in the following equations: 
 
 11 21 12 11 11,G F G F G= +   (17) 
 22 12 21 22 22 .G F G F G= +   (18) 
 
Inserting equation (13) in (17) and equation (14) in (18) 
respectively and solving the equations for F11 or F22 
respectively one obtains equation (19). 
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Hence the decoupling filter matrix is given through 
equation (20). 
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The system can now be considered as a mathematically 
uncoupled system and control design can be applied 
much easier.  
 
 
3. Control Design 
 
For designing a sophisticated controller for the HVDC 
system, a simple test network was build up in MATLAB® 
Simulink® with some standard values for Back-to-Back 
HVDC systems from [4] and [8], shown in Table I.  
 

Table I - HVDC Values 
 

Unr 200 kV 
Uni 200 kV 
Xcr 0,7 Ω 
Xci 0,7 Ω 
Rd 0,1 Ω 
Ld 0,085H 
Ud2ref 255 kV 
Idref 3000 A 
α0r 10° 
α0i 160° 
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The transfer functions of the G11 and G22 of the decoupled 
system can now be presented in equation (21) and (22). 
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Figure 6 shows the bode chart of the transfer function of 
-G11 (blue) and G22 (green). 
 

 
 

Figure 6: Bode chart of the transfer function -G11 (blue) and 
G22 (green) 

 
G11 shows delay first order behaviour with a negative gain. 
The negative sign of G11 is not taken into account for 
further studies since the control direction is simply adapted 
with a negative sign in the controller gain. G22 is a PDT1 
element.  
The next two sections will show how control design is 
applied for the mathematically separated systems G11 and 
G22.  
 
 
A. Control design for G11 
 
Since the transfer functions G11 is already pretty fast due to 
its large gain crossover frequency, it is sufficient to use a 
PI controller, which will handle the steady-state accuracy. 
The equation of a PI controller is shown in (23). 
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C K
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Where Kp is the gain and TN is the time constant of the PI 
controller. The time constant of the PI controller is chosen 
in order to eliminate the pole in the transfer function G11. 
The gain of the controller has to be chosen in order to 
guarantee a certain dynamic behaviour. A limiting factor is 
the firing delay of 60° on average. The firing frequency 
can be calculated as shown in equation (24). 
 

 f
360 50Hz2 1885rad/ sec

60
ω π °⋅

= =
°

  (24) 
 

If the controller provides a lower gain crossover 
frequency than fω  the DC current control is delayed. 
Hence the gain was chosen to Kp = -0,006 in order to 
exceed this limiting value for the open loop gain 
crossover frequency and to adapt the control direction 
with the negative sign. Consequently the DC current 
controller has the following structure: 
 

 11
1 0.05916s0.006 .

0.05916s
C +

= −   (25) 
  
Figure 7 shows the bode chart of the closed loop system 
and it can be easily seen that the system is speeded up. 
 

 
 

Figure 7: Bode chart of the closed loop system C11·G11 
 
 
B. Control design for G22 
 
As already mentioned G22 is described by a PDT2 
element, which is similar to an all-pass filter. This means, 
that all frequencies are barely damped. Therefore also 
PDT2 controller can be deployed where the equation is 
presented in (26).    
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The time constants TN and TV of the PDT2 controller are 
chosen in order to eliminate the pole in the transfer 
function G22 and the zero respectively. Hence the closed 
loop transfer function is described by a delay first order 
element. Therefore the gain of the PDT2 controller can 
be chosen in order to guarantee a fast dynamic response 
as well as a sufficiently damped transient behavior. The 
gain was set to Kp = 0,006. Hence the appropriate PDT2 
controller C22 can be presented in equation (27). 
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The bode plot of the closed loop system is shown in 
Figure 8. It can also be seen that the system is speeded 
up. 
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Figure 8: Bode chart of the closed loop system C22·G22 
 

 
4. Results 
 
In this section the results of the aforementioned control 
design process will be presented. Therefore the novel 
approach will be compared with a classical HVDC control 
scheme. This comparison will include normal operating 
conditions as well as operation during fault conditions. 
The classical HVDC controller consists of two controllers, 
a PI controller at the rectifier end for the DC current and a 
PI controller at the inverter end for the DC voltage. 
Therefore standard HVDC PI parameters are considered 
and shown in Table II. 
 

Table II: Parameters of standard HVDC PI controllers [4] 
 

PI at rectifier side PI at inverter side 
Kp TN Kp TN 
0,4 0,015 sec. 0,2 0,02 sec 

 
A. No fault operation 
 
The first simulation shows a power-up process of the 
HVDC system with the different controllers deployed; it is 
presented in Figure 9. 
It is very conspicuous that the decoupling filter controller 
is much faster than the classical controller. It reaches its 
reference level for the DC voltage approximately four 
times faster than the classical controller. In order to 
achieve this goal one has to accept overshoots in the DC 
current.  
 

 

 
 

Figure 9: Power-up process of the HVDC system with a) the 
classical controller b) the decoupling filter controller 

 
This behaviour differs from the predicted delay first 
order; the reason is a simplification in the system model. 
As already mentioned the HVDC is a nonlinear system 
due to the sinusoidal dependence of the system variables 
on the firing angle and also due to the firing delay of 60° 
on average [9]. This firing delay is equal to a dead-time 
element. During this interval of 60° the HVDC is not 
capable to interact and therefore the overshoot arises. The 
transfer function of such a dead-time element can be 
described as follows. 
 
 t s

t (s) e TF −=   (28) 
 
Another positive impact is the smoothness of the firing 
angels, which implies that there aren’t any additional 
filters for the DC current and voltage values in the 
controlling software required; the firing angles are 
presented in Figure 10. 

 

 
 

 
 

Figure 10: Firing angles of the HVDC system with a) the 
classical controller b) the decoupling filter controller 
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B. Operation during AC faults 
 
The AC fault applied to the HVDC system is a 50% 
voltage jump at the AC side of the inverter; it is presented 
in Figure 11.  
 

 
 

 
 

Figure 11: 50 % voltage jump from t = 0.5 sec to t = 0.7 sec 
applied to the inverter AC side of the HVDC system with a) the 

classical controller b) the decoupling filter controller 
 
During the AC fault, the rectifier firing angle decreases 
and is controlled to its average reference value. The DC 
current drops to zero. Applying the classical control the 
current overshoot after the fault is much higher than 
applying the decoupling filter controller. The decoupling 
filter reacts much faster than the classical controller and 
reaches its reference level much earlier regarding the DC 
voltage. 
 
 
5. Conclusion 
 
In this paper a novel approach for the selection of HVDC 
controller parameters was presented. First the 
mathematical modelling of an HVDC was shown, thus it 
was revealed that the HVDC is a coupled system due to 
the firing of the rectifier influences the DC current and the 
DC voltage at the inverter; the same applies for the firing 
of the inverter respectively and was presented in Figure 3. 

Accordingly a decoupling filter was designed for the 
HVDC system and it was shown, that the system can be 
considered as mathematically uncoupled. 
This method offers the possibility to select the HVDC 
controllers and their parameters in a sophisticated way 
that takes the HVDC parameters of the mathematical 
model into account. Therefore an appropriate controller 
for each HVDC system can be designed; unlike the 
parameters of classical controllers which were obtained 
by trial and error. 
The controller was tested in a realistic environment and it 
was shown, that the developed controller operates well 
and that it behaves even better under certain operating 
conditions than the classical HVDC controller.  
It was also shown that the curves of the firing angles are 
very smooth, therefore no additional software smoothing 
filters would be necessary in the controller like it is 
necessary for the classical controller.  
 
 
References 
 
[1] O. Feix, R. Obermann, M. Strecker and A. Brötel, 

“German grid development plan, (Netzentwicklungsplan 
Strom)“, German Transmission System Operators, Berlin, 
Germany, August 2012 (in German). 

[2] L. Ni and Y. Tao, “Parameter Optimization of the Control 
and Regulating System of Gezhouba-shanghai HVDC 
Project”, Power System Technology, No.3, pp.26-31, Aug. 
1989. 

[3] V. Crastan and D. Westermann, “Electrical power supply 
III, (Elektrische Energieversorgung III)”, Springer 
publishing, Berlin Heidelberg, Germany, 2012 (in 
German). 

[4] F. Yang and Z. Xu, “An approach to Select PI Parameters 
of HVDC Controllers”, Power Engineering Society 
General Meeting, Montreal, Québec, Canada, June 2006. 

[5] A. E. Hammad, “Stability and Control of HVDC and AC 
Transmissions in Parallel”, IEEE Transactions on Power 
Delivery, Vol. 14, No. 4, October 1999. 

[6] F. Karlecik-Maier, “A New Closed Loop Control Method 
for HVDC Transmission”, IEEE Transactions on Power 
Delivery, Vol. 11, No. 4, October 1996. 

[7] O. Föllinger, “Control Engineering, (Regelungstechnik)”, 
Hüthig publishing, Heidelberg, Germany, 1994 (in 
German). 

[8] T. Rae, E. Boje, G. D. Jennings and R. G. Harley, 
“Controller structure and design of firing angle controllers 
for (unit connected) HVDC systems”, 4th IEEE Africon 
Conference, Stellenbosch, South Africa, September 1996. 

[9] C. Hahn, M. Weiland, G. Herold, “Control design for a 
power electronic based fault current limiter (FCL)”, 
International Conf. on Renewable Energies and Power 
Quality (ICREPQ), Santiago de Compostela (Spain), 2012.  

 

Time/sec. 

Time/sec. 

b) 

a) 

https://doi.org/10.24084/repqj11.264 233 RE&PQJ, Vol.1, No.11, March 2013




